2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
31 #include "print-tree.h"
32 #include "transaction.h"
35 #include "free-space-cache.h"
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
52 CHUNK_ALLOC_NO_FORCE
= 0,
53 CHUNK_ALLOC_LIMITED
= 1,
54 CHUNK_ALLOC_FORCE
= 2,
58 * Control how reservations are dealt with.
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 RESERVE_ALLOC_NO_ACCOUNT
= 2,
72 static int update_block_group(struct btrfs_trans_handle
*trans
,
73 struct btrfs_root
*root
,
74 u64 bytenr
, u64 num_bytes
, int alloc
);
75 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
76 struct btrfs_root
*root
,
77 u64 bytenr
, u64 num_bytes
, u64 parent
,
78 u64 root_objectid
, u64 owner_objectid
,
79 u64 owner_offset
, int refs_to_drop
,
80 struct btrfs_delayed_extent_op
*extra_op
);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
82 struct extent_buffer
*leaf
,
83 struct btrfs_extent_item
*ei
);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
85 struct btrfs_root
*root
,
86 u64 parent
, u64 root_objectid
,
87 u64 flags
, u64 owner
, u64 offset
,
88 struct btrfs_key
*ins
, int ref_mod
);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
90 struct btrfs_root
*root
,
91 u64 parent
, u64 root_objectid
,
92 u64 flags
, struct btrfs_disk_key
*key
,
93 int level
, struct btrfs_key
*ins
);
94 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
96 u64 flags
, int force
);
97 static int find_next_key(struct btrfs_path
*path
, int level
,
98 struct btrfs_key
*key
);
99 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
100 int dump_block_groups
);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
102 u64 num_bytes
, int reserve
);
105 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
108 return cache
->cached
== BTRFS_CACHE_FINISHED
;
111 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
113 return (cache
->flags
& bits
) == bits
;
116 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
118 atomic_inc(&cache
->count
);
121 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
123 if (atomic_dec_and_test(&cache
->count
)) {
124 WARN_ON(cache
->pinned
> 0);
125 WARN_ON(cache
->reserved
> 0);
126 kfree(cache
->free_space_ctl
);
132 * this adds the block group to the fs_info rb tree for the block group
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
136 struct btrfs_block_group_cache
*block_group
)
139 struct rb_node
*parent
= NULL
;
140 struct btrfs_block_group_cache
*cache
;
142 spin_lock(&info
->block_group_cache_lock
);
143 p
= &info
->block_group_cache_tree
.rb_node
;
147 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
149 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
151 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
154 spin_unlock(&info
->block_group_cache_lock
);
159 rb_link_node(&block_group
->cache_node
, parent
, p
);
160 rb_insert_color(&block_group
->cache_node
,
161 &info
->block_group_cache_tree
);
162 spin_unlock(&info
->block_group_cache_lock
);
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
171 static struct btrfs_block_group_cache
*
172 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
175 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
179 spin_lock(&info
->block_group_cache_lock
);
180 n
= info
->block_group_cache_tree
.rb_node
;
183 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
185 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
186 start
= cache
->key
.objectid
;
188 if (bytenr
< start
) {
189 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
192 } else if (bytenr
> start
) {
193 if (contains
&& bytenr
<= end
) {
204 btrfs_get_block_group(ret
);
205 spin_unlock(&info
->block_group_cache_lock
);
210 static int add_excluded_extent(struct btrfs_root
*root
,
211 u64 start
, u64 num_bytes
)
213 u64 end
= start
+ num_bytes
- 1;
214 set_extent_bits(&root
->fs_info
->freed_extents
[0],
215 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
216 set_extent_bits(&root
->fs_info
->freed_extents
[1],
217 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
221 static void free_excluded_extents(struct btrfs_root
*root
,
222 struct btrfs_block_group_cache
*cache
)
226 start
= cache
->key
.objectid
;
227 end
= start
+ cache
->key
.offset
- 1;
229 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
230 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
231 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
232 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
235 static int exclude_super_stripes(struct btrfs_root
*root
,
236 struct btrfs_block_group_cache
*cache
)
243 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
244 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
245 cache
->bytes_super
+= stripe_len
;
246 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
251 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
252 bytenr
= btrfs_sb_offset(i
);
253 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
254 cache
->key
.objectid
, bytenr
,
255 0, &logical
, &nr
, &stripe_len
);
259 cache
->bytes_super
+= stripe_len
;
260 ret
= add_excluded_extent(root
, logical
[nr
],
270 static struct btrfs_caching_control
*
271 get_caching_control(struct btrfs_block_group_cache
*cache
)
273 struct btrfs_caching_control
*ctl
;
275 spin_lock(&cache
->lock
);
276 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
277 spin_unlock(&cache
->lock
);
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache
->caching_ctl
) {
283 spin_unlock(&cache
->lock
);
287 ctl
= cache
->caching_ctl
;
288 atomic_inc(&ctl
->count
);
289 spin_unlock(&cache
->lock
);
293 static void put_caching_control(struct btrfs_caching_control
*ctl
)
295 if (atomic_dec_and_test(&ctl
->count
))
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
304 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
305 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
307 u64 extent_start
, extent_end
, size
, total_added
= 0;
310 while (start
< end
) {
311 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
312 &extent_start
, &extent_end
,
313 EXTENT_DIRTY
| EXTENT_UPTODATE
);
317 if (extent_start
<= start
) {
318 start
= extent_end
+ 1;
319 } else if (extent_start
> start
&& extent_start
< end
) {
320 size
= extent_start
- start
;
322 ret
= btrfs_add_free_space(block_group
, start
,
325 start
= extent_end
+ 1;
334 ret
= btrfs_add_free_space(block_group
, start
, size
);
341 static noinline
void caching_thread(struct btrfs_work
*work
)
343 struct btrfs_block_group_cache
*block_group
;
344 struct btrfs_fs_info
*fs_info
;
345 struct btrfs_caching_control
*caching_ctl
;
346 struct btrfs_root
*extent_root
;
347 struct btrfs_path
*path
;
348 struct extent_buffer
*leaf
;
349 struct btrfs_key key
;
355 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
356 block_group
= caching_ctl
->block_group
;
357 fs_info
= block_group
->fs_info
;
358 extent_root
= fs_info
->extent_root
;
360 path
= btrfs_alloc_path();
364 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
372 path
->skip_locking
= 1;
373 path
->search_commit_root
= 1;
378 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
380 mutex_lock(&caching_ctl
->mutex
);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info
->extent_commit_sem
);
384 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
388 leaf
= path
->nodes
[0];
389 nritems
= btrfs_header_nritems(leaf
);
392 if (btrfs_fs_closing(fs_info
) > 1) {
397 if (path
->slots
[0] < nritems
) {
398 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
400 ret
= find_next_key(path
, 0, &key
);
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root
, path
)) {
406 caching_ctl
->progress
= last
;
407 btrfs_release_path(path
);
408 up_read(&fs_info
->extent_commit_sem
);
409 mutex_unlock(&caching_ctl
->mutex
);
413 leaf
= path
->nodes
[0];
414 nritems
= btrfs_header_nritems(leaf
);
418 if (key
.objectid
< block_group
->key
.objectid
) {
423 if (key
.objectid
>= block_group
->key
.objectid
+
424 block_group
->key
.offset
)
427 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
428 total_found
+= add_new_free_space(block_group
,
431 last
= key
.objectid
+ key
.offset
;
433 if (total_found
> (1024 * 1024 * 2)) {
435 wake_up(&caching_ctl
->wait
);
442 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
443 block_group
->key
.objectid
+
444 block_group
->key
.offset
);
445 caching_ctl
->progress
= (u64
)-1;
447 spin_lock(&block_group
->lock
);
448 block_group
->caching_ctl
= NULL
;
449 block_group
->cached
= BTRFS_CACHE_FINISHED
;
450 spin_unlock(&block_group
->lock
);
453 btrfs_free_path(path
);
454 up_read(&fs_info
->extent_commit_sem
);
456 free_excluded_extents(extent_root
, block_group
);
458 mutex_unlock(&caching_ctl
->mutex
);
460 wake_up(&caching_ctl
->wait
);
462 put_caching_control(caching_ctl
);
463 btrfs_put_block_group(block_group
);
466 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
467 struct btrfs_trans_handle
*trans
,
468 struct btrfs_root
*root
,
472 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
473 struct btrfs_caching_control
*caching_ctl
;
476 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
477 BUG_ON(!caching_ctl
);
479 INIT_LIST_HEAD(&caching_ctl
->list
);
480 mutex_init(&caching_ctl
->mutex
);
481 init_waitqueue_head(&caching_ctl
->wait
);
482 caching_ctl
->block_group
= cache
;
483 caching_ctl
->progress
= cache
->key
.objectid
;
484 atomic_set(&caching_ctl
->count
, 1);
485 caching_ctl
->work
.func
= caching_thread
;
487 spin_lock(&cache
->lock
);
489 * This should be a rare occasion, but this could happen I think in the
490 * case where one thread starts to load the space cache info, and then
491 * some other thread starts a transaction commit which tries to do an
492 * allocation while the other thread is still loading the space cache
493 * info. The previous loop should have kept us from choosing this block
494 * group, but if we've moved to the state where we will wait on caching
495 * block groups we need to first check if we're doing a fast load here,
496 * so we can wait for it to finish, otherwise we could end up allocating
497 * from a block group who's cache gets evicted for one reason or
500 while (cache
->cached
== BTRFS_CACHE_FAST
) {
501 struct btrfs_caching_control
*ctl
;
503 ctl
= cache
->caching_ctl
;
504 atomic_inc(&ctl
->count
);
505 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
506 spin_unlock(&cache
->lock
);
510 finish_wait(&ctl
->wait
, &wait
);
511 put_caching_control(ctl
);
512 spin_lock(&cache
->lock
);
515 if (cache
->cached
!= BTRFS_CACHE_NO
) {
516 spin_unlock(&cache
->lock
);
520 WARN_ON(cache
->caching_ctl
);
521 cache
->caching_ctl
= caching_ctl
;
522 cache
->cached
= BTRFS_CACHE_FAST
;
523 spin_unlock(&cache
->lock
);
526 * We can't do the read from on-disk cache during a commit since we need
527 * to have the normal tree locking. Also if we are currently trying to
528 * allocate blocks for the tree root we can't do the fast caching since
529 * we likely hold important locks.
531 if (trans
&& (!trans
->transaction
->in_commit
) &&
532 (root
&& root
!= root
->fs_info
->tree_root
) &&
533 btrfs_test_opt(root
, SPACE_CACHE
)) {
534 ret
= load_free_space_cache(fs_info
, cache
);
536 spin_lock(&cache
->lock
);
538 cache
->caching_ctl
= NULL
;
539 cache
->cached
= BTRFS_CACHE_FINISHED
;
540 cache
->last_byte_to_unpin
= (u64
)-1;
542 if (load_cache_only
) {
543 cache
->caching_ctl
= NULL
;
544 cache
->cached
= BTRFS_CACHE_NO
;
546 cache
->cached
= BTRFS_CACHE_STARTED
;
549 spin_unlock(&cache
->lock
);
550 wake_up(&caching_ctl
->wait
);
552 put_caching_control(caching_ctl
);
553 free_excluded_extents(fs_info
->extent_root
, cache
);
558 * We are not going to do the fast caching, set cached to the
559 * appropriate value and wakeup any waiters.
561 spin_lock(&cache
->lock
);
562 if (load_cache_only
) {
563 cache
->caching_ctl
= NULL
;
564 cache
->cached
= BTRFS_CACHE_NO
;
566 cache
->cached
= BTRFS_CACHE_STARTED
;
568 spin_unlock(&cache
->lock
);
569 wake_up(&caching_ctl
->wait
);
572 if (load_cache_only
) {
573 put_caching_control(caching_ctl
);
577 down_write(&fs_info
->extent_commit_sem
);
578 atomic_inc(&caching_ctl
->count
);
579 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
580 up_write(&fs_info
->extent_commit_sem
);
582 btrfs_get_block_group(cache
);
584 btrfs_queue_worker(&fs_info
->caching_workers
, &caching_ctl
->work
);
590 * return the block group that starts at or after bytenr
592 static struct btrfs_block_group_cache
*
593 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
595 struct btrfs_block_group_cache
*cache
;
597 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
603 * return the block group that contains the given bytenr
605 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
606 struct btrfs_fs_info
*info
,
609 struct btrfs_block_group_cache
*cache
;
611 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
616 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
619 struct list_head
*head
= &info
->space_info
;
620 struct btrfs_space_info
*found
;
622 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
625 list_for_each_entry_rcu(found
, head
, list
) {
626 if (found
->flags
& flags
) {
636 * after adding space to the filesystem, we need to clear the full flags
637 * on all the space infos.
639 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
641 struct list_head
*head
= &info
->space_info
;
642 struct btrfs_space_info
*found
;
645 list_for_each_entry_rcu(found
, head
, list
)
650 static u64
div_factor(u64 num
, int factor
)
659 static u64
div_factor_fine(u64 num
, int factor
)
668 u64
btrfs_find_block_group(struct btrfs_root
*root
,
669 u64 search_start
, u64 search_hint
, int owner
)
671 struct btrfs_block_group_cache
*cache
;
673 u64 last
= max(search_hint
, search_start
);
680 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
684 spin_lock(&cache
->lock
);
685 last
= cache
->key
.objectid
+ cache
->key
.offset
;
686 used
= btrfs_block_group_used(&cache
->item
);
688 if ((full_search
|| !cache
->ro
) &&
689 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
690 if (used
+ cache
->pinned
+ cache
->reserved
<
691 div_factor(cache
->key
.offset
, factor
)) {
692 group_start
= cache
->key
.objectid
;
693 spin_unlock(&cache
->lock
);
694 btrfs_put_block_group(cache
);
698 spin_unlock(&cache
->lock
);
699 btrfs_put_block_group(cache
);
707 if (!full_search
&& factor
< 10) {
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
721 struct btrfs_key key
;
722 struct btrfs_path
*path
;
724 path
= btrfs_alloc_path();
728 key
.objectid
= start
;
730 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
731 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
733 btrfs_free_path(path
);
738 * helper function to lookup reference count and flags of extent.
740 * the head node for delayed ref is used to store the sum of all the
741 * reference count modifications queued up in the rbtree. the head
742 * node may also store the extent flags to set. This way you can check
743 * to see what the reference count and extent flags would be if all of
744 * the delayed refs are not processed.
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
747 struct btrfs_root
*root
, u64 bytenr
,
748 u64 num_bytes
, u64
*refs
, u64
*flags
)
750 struct btrfs_delayed_ref_head
*head
;
751 struct btrfs_delayed_ref_root
*delayed_refs
;
752 struct btrfs_path
*path
;
753 struct btrfs_extent_item
*ei
;
754 struct extent_buffer
*leaf
;
755 struct btrfs_key key
;
761 path
= btrfs_alloc_path();
765 key
.objectid
= bytenr
;
766 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
767 key
.offset
= num_bytes
;
769 path
->skip_locking
= 1;
770 path
->search_commit_root
= 1;
773 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
779 leaf
= path
->nodes
[0];
780 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
781 if (item_size
>= sizeof(*ei
)) {
782 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
783 struct btrfs_extent_item
);
784 num_refs
= btrfs_extent_refs(leaf
, ei
);
785 extent_flags
= btrfs_extent_flags(leaf
, ei
);
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 struct btrfs_extent_item_v0
*ei0
;
789 BUG_ON(item_size
!= sizeof(*ei0
));
790 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
791 struct btrfs_extent_item_v0
);
792 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
793 /* FIXME: this isn't correct for data */
794 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
799 BUG_ON(num_refs
== 0);
809 delayed_refs
= &trans
->transaction
->delayed_refs
;
810 spin_lock(&delayed_refs
->lock
);
811 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
813 if (!mutex_trylock(&head
->mutex
)) {
814 atomic_inc(&head
->node
.refs
);
815 spin_unlock(&delayed_refs
->lock
);
817 btrfs_release_path(path
);
820 * Mutex was contended, block until it's released and try
823 mutex_lock(&head
->mutex
);
824 mutex_unlock(&head
->mutex
);
825 btrfs_put_delayed_ref(&head
->node
);
828 if (head
->extent_op
&& head
->extent_op
->update_flags
)
829 extent_flags
|= head
->extent_op
->flags_to_set
;
831 BUG_ON(num_refs
== 0);
833 num_refs
+= head
->node
.ref_mod
;
834 mutex_unlock(&head
->mutex
);
836 spin_unlock(&delayed_refs
->lock
);
838 WARN_ON(num_refs
== 0);
842 *flags
= extent_flags
;
844 btrfs_free_path(path
);
849 * Back reference rules. Back refs have three main goals:
851 * 1) differentiate between all holders of references to an extent so that
852 * when a reference is dropped we can make sure it was a valid reference
853 * before freeing the extent.
855 * 2) Provide enough information to quickly find the holders of an extent
856 * if we notice a given block is corrupted or bad.
858 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859 * maintenance. This is actually the same as #2, but with a slightly
860 * different use case.
862 * There are two kinds of back refs. The implicit back refs is optimized
863 * for pointers in non-shared tree blocks. For a given pointer in a block,
864 * back refs of this kind provide information about the block's owner tree
865 * and the pointer's key. These information allow us to find the block by
866 * b-tree searching. The full back refs is for pointers in tree blocks not
867 * referenced by their owner trees. The location of tree block is recorded
868 * in the back refs. Actually the full back refs is generic, and can be
869 * used in all cases the implicit back refs is used. The major shortcoming
870 * of the full back refs is its overhead. Every time a tree block gets
871 * COWed, we have to update back refs entry for all pointers in it.
873 * For a newly allocated tree block, we use implicit back refs for
874 * pointers in it. This means most tree related operations only involve
875 * implicit back refs. For a tree block created in old transaction, the
876 * only way to drop a reference to it is COW it. So we can detect the
877 * event that tree block loses its owner tree's reference and do the
878 * back refs conversion.
880 * When a tree block is COW'd through a tree, there are four cases:
882 * The reference count of the block is one and the tree is the block's
883 * owner tree. Nothing to do in this case.
885 * The reference count of the block is one and the tree is not the
886 * block's owner tree. In this case, full back refs is used for pointers
887 * in the block. Remove these full back refs, add implicit back refs for
888 * every pointers in the new block.
890 * The reference count of the block is greater than one and the tree is
891 * the block's owner tree. In this case, implicit back refs is used for
892 * pointers in the block. Add full back refs for every pointers in the
893 * block, increase lower level extents' reference counts. The original
894 * implicit back refs are entailed to the new block.
896 * The reference count of the block is greater than one and the tree is
897 * not the block's owner tree. Add implicit back refs for every pointer in
898 * the new block, increase lower level extents' reference count.
900 * Back Reference Key composing:
902 * The key objectid corresponds to the first byte in the extent,
903 * The key type is used to differentiate between types of back refs.
904 * There are different meanings of the key offset for different types
907 * File extents can be referenced by:
909 * - multiple snapshots, subvolumes, or different generations in one subvol
910 * - different files inside a single subvolume
911 * - different offsets inside a file (bookend extents in file.c)
913 * The extent ref structure for the implicit back refs has fields for:
915 * - Objectid of the subvolume root
916 * - objectid of the file holding the reference
917 * - original offset in the file
918 * - how many bookend extents
920 * The key offset for the implicit back refs is hash of the first
923 * The extent ref structure for the full back refs has field for:
925 * - number of pointers in the tree leaf
927 * The key offset for the implicit back refs is the first byte of
930 * When a file extent is allocated, The implicit back refs is used.
931 * the fields are filled in:
933 * (root_key.objectid, inode objectid, offset in file, 1)
935 * When a file extent is removed file truncation, we find the
936 * corresponding implicit back refs and check the following fields:
938 * (btrfs_header_owner(leaf), inode objectid, offset in file)
940 * Btree extents can be referenced by:
942 * - Different subvolumes
944 * Both the implicit back refs and the full back refs for tree blocks
945 * only consist of key. The key offset for the implicit back refs is
946 * objectid of block's owner tree. The key offset for the full back refs
947 * is the first byte of parent block.
949 * When implicit back refs is used, information about the lowest key and
950 * level of the tree block are required. These information are stored in
951 * tree block info structure.
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
956 struct btrfs_root
*root
,
957 struct btrfs_path
*path
,
958 u64 owner
, u32 extra_size
)
960 struct btrfs_extent_item
*item
;
961 struct btrfs_extent_item_v0
*ei0
;
962 struct btrfs_extent_ref_v0
*ref0
;
963 struct btrfs_tree_block_info
*bi
;
964 struct extent_buffer
*leaf
;
965 struct btrfs_key key
;
966 struct btrfs_key found_key
;
967 u32 new_size
= sizeof(*item
);
971 leaf
= path
->nodes
[0];
972 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
974 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
975 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
976 struct btrfs_extent_item_v0
);
977 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
979 if (owner
== (u64
)-1) {
981 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
982 ret
= btrfs_next_leaf(root
, path
);
986 leaf
= path
->nodes
[0];
988 btrfs_item_key_to_cpu(leaf
, &found_key
,
990 BUG_ON(key
.objectid
!= found_key
.objectid
);
991 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
995 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
996 struct btrfs_extent_ref_v0
);
997 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1001 btrfs_release_path(path
);
1003 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1004 new_size
+= sizeof(*bi
);
1006 new_size
-= sizeof(*ei0
);
1007 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1008 new_size
+ extra_size
, 1);
1013 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
1015 leaf
= path
->nodes
[0];
1016 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1017 btrfs_set_extent_refs(leaf
, item
, refs
);
1018 /* FIXME: get real generation */
1019 btrfs_set_extent_generation(leaf
, item
, 0);
1020 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1021 btrfs_set_extent_flags(leaf
, item
,
1022 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1023 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1024 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1025 /* FIXME: get first key of the block */
1026 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1027 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1029 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1031 btrfs_mark_buffer_dirty(leaf
);
1036 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1038 u32 high_crc
= ~(u32
)0;
1039 u32 low_crc
= ~(u32
)0;
1042 lenum
= cpu_to_le64(root_objectid
);
1043 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
1044 lenum
= cpu_to_le64(owner
);
1045 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1046 lenum
= cpu_to_le64(offset
);
1047 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1049 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1052 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1053 struct btrfs_extent_data_ref
*ref
)
1055 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1056 btrfs_extent_data_ref_objectid(leaf
, ref
),
1057 btrfs_extent_data_ref_offset(leaf
, ref
));
1060 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1061 struct btrfs_extent_data_ref
*ref
,
1062 u64 root_objectid
, u64 owner
, u64 offset
)
1064 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1065 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1066 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1071 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1072 struct btrfs_root
*root
,
1073 struct btrfs_path
*path
,
1074 u64 bytenr
, u64 parent
,
1076 u64 owner
, u64 offset
)
1078 struct btrfs_key key
;
1079 struct btrfs_extent_data_ref
*ref
;
1080 struct extent_buffer
*leaf
;
1086 key
.objectid
= bytenr
;
1088 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1089 key
.offset
= parent
;
1091 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1092 key
.offset
= hash_extent_data_ref(root_objectid
,
1097 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1108 btrfs_release_path(path
);
1109 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1120 leaf
= path
->nodes
[0];
1121 nritems
= btrfs_header_nritems(leaf
);
1123 if (path
->slots
[0] >= nritems
) {
1124 ret
= btrfs_next_leaf(root
, path
);
1130 leaf
= path
->nodes
[0];
1131 nritems
= btrfs_header_nritems(leaf
);
1135 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1136 if (key
.objectid
!= bytenr
||
1137 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1140 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1141 struct btrfs_extent_data_ref
);
1143 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1146 btrfs_release_path(path
);
1158 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1159 struct btrfs_root
*root
,
1160 struct btrfs_path
*path
,
1161 u64 bytenr
, u64 parent
,
1162 u64 root_objectid
, u64 owner
,
1163 u64 offset
, int refs_to_add
)
1165 struct btrfs_key key
;
1166 struct extent_buffer
*leaf
;
1171 key
.objectid
= bytenr
;
1173 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1174 key
.offset
= parent
;
1175 size
= sizeof(struct btrfs_shared_data_ref
);
1177 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1178 key
.offset
= hash_extent_data_ref(root_objectid
,
1180 size
= sizeof(struct btrfs_extent_data_ref
);
1183 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1184 if (ret
&& ret
!= -EEXIST
)
1187 leaf
= path
->nodes
[0];
1189 struct btrfs_shared_data_ref
*ref
;
1190 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1191 struct btrfs_shared_data_ref
);
1193 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1195 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1196 num_refs
+= refs_to_add
;
1197 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1200 struct btrfs_extent_data_ref
*ref
;
1201 while (ret
== -EEXIST
) {
1202 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1203 struct btrfs_extent_data_ref
);
1204 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1207 btrfs_release_path(path
);
1209 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1211 if (ret
&& ret
!= -EEXIST
)
1214 leaf
= path
->nodes
[0];
1216 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1217 struct btrfs_extent_data_ref
);
1219 btrfs_set_extent_data_ref_root(leaf
, ref
,
1221 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1222 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1223 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1225 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1226 num_refs
+= refs_to_add
;
1227 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1230 btrfs_mark_buffer_dirty(leaf
);
1233 btrfs_release_path(path
);
1237 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1238 struct btrfs_root
*root
,
1239 struct btrfs_path
*path
,
1242 struct btrfs_key key
;
1243 struct btrfs_extent_data_ref
*ref1
= NULL
;
1244 struct btrfs_shared_data_ref
*ref2
= NULL
;
1245 struct extent_buffer
*leaf
;
1249 leaf
= path
->nodes
[0];
1250 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1252 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1253 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1254 struct btrfs_extent_data_ref
);
1255 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1256 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1257 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1258 struct btrfs_shared_data_ref
);
1259 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1262 struct btrfs_extent_ref_v0
*ref0
;
1263 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1264 struct btrfs_extent_ref_v0
);
1265 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1271 BUG_ON(num_refs
< refs_to_drop
);
1272 num_refs
-= refs_to_drop
;
1274 if (num_refs
== 0) {
1275 ret
= btrfs_del_item(trans
, root
, path
);
1277 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1278 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1279 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1280 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 struct btrfs_extent_ref_v0
*ref0
;
1284 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1285 struct btrfs_extent_ref_v0
);
1286 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1289 btrfs_mark_buffer_dirty(leaf
);
1294 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1295 struct btrfs_path
*path
,
1296 struct btrfs_extent_inline_ref
*iref
)
1298 struct btrfs_key key
;
1299 struct extent_buffer
*leaf
;
1300 struct btrfs_extent_data_ref
*ref1
;
1301 struct btrfs_shared_data_ref
*ref2
;
1304 leaf
= path
->nodes
[0];
1305 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1307 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1308 BTRFS_EXTENT_DATA_REF_KEY
) {
1309 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1310 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1312 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1313 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1315 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1316 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1317 struct btrfs_extent_data_ref
);
1318 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1319 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1320 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1321 struct btrfs_shared_data_ref
);
1322 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1325 struct btrfs_extent_ref_v0
*ref0
;
1326 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1327 struct btrfs_extent_ref_v0
);
1328 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1336 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1337 struct btrfs_root
*root
,
1338 struct btrfs_path
*path
,
1339 u64 bytenr
, u64 parent
,
1342 struct btrfs_key key
;
1345 key
.objectid
= bytenr
;
1347 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1348 key
.offset
= parent
;
1350 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1351 key
.offset
= root_objectid
;
1354 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (ret
== -ENOENT
&& parent
) {
1359 btrfs_release_path(path
);
1360 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1361 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1369 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1370 struct btrfs_root
*root
,
1371 struct btrfs_path
*path
,
1372 u64 bytenr
, u64 parent
,
1375 struct btrfs_key key
;
1378 key
.objectid
= bytenr
;
1380 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1381 key
.offset
= parent
;
1383 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1384 key
.offset
= root_objectid
;
1387 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1388 btrfs_release_path(path
);
1392 static inline int extent_ref_type(u64 parent
, u64 owner
)
1395 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1397 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1399 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1402 type
= BTRFS_SHARED_DATA_REF_KEY
;
1404 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1409 static int find_next_key(struct btrfs_path
*path
, int level
,
1410 struct btrfs_key
*key
)
1413 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1414 if (!path
->nodes
[level
])
1416 if (path
->slots
[level
] + 1 >=
1417 btrfs_header_nritems(path
->nodes
[level
]))
1420 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1421 path
->slots
[level
] + 1);
1423 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1424 path
->slots
[level
] + 1);
1431 * look for inline back ref. if back ref is found, *ref_ret is set
1432 * to the address of inline back ref, and 0 is returned.
1434 * if back ref isn't found, *ref_ret is set to the address where it
1435 * should be inserted, and -ENOENT is returned.
1437 * if insert is true and there are too many inline back refs, the path
1438 * points to the extent item, and -EAGAIN is returned.
1440 * NOTE: inline back refs are ordered in the same way that back ref
1441 * items in the tree are ordered.
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1445 struct btrfs_root
*root
,
1446 struct btrfs_path
*path
,
1447 struct btrfs_extent_inline_ref
**ref_ret
,
1448 u64 bytenr
, u64 num_bytes
,
1449 u64 parent
, u64 root_objectid
,
1450 u64 owner
, u64 offset
, int insert
)
1452 struct btrfs_key key
;
1453 struct extent_buffer
*leaf
;
1454 struct btrfs_extent_item
*ei
;
1455 struct btrfs_extent_inline_ref
*iref
;
1466 key
.objectid
= bytenr
;
1467 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1468 key
.offset
= num_bytes
;
1470 want
= extent_ref_type(parent
, owner
);
1472 extra_size
= btrfs_extent_inline_ref_size(want
);
1473 path
->keep_locks
= 1;
1476 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1483 leaf
= path
->nodes
[0];
1484 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 if (item_size
< sizeof(*ei
)) {
1491 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1497 leaf
= path
->nodes
[0];
1498 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1501 BUG_ON(item_size
< sizeof(*ei
));
1503 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1504 flags
= btrfs_extent_flags(leaf
, ei
);
1506 ptr
= (unsigned long)(ei
+ 1);
1507 end
= (unsigned long)ei
+ item_size
;
1509 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1510 ptr
+= sizeof(struct btrfs_tree_block_info
);
1513 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1522 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1523 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1527 ptr
+= btrfs_extent_inline_ref_size(type
);
1531 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1532 struct btrfs_extent_data_ref
*dref
;
1533 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1534 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1539 if (hash_extent_data_ref_item(leaf
, dref
) <
1540 hash_extent_data_ref(root_objectid
, owner
, offset
))
1544 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1546 if (parent
== ref_offset
) {
1550 if (ref_offset
< parent
)
1553 if (root_objectid
== ref_offset
) {
1557 if (ref_offset
< root_objectid
)
1561 ptr
+= btrfs_extent_inline_ref_size(type
);
1563 if (err
== -ENOENT
&& insert
) {
1564 if (item_size
+ extra_size
>=
1565 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1570 * To add new inline back ref, we have to make sure
1571 * there is no corresponding back ref item.
1572 * For simplicity, we just do not add new inline back
1573 * ref if there is any kind of item for this block
1575 if (find_next_key(path
, 0, &key
) == 0 &&
1576 key
.objectid
== bytenr
&&
1577 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1582 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1585 path
->keep_locks
= 0;
1586 btrfs_unlock_up_safe(path
, 1);
1592 * helper to add new inline back ref
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1596 struct btrfs_root
*root
,
1597 struct btrfs_path
*path
,
1598 struct btrfs_extent_inline_ref
*iref
,
1599 u64 parent
, u64 root_objectid
,
1600 u64 owner
, u64 offset
, int refs_to_add
,
1601 struct btrfs_delayed_extent_op
*extent_op
)
1603 struct extent_buffer
*leaf
;
1604 struct btrfs_extent_item
*ei
;
1607 unsigned long item_offset
;
1613 leaf
= path
->nodes
[0];
1614 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1615 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1617 type
= extent_ref_type(parent
, owner
);
1618 size
= btrfs_extent_inline_ref_size(type
);
1620 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1622 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1623 refs
= btrfs_extent_refs(leaf
, ei
);
1624 refs
+= refs_to_add
;
1625 btrfs_set_extent_refs(leaf
, ei
, refs
);
1627 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1629 ptr
= (unsigned long)ei
+ item_offset
;
1630 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1631 if (ptr
< end
- size
)
1632 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1635 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1636 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1637 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1638 struct btrfs_extent_data_ref
*dref
;
1639 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1640 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1641 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1642 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1643 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1644 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1645 struct btrfs_shared_data_ref
*sref
;
1646 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1647 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1648 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1649 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1650 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1652 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1654 btrfs_mark_buffer_dirty(leaf
);
1658 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1659 struct btrfs_root
*root
,
1660 struct btrfs_path
*path
,
1661 struct btrfs_extent_inline_ref
**ref_ret
,
1662 u64 bytenr
, u64 num_bytes
, u64 parent
,
1663 u64 root_objectid
, u64 owner
, u64 offset
)
1667 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1668 bytenr
, num_bytes
, parent
,
1669 root_objectid
, owner
, offset
, 0);
1673 btrfs_release_path(path
);
1676 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1677 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1680 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1681 root_objectid
, owner
, offset
);
1687 * helper to update/remove inline back ref
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1691 struct btrfs_root
*root
,
1692 struct btrfs_path
*path
,
1693 struct btrfs_extent_inline_ref
*iref
,
1695 struct btrfs_delayed_extent_op
*extent_op
)
1697 struct extent_buffer
*leaf
;
1698 struct btrfs_extent_item
*ei
;
1699 struct btrfs_extent_data_ref
*dref
= NULL
;
1700 struct btrfs_shared_data_ref
*sref
= NULL
;
1709 leaf
= path
->nodes
[0];
1710 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1711 refs
= btrfs_extent_refs(leaf
, ei
);
1712 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1713 refs
+= refs_to_mod
;
1714 btrfs_set_extent_refs(leaf
, ei
, refs
);
1716 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1718 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1720 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1721 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1722 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1723 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1724 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1725 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1728 BUG_ON(refs_to_mod
!= -1);
1731 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1732 refs
+= refs_to_mod
;
1735 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1736 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1738 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1740 size
= btrfs_extent_inline_ref_size(type
);
1741 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1742 ptr
= (unsigned long)iref
;
1743 end
= (unsigned long)ei
+ item_size
;
1744 if (ptr
+ size
< end
)
1745 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1748 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1750 btrfs_mark_buffer_dirty(leaf
);
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1756 struct btrfs_root
*root
,
1757 struct btrfs_path
*path
,
1758 u64 bytenr
, u64 num_bytes
, u64 parent
,
1759 u64 root_objectid
, u64 owner
,
1760 u64 offset
, int refs_to_add
,
1761 struct btrfs_delayed_extent_op
*extent_op
)
1763 struct btrfs_extent_inline_ref
*iref
;
1766 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1767 bytenr
, num_bytes
, parent
,
1768 root_objectid
, owner
, offset
, 1);
1770 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1771 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1772 refs_to_add
, extent_op
);
1773 } else if (ret
== -ENOENT
) {
1774 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1775 parent
, root_objectid
,
1776 owner
, offset
, refs_to_add
,
1782 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1783 struct btrfs_root
*root
,
1784 struct btrfs_path
*path
,
1785 u64 bytenr
, u64 parent
, u64 root_objectid
,
1786 u64 owner
, u64 offset
, int refs_to_add
)
1789 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1790 BUG_ON(refs_to_add
!= 1);
1791 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1792 parent
, root_objectid
);
1794 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1795 parent
, root_objectid
,
1796 owner
, offset
, refs_to_add
);
1801 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1802 struct btrfs_root
*root
,
1803 struct btrfs_path
*path
,
1804 struct btrfs_extent_inline_ref
*iref
,
1805 int refs_to_drop
, int is_data
)
1809 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1811 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1812 -refs_to_drop
, NULL
);
1813 } else if (is_data
) {
1814 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1816 ret
= btrfs_del_item(trans
, root
, path
);
1821 static int btrfs_issue_discard(struct block_device
*bdev
,
1824 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1827 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1828 u64 num_bytes
, u64
*actual_bytes
)
1831 u64 discarded_bytes
= 0;
1832 struct btrfs_bio
*bbio
= NULL
;
1835 /* Tell the block device(s) that the sectors can be discarded */
1836 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, REQ_DISCARD
,
1837 bytenr
, &num_bytes
, &bbio
, 0);
1839 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1843 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1844 if (!stripe
->dev
->can_discard
)
1847 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1851 discarded_bytes
+= stripe
->length
;
1852 else if (ret
!= -EOPNOTSUPP
)
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1866 *actual_bytes
= discarded_bytes
;
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1873 struct btrfs_root
*root
,
1874 u64 bytenr
, u64 num_bytes
, u64 parent
,
1875 u64 root_objectid
, u64 owner
, u64 offset
, int for_cow
)
1878 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1880 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1881 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1883 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1884 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1886 parent
, root_objectid
, (int)owner
,
1887 BTRFS_ADD_DELAYED_REF
, NULL
, for_cow
);
1889 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1891 parent
, root_objectid
, owner
, offset
,
1892 BTRFS_ADD_DELAYED_REF
, NULL
, for_cow
);
1897 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1898 struct btrfs_root
*root
,
1899 u64 bytenr
, u64 num_bytes
,
1900 u64 parent
, u64 root_objectid
,
1901 u64 owner
, u64 offset
, int refs_to_add
,
1902 struct btrfs_delayed_extent_op
*extent_op
)
1904 struct btrfs_path
*path
;
1905 struct extent_buffer
*leaf
;
1906 struct btrfs_extent_item
*item
;
1911 path
= btrfs_alloc_path();
1916 path
->leave_spinning
= 1;
1917 /* this will setup the path even if it fails to insert the back ref */
1918 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1919 path
, bytenr
, num_bytes
, parent
,
1920 root_objectid
, owner
, offset
,
1921 refs_to_add
, extent_op
);
1925 if (ret
!= -EAGAIN
) {
1930 leaf
= path
->nodes
[0];
1931 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1932 refs
= btrfs_extent_refs(leaf
, item
);
1933 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1935 __run_delayed_extent_op(extent_op
, leaf
, item
);
1937 btrfs_mark_buffer_dirty(leaf
);
1938 btrfs_release_path(path
);
1941 path
->leave_spinning
= 1;
1943 /* now insert the actual backref */
1944 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1945 path
, bytenr
, parent
, root_objectid
,
1946 owner
, offset
, refs_to_add
);
1949 btrfs_free_path(path
);
1953 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1954 struct btrfs_root
*root
,
1955 struct btrfs_delayed_ref_node
*node
,
1956 struct btrfs_delayed_extent_op
*extent_op
,
1957 int insert_reserved
)
1960 struct btrfs_delayed_data_ref
*ref
;
1961 struct btrfs_key ins
;
1966 ins
.objectid
= node
->bytenr
;
1967 ins
.offset
= node
->num_bytes
;
1968 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1970 ref
= btrfs_delayed_node_to_data_ref(node
);
1971 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1972 parent
= ref
->parent
;
1974 ref_root
= ref
->root
;
1976 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1978 BUG_ON(extent_op
->update_key
);
1979 flags
|= extent_op
->flags_to_set
;
1981 ret
= alloc_reserved_file_extent(trans
, root
,
1982 parent
, ref_root
, flags
,
1983 ref
->objectid
, ref
->offset
,
1984 &ins
, node
->ref_mod
);
1985 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1986 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1987 node
->num_bytes
, parent
,
1988 ref_root
, ref
->objectid
,
1989 ref
->offset
, node
->ref_mod
,
1991 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1992 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1993 node
->num_bytes
, parent
,
1994 ref_root
, ref
->objectid
,
1995 ref
->offset
, node
->ref_mod
,
2003 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2004 struct extent_buffer
*leaf
,
2005 struct btrfs_extent_item
*ei
)
2007 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2008 if (extent_op
->update_flags
) {
2009 flags
|= extent_op
->flags_to_set
;
2010 btrfs_set_extent_flags(leaf
, ei
, flags
);
2013 if (extent_op
->update_key
) {
2014 struct btrfs_tree_block_info
*bi
;
2015 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2016 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2017 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2021 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2022 struct btrfs_root
*root
,
2023 struct btrfs_delayed_ref_node
*node
,
2024 struct btrfs_delayed_extent_op
*extent_op
)
2026 struct btrfs_key key
;
2027 struct btrfs_path
*path
;
2028 struct btrfs_extent_item
*ei
;
2029 struct extent_buffer
*leaf
;
2034 path
= btrfs_alloc_path();
2038 key
.objectid
= node
->bytenr
;
2039 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2040 key
.offset
= node
->num_bytes
;
2043 path
->leave_spinning
= 1;
2044 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2055 leaf
= path
->nodes
[0];
2056 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2058 if (item_size
< sizeof(*ei
)) {
2059 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2065 leaf
= path
->nodes
[0];
2066 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2069 BUG_ON(item_size
< sizeof(*ei
));
2070 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2071 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2073 btrfs_mark_buffer_dirty(leaf
);
2075 btrfs_free_path(path
);
2079 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2080 struct btrfs_root
*root
,
2081 struct btrfs_delayed_ref_node
*node
,
2082 struct btrfs_delayed_extent_op
*extent_op
,
2083 int insert_reserved
)
2086 struct btrfs_delayed_tree_ref
*ref
;
2087 struct btrfs_key ins
;
2091 ins
.objectid
= node
->bytenr
;
2092 ins
.offset
= node
->num_bytes
;
2093 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2095 ref
= btrfs_delayed_node_to_tree_ref(node
);
2096 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2097 parent
= ref
->parent
;
2099 ref_root
= ref
->root
;
2101 BUG_ON(node
->ref_mod
!= 1);
2102 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2103 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2104 !extent_op
->update_key
);
2105 ret
= alloc_reserved_tree_block(trans
, root
,
2107 extent_op
->flags_to_set
,
2110 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2111 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2112 node
->num_bytes
, parent
, ref_root
,
2113 ref
->level
, 0, 1, extent_op
);
2114 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2115 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2116 node
->num_bytes
, parent
, ref_root
,
2117 ref
->level
, 0, 1, extent_op
);
2124 /* helper function to actually process a single delayed ref entry */
2125 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2126 struct btrfs_root
*root
,
2127 struct btrfs_delayed_ref_node
*node
,
2128 struct btrfs_delayed_extent_op
*extent_op
,
2129 int insert_reserved
)
2132 if (btrfs_delayed_ref_is_head(node
)) {
2133 struct btrfs_delayed_ref_head
*head
;
2135 * we've hit the end of the chain and we were supposed
2136 * to insert this extent into the tree. But, it got
2137 * deleted before we ever needed to insert it, so all
2138 * we have to do is clean up the accounting
2141 head
= btrfs_delayed_node_to_head(node
);
2142 if (insert_reserved
) {
2143 btrfs_pin_extent(root
, node
->bytenr
,
2144 node
->num_bytes
, 1);
2145 if (head
->is_data
) {
2146 ret
= btrfs_del_csums(trans
, root
,
2152 mutex_unlock(&head
->mutex
);
2156 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2157 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2158 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2160 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2161 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2162 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2169 static noinline
struct btrfs_delayed_ref_node
*
2170 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2172 struct rb_node
*node
;
2173 struct btrfs_delayed_ref_node
*ref
;
2174 int action
= BTRFS_ADD_DELAYED_REF
;
2177 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2178 * this prevents ref count from going down to zero when
2179 * there still are pending delayed ref.
2181 node
= rb_prev(&head
->node
.rb_node
);
2185 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2187 if (ref
->bytenr
!= head
->node
.bytenr
)
2189 if (ref
->action
== action
)
2191 node
= rb_prev(node
);
2193 if (action
== BTRFS_ADD_DELAYED_REF
) {
2194 action
= BTRFS_DROP_DELAYED_REF
;
2200 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2201 struct btrfs_root
*root
,
2202 struct list_head
*cluster
)
2204 struct btrfs_delayed_ref_root
*delayed_refs
;
2205 struct btrfs_delayed_ref_node
*ref
;
2206 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2207 struct btrfs_delayed_extent_op
*extent_op
;
2210 int must_insert_reserved
= 0;
2212 delayed_refs
= &trans
->transaction
->delayed_refs
;
2215 /* pick a new head ref from the cluster list */
2216 if (list_empty(cluster
))
2219 locked_ref
= list_entry(cluster
->next
,
2220 struct btrfs_delayed_ref_head
, cluster
);
2222 /* grab the lock that says we are going to process
2223 * all the refs for this head */
2224 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2227 * we may have dropped the spin lock to get the head
2228 * mutex lock, and that might have given someone else
2229 * time to free the head. If that's true, it has been
2230 * removed from our list and we can move on.
2232 if (ret
== -EAGAIN
) {
2240 * locked_ref is the head node, so we have to go one
2241 * node back for any delayed ref updates
2243 ref
= select_delayed_ref(locked_ref
);
2245 if (ref
&& ref
->seq
&&
2246 btrfs_check_delayed_seq(delayed_refs
, ref
->seq
)) {
2248 * there are still refs with lower seq numbers in the
2249 * process of being added. Don't run this ref yet.
2251 list_del_init(&locked_ref
->cluster
);
2252 mutex_unlock(&locked_ref
->mutex
);
2254 delayed_refs
->num_heads_ready
++;
2255 spin_unlock(&delayed_refs
->lock
);
2257 spin_lock(&delayed_refs
->lock
);
2262 * record the must insert reserved flag before we
2263 * drop the spin lock.
2265 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2266 locked_ref
->must_insert_reserved
= 0;
2268 extent_op
= locked_ref
->extent_op
;
2269 locked_ref
->extent_op
= NULL
;
2272 /* All delayed refs have been processed, Go ahead
2273 * and send the head node to run_one_delayed_ref,
2274 * so that any accounting fixes can happen
2276 ref
= &locked_ref
->node
;
2278 if (extent_op
&& must_insert_reserved
) {
2284 spin_unlock(&delayed_refs
->lock
);
2286 ret
= run_delayed_extent_op(trans
, root
,
2294 list_del_init(&locked_ref
->cluster
);
2299 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2300 delayed_refs
->num_entries
--;
2302 * we modified num_entries, but as we're currently running
2303 * delayed refs, skip
2304 * wake_up(&delayed_refs->seq_wait);
2307 spin_unlock(&delayed_refs
->lock
);
2309 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2310 must_insert_reserved
);
2313 btrfs_put_delayed_ref(ref
);
2317 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
2319 btrfs_get_alloc_profile(root
, 0),
2320 CHUNK_ALLOC_NO_FORCE
);
2322 spin_lock(&delayed_refs
->lock
);
2328 static void wait_for_more_refs(struct btrfs_delayed_ref_root
*delayed_refs
,
2329 unsigned long num_refs
)
2331 struct list_head
*first_seq
= delayed_refs
->seq_head
.next
;
2333 spin_unlock(&delayed_refs
->lock
);
2334 pr_debug("waiting for more refs (num %ld, first %p)\n",
2335 num_refs
, first_seq
);
2336 wait_event(delayed_refs
->seq_wait
,
2337 num_refs
!= delayed_refs
->num_entries
||
2338 delayed_refs
->seq_head
.next
!= first_seq
);
2339 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2340 delayed_refs
->num_entries
, delayed_refs
->seq_head
.next
);
2341 spin_lock(&delayed_refs
->lock
);
2345 * this starts processing the delayed reference count updates and
2346 * extent insertions we have queued up so far. count can be
2347 * 0, which means to process everything in the tree at the start
2348 * of the run (but not newly added entries), or it can be some target
2349 * number you'd like to process.
2351 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2352 struct btrfs_root
*root
, unsigned long count
)
2354 struct rb_node
*node
;
2355 struct btrfs_delayed_ref_root
*delayed_refs
;
2356 struct btrfs_delayed_ref_node
*ref
;
2357 struct list_head cluster
;
2360 int run_all
= count
== (unsigned long)-1;
2362 unsigned long num_refs
= 0;
2363 int consider_waiting
;
2365 if (root
== root
->fs_info
->extent_root
)
2366 root
= root
->fs_info
->tree_root
;
2368 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
2369 2 * 1024 * 1024, btrfs_get_alloc_profile(root
, 0),
2370 CHUNK_ALLOC_NO_FORCE
);
2372 delayed_refs
= &trans
->transaction
->delayed_refs
;
2373 INIT_LIST_HEAD(&cluster
);
2375 consider_waiting
= 0;
2376 spin_lock(&delayed_refs
->lock
);
2378 count
= delayed_refs
->num_entries
* 2;
2382 if (!(run_all
|| run_most
) &&
2383 delayed_refs
->num_heads_ready
< 64)
2387 * go find something we can process in the rbtree. We start at
2388 * the beginning of the tree, and then build a cluster
2389 * of refs to process starting at the first one we are able to
2392 delayed_start
= delayed_refs
->run_delayed_start
;
2393 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2394 delayed_refs
->run_delayed_start
);
2398 if (delayed_start
>= delayed_refs
->run_delayed_start
) {
2399 if (consider_waiting
== 0) {
2401 * btrfs_find_ref_cluster looped. let's do one
2402 * more cycle. if we don't run any delayed ref
2403 * during that cycle (because we can't because
2404 * all of them are blocked) and if the number of
2405 * refs doesn't change, we avoid busy waiting.
2407 consider_waiting
= 1;
2408 num_refs
= delayed_refs
->num_entries
;
2410 wait_for_more_refs(delayed_refs
, num_refs
);
2412 * after waiting, things have changed. we
2413 * dropped the lock and someone else might have
2414 * run some refs, built new clusters and so on.
2415 * therefore, we restart staleness detection.
2417 consider_waiting
= 0;
2421 ret
= run_clustered_refs(trans
, root
, &cluster
);
2424 count
-= min_t(unsigned long, ret
, count
);
2429 if (ret
|| delayed_refs
->run_delayed_start
== 0) {
2430 /* refs were run, let's reset staleness detection */
2431 consider_waiting
= 0;
2436 node
= rb_first(&delayed_refs
->root
);
2439 count
= (unsigned long)-1;
2442 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2444 if (btrfs_delayed_ref_is_head(ref
)) {
2445 struct btrfs_delayed_ref_head
*head
;
2447 head
= btrfs_delayed_node_to_head(ref
);
2448 atomic_inc(&ref
->refs
);
2450 spin_unlock(&delayed_refs
->lock
);
2452 * Mutex was contended, block until it's
2453 * released and try again
2455 mutex_lock(&head
->mutex
);
2456 mutex_unlock(&head
->mutex
);
2458 btrfs_put_delayed_ref(ref
);
2462 node
= rb_next(node
);
2464 spin_unlock(&delayed_refs
->lock
);
2465 schedule_timeout(1);
2469 spin_unlock(&delayed_refs
->lock
);
2473 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2474 struct btrfs_root
*root
,
2475 u64 bytenr
, u64 num_bytes
, u64 flags
,
2478 struct btrfs_delayed_extent_op
*extent_op
;
2481 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2485 extent_op
->flags_to_set
= flags
;
2486 extent_op
->update_flags
= 1;
2487 extent_op
->update_key
= 0;
2488 extent_op
->is_data
= is_data
? 1 : 0;
2490 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2491 num_bytes
, extent_op
);
2497 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2498 struct btrfs_root
*root
,
2499 struct btrfs_path
*path
,
2500 u64 objectid
, u64 offset
, u64 bytenr
)
2502 struct btrfs_delayed_ref_head
*head
;
2503 struct btrfs_delayed_ref_node
*ref
;
2504 struct btrfs_delayed_data_ref
*data_ref
;
2505 struct btrfs_delayed_ref_root
*delayed_refs
;
2506 struct rb_node
*node
;
2510 delayed_refs
= &trans
->transaction
->delayed_refs
;
2511 spin_lock(&delayed_refs
->lock
);
2512 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2516 if (!mutex_trylock(&head
->mutex
)) {
2517 atomic_inc(&head
->node
.refs
);
2518 spin_unlock(&delayed_refs
->lock
);
2520 btrfs_release_path(path
);
2523 * Mutex was contended, block until it's released and let
2526 mutex_lock(&head
->mutex
);
2527 mutex_unlock(&head
->mutex
);
2528 btrfs_put_delayed_ref(&head
->node
);
2532 node
= rb_prev(&head
->node
.rb_node
);
2536 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2538 if (ref
->bytenr
!= bytenr
)
2542 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2545 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2547 node
= rb_prev(node
);
2549 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2550 if (ref
->bytenr
== bytenr
)
2554 if (data_ref
->root
!= root
->root_key
.objectid
||
2555 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2560 mutex_unlock(&head
->mutex
);
2562 spin_unlock(&delayed_refs
->lock
);
2566 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2567 struct btrfs_root
*root
,
2568 struct btrfs_path
*path
,
2569 u64 objectid
, u64 offset
, u64 bytenr
)
2571 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2572 struct extent_buffer
*leaf
;
2573 struct btrfs_extent_data_ref
*ref
;
2574 struct btrfs_extent_inline_ref
*iref
;
2575 struct btrfs_extent_item
*ei
;
2576 struct btrfs_key key
;
2580 key
.objectid
= bytenr
;
2581 key
.offset
= (u64
)-1;
2582 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2584 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2590 if (path
->slots
[0] == 0)
2594 leaf
= path
->nodes
[0];
2595 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2597 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2601 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2603 if (item_size
< sizeof(*ei
)) {
2604 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2608 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2610 if (item_size
!= sizeof(*ei
) +
2611 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2614 if (btrfs_extent_generation(leaf
, ei
) <=
2615 btrfs_root_last_snapshot(&root
->root_item
))
2618 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2619 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2620 BTRFS_EXTENT_DATA_REF_KEY
)
2623 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2624 if (btrfs_extent_refs(leaf
, ei
) !=
2625 btrfs_extent_data_ref_count(leaf
, ref
) ||
2626 btrfs_extent_data_ref_root(leaf
, ref
) !=
2627 root
->root_key
.objectid
||
2628 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2629 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2637 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2638 struct btrfs_root
*root
,
2639 u64 objectid
, u64 offset
, u64 bytenr
)
2641 struct btrfs_path
*path
;
2645 path
= btrfs_alloc_path();
2650 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2652 if (ret
&& ret
!= -ENOENT
)
2655 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2657 } while (ret2
== -EAGAIN
);
2659 if (ret2
&& ret2
!= -ENOENT
) {
2664 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2667 btrfs_free_path(path
);
2668 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2673 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2674 struct btrfs_root
*root
,
2675 struct extent_buffer
*buf
,
2676 int full_backref
, int inc
, int for_cow
)
2683 struct btrfs_key key
;
2684 struct btrfs_file_extent_item
*fi
;
2688 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2689 u64
, u64
, u64
, u64
, u64
, u64
, int);
2691 ref_root
= btrfs_header_owner(buf
);
2692 nritems
= btrfs_header_nritems(buf
);
2693 level
= btrfs_header_level(buf
);
2695 if (!root
->ref_cows
&& level
== 0)
2699 process_func
= btrfs_inc_extent_ref
;
2701 process_func
= btrfs_free_extent
;
2704 parent
= buf
->start
;
2708 for (i
= 0; i
< nritems
; i
++) {
2710 btrfs_item_key_to_cpu(buf
, &key
, i
);
2711 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2713 fi
= btrfs_item_ptr(buf
, i
,
2714 struct btrfs_file_extent_item
);
2715 if (btrfs_file_extent_type(buf
, fi
) ==
2716 BTRFS_FILE_EXTENT_INLINE
)
2718 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2722 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2723 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2724 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2725 parent
, ref_root
, key
.objectid
,
2726 key
.offset
, for_cow
);
2730 bytenr
= btrfs_node_blockptr(buf
, i
);
2731 num_bytes
= btrfs_level_size(root
, level
- 1);
2732 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2733 parent
, ref_root
, level
- 1, 0,
2745 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2746 struct extent_buffer
*buf
, int full_backref
, int for_cow
)
2748 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1, for_cow
);
2751 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2752 struct extent_buffer
*buf
, int full_backref
, int for_cow
)
2754 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0, for_cow
);
2757 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2758 struct btrfs_root
*root
,
2759 struct btrfs_path
*path
,
2760 struct btrfs_block_group_cache
*cache
)
2763 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2765 struct extent_buffer
*leaf
;
2767 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2772 leaf
= path
->nodes
[0];
2773 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2774 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2775 btrfs_mark_buffer_dirty(leaf
);
2776 btrfs_release_path(path
);
2784 static struct btrfs_block_group_cache
*
2785 next_block_group(struct btrfs_root
*root
,
2786 struct btrfs_block_group_cache
*cache
)
2788 struct rb_node
*node
;
2789 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2790 node
= rb_next(&cache
->cache_node
);
2791 btrfs_put_block_group(cache
);
2793 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2795 btrfs_get_block_group(cache
);
2798 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2802 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2803 struct btrfs_trans_handle
*trans
,
2804 struct btrfs_path
*path
)
2806 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2807 struct inode
*inode
= NULL
;
2809 int dcs
= BTRFS_DC_ERROR
;
2815 * If this block group is smaller than 100 megs don't bother caching the
2818 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2819 spin_lock(&block_group
->lock
);
2820 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2821 spin_unlock(&block_group
->lock
);
2826 inode
= lookup_free_space_inode(root
, block_group
, path
);
2827 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2828 ret
= PTR_ERR(inode
);
2829 btrfs_release_path(path
);
2833 if (IS_ERR(inode
)) {
2837 if (block_group
->ro
)
2840 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2846 /* We've already setup this transaction, go ahead and exit */
2847 if (block_group
->cache_generation
== trans
->transid
&&
2848 i_size_read(inode
)) {
2849 dcs
= BTRFS_DC_SETUP
;
2854 * We want to set the generation to 0, that way if anything goes wrong
2855 * from here on out we know not to trust this cache when we load up next
2858 BTRFS_I(inode
)->generation
= 0;
2859 ret
= btrfs_update_inode(trans
, root
, inode
);
2862 if (i_size_read(inode
) > 0) {
2863 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2869 spin_lock(&block_group
->lock
);
2870 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
) {
2871 /* We're not cached, don't bother trying to write stuff out */
2872 dcs
= BTRFS_DC_WRITTEN
;
2873 spin_unlock(&block_group
->lock
);
2876 spin_unlock(&block_group
->lock
);
2878 num_pages
= (int)div64_u64(block_group
->key
.offset
, 1024 * 1024 * 1024);
2883 * Just to make absolutely sure we have enough space, we're going to
2884 * preallocate 12 pages worth of space for each block group. In
2885 * practice we ought to use at most 8, but we need extra space so we can
2886 * add our header and have a terminator between the extents and the
2890 num_pages
*= PAGE_CACHE_SIZE
;
2892 ret
= btrfs_check_data_free_space(inode
, num_pages
);
2896 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2897 num_pages
, num_pages
,
2900 dcs
= BTRFS_DC_SETUP
;
2901 btrfs_free_reserved_data_space(inode
, num_pages
);
2906 btrfs_release_path(path
);
2908 spin_lock(&block_group
->lock
);
2909 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
2910 block_group
->cache_generation
= trans
->transid
;
2911 block_group
->disk_cache_state
= dcs
;
2912 spin_unlock(&block_group
->lock
);
2917 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2918 struct btrfs_root
*root
)
2920 struct btrfs_block_group_cache
*cache
;
2922 struct btrfs_path
*path
;
2925 path
= btrfs_alloc_path();
2931 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2933 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2935 cache
= next_block_group(root
, cache
);
2943 err
= cache_save_setup(cache
, trans
, path
);
2944 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2945 btrfs_put_block_group(cache
);
2950 err
= btrfs_run_delayed_refs(trans
, root
,
2955 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2957 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
2958 btrfs_put_block_group(cache
);
2964 cache
= next_block_group(root
, cache
);
2973 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
2974 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
2976 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2978 err
= write_one_cache_group(trans
, root
, path
, cache
);
2980 btrfs_put_block_group(cache
);
2985 * I don't think this is needed since we're just marking our
2986 * preallocated extent as written, but just in case it can't
2990 err
= btrfs_run_delayed_refs(trans
, root
,
2995 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2998 * Really this shouldn't happen, but it could if we
2999 * couldn't write the entire preallocated extent and
3000 * splitting the extent resulted in a new block.
3003 btrfs_put_block_group(cache
);
3006 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3008 cache
= next_block_group(root
, cache
);
3017 btrfs_write_out_cache(root
, trans
, cache
, path
);
3020 * If we didn't have an error then the cache state is still
3021 * NEED_WRITE, so we can set it to WRITTEN.
3023 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3024 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3025 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3026 btrfs_put_block_group(cache
);
3029 btrfs_free_path(path
);
3033 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3035 struct btrfs_block_group_cache
*block_group
;
3038 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3039 if (!block_group
|| block_group
->ro
)
3042 btrfs_put_block_group(block_group
);
3046 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3047 u64 total_bytes
, u64 bytes_used
,
3048 struct btrfs_space_info
**space_info
)
3050 struct btrfs_space_info
*found
;
3054 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3055 BTRFS_BLOCK_GROUP_RAID10
))
3060 found
= __find_space_info(info
, flags
);
3062 spin_lock(&found
->lock
);
3063 found
->total_bytes
+= total_bytes
;
3064 found
->disk_total
+= total_bytes
* factor
;
3065 found
->bytes_used
+= bytes_used
;
3066 found
->disk_used
+= bytes_used
* factor
;
3068 spin_unlock(&found
->lock
);
3069 *space_info
= found
;
3072 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3076 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3077 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3078 init_rwsem(&found
->groups_sem
);
3079 spin_lock_init(&found
->lock
);
3080 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3081 found
->total_bytes
= total_bytes
;
3082 found
->disk_total
= total_bytes
* factor
;
3083 found
->bytes_used
= bytes_used
;
3084 found
->disk_used
= bytes_used
* factor
;
3085 found
->bytes_pinned
= 0;
3086 found
->bytes_reserved
= 0;
3087 found
->bytes_readonly
= 0;
3088 found
->bytes_may_use
= 0;
3090 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3091 found
->chunk_alloc
= 0;
3093 init_waitqueue_head(&found
->wait
);
3094 *space_info
= found
;
3095 list_add_rcu(&found
->list
, &info
->space_info
);
3099 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3101 u64 extra_flags
= flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
;
3103 /* chunk -> extended profile */
3104 if (extra_flags
== 0)
3105 extra_flags
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3107 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3108 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3109 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3110 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3111 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3112 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3116 * @flags: available profiles in extended format (see ctree.h)
3118 * Returns reduced profile in chunk format. If profile changing is in
3119 * progress (either running or paused) picks the target profile (if it's
3120 * already available), otherwise falls back to plain reducing.
3122 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3125 * we add in the count of missing devices because we want
3126 * to make sure that any RAID levels on a degraded FS
3127 * continue to be honored.
3129 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3130 root
->fs_info
->fs_devices
->missing_devices
;
3132 /* pick restriper's target profile if it's available */
3133 spin_lock(&root
->fs_info
->balance_lock
);
3134 if (root
->fs_info
->balance_ctl
) {
3135 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3138 if ((flags
& BTRFS_BLOCK_GROUP_DATA
) &&
3139 (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3140 (flags
& bctl
->data
.target
)) {
3141 tgt
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3142 } else if ((flags
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3143 (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3144 (flags
& bctl
->sys
.target
)) {
3145 tgt
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3146 } else if ((flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
3147 (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3148 (flags
& bctl
->meta
.target
)) {
3149 tgt
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3153 spin_unlock(&root
->fs_info
->balance_lock
);
3158 spin_unlock(&root
->fs_info
->balance_lock
);
3160 if (num_devices
== 1)
3161 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
3162 if (num_devices
< 4)
3163 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3165 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
3166 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3167 BTRFS_BLOCK_GROUP_RAID10
))) {
3168 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
3171 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
3172 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
3173 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
3176 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
3177 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
3178 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
3179 (flags
& BTRFS_BLOCK_GROUP_DUP
))) {
3180 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
3184 /* extended -> chunk profile */
3185 flags
&= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3189 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3191 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3192 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3193 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3194 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3195 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3196 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3198 return btrfs_reduce_alloc_profile(root
, flags
);
3201 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3206 flags
= BTRFS_BLOCK_GROUP_DATA
;
3207 else if (root
== root
->fs_info
->chunk_root
)
3208 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3210 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3212 return get_alloc_profile(root
, flags
);
3215 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
3217 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
3218 BTRFS_BLOCK_GROUP_DATA
);
3222 * This will check the space that the inode allocates from to make sure we have
3223 * enough space for bytes.
3225 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3227 struct btrfs_space_info
*data_sinfo
;
3228 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3230 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3232 /* make sure bytes are sectorsize aligned */
3233 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3235 if (root
== root
->fs_info
->tree_root
||
3236 BTRFS_I(inode
)->location
.objectid
== BTRFS_FREE_INO_OBJECTID
) {
3241 data_sinfo
= BTRFS_I(inode
)->space_info
;
3246 /* make sure we have enough space to handle the data first */
3247 spin_lock(&data_sinfo
->lock
);
3248 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3249 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3250 data_sinfo
->bytes_may_use
;
3252 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3253 struct btrfs_trans_handle
*trans
;
3256 * if we don't have enough free bytes in this space then we need
3257 * to alloc a new chunk.
3259 if (!data_sinfo
->full
&& alloc_chunk
) {
3262 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3263 spin_unlock(&data_sinfo
->lock
);
3265 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3266 trans
= btrfs_join_transaction(root
);
3268 return PTR_ERR(trans
);
3270 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3271 bytes
+ 2 * 1024 * 1024,
3273 CHUNK_ALLOC_NO_FORCE
);
3274 btrfs_end_transaction(trans
, root
);
3283 btrfs_set_inode_space_info(root
, inode
);
3284 data_sinfo
= BTRFS_I(inode
)->space_info
;
3290 * If we have less pinned bytes than we want to allocate then
3291 * don't bother committing the transaction, it won't help us.
3293 if (data_sinfo
->bytes_pinned
< bytes
)
3295 spin_unlock(&data_sinfo
->lock
);
3297 /* commit the current transaction and try again */
3300 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3302 trans
= btrfs_join_transaction(root
);
3304 return PTR_ERR(trans
);
3305 ret
= btrfs_commit_transaction(trans
, root
);
3313 data_sinfo
->bytes_may_use
+= bytes
;
3314 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3315 (u64
)(unsigned long)data_sinfo
,
3317 spin_unlock(&data_sinfo
->lock
);
3323 * Called if we need to clear a data reservation for this inode.
3325 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3327 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3328 struct btrfs_space_info
*data_sinfo
;
3330 /* make sure bytes are sectorsize aligned */
3331 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3333 data_sinfo
= BTRFS_I(inode
)->space_info
;
3334 spin_lock(&data_sinfo
->lock
);
3335 data_sinfo
->bytes_may_use
-= bytes
;
3336 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3337 (u64
)(unsigned long)data_sinfo
,
3339 spin_unlock(&data_sinfo
->lock
);
3342 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3344 struct list_head
*head
= &info
->space_info
;
3345 struct btrfs_space_info
*found
;
3348 list_for_each_entry_rcu(found
, head
, list
) {
3349 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3350 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3355 static int should_alloc_chunk(struct btrfs_root
*root
,
3356 struct btrfs_space_info
*sinfo
, u64 alloc_bytes
,
3359 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3360 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3361 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3364 if (force
== CHUNK_ALLOC_FORCE
)
3368 * We need to take into account the global rsv because for all intents
3369 * and purposes it's used space. Don't worry about locking the
3370 * global_rsv, it doesn't change except when the transaction commits.
3372 num_allocated
+= global_rsv
->size
;
3375 * in limited mode, we want to have some free space up to
3376 * about 1% of the FS size.
3378 if (force
== CHUNK_ALLOC_LIMITED
) {
3379 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3380 thresh
= max_t(u64
, 64 * 1024 * 1024,
3381 div_factor_fine(thresh
, 1));
3383 if (num_bytes
- num_allocated
< thresh
)
3386 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3388 /* 256MB or 2% of the FS */
3389 thresh
= max_t(u64
, 256 * 1024 * 1024, div_factor_fine(thresh
, 2));
3390 /* system chunks need a much small threshold */
3391 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3392 thresh
= 32 * 1024 * 1024;
3394 if (num_bytes
> thresh
&& sinfo
->bytes_used
< div_factor(num_bytes
, 8))
3399 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3400 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3401 u64 flags
, int force
)
3403 struct btrfs_space_info
*space_info
;
3404 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3405 int wait_for_alloc
= 0;
3408 BUG_ON(!profile_is_valid(flags
, 0));
3410 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3412 ret
= update_space_info(extent_root
->fs_info
, flags
,
3416 BUG_ON(!space_info
);
3419 spin_lock(&space_info
->lock
);
3420 if (force
< space_info
->force_alloc
)
3421 force
= space_info
->force_alloc
;
3422 if (space_info
->full
) {
3423 spin_unlock(&space_info
->lock
);
3427 if (!should_alloc_chunk(extent_root
, space_info
, alloc_bytes
, force
)) {
3428 spin_unlock(&space_info
->lock
);
3430 } else if (space_info
->chunk_alloc
) {
3433 space_info
->chunk_alloc
= 1;
3436 spin_unlock(&space_info
->lock
);
3438 mutex_lock(&fs_info
->chunk_mutex
);
3441 * The chunk_mutex is held throughout the entirety of a chunk
3442 * allocation, so once we've acquired the chunk_mutex we know that the
3443 * other guy is done and we need to recheck and see if we should
3446 if (wait_for_alloc
) {
3447 mutex_unlock(&fs_info
->chunk_mutex
);
3453 * If we have mixed data/metadata chunks we want to make sure we keep
3454 * allocating mixed chunks instead of individual chunks.
3456 if (btrfs_mixed_space_info(space_info
))
3457 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3460 * if we're doing a data chunk, go ahead and make sure that
3461 * we keep a reasonable number of metadata chunks allocated in the
3464 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3465 fs_info
->data_chunk_allocations
++;
3466 if (!(fs_info
->data_chunk_allocations
%
3467 fs_info
->metadata_ratio
))
3468 force_metadata_allocation(fs_info
);
3471 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3472 if (ret
< 0 && ret
!= -ENOSPC
)
3475 spin_lock(&space_info
->lock
);
3477 space_info
->full
= 1;
3481 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3482 space_info
->chunk_alloc
= 0;
3483 spin_unlock(&space_info
->lock
);
3485 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3490 * shrink metadata reservation for delalloc
3492 static int shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
,
3495 struct btrfs_block_rsv
*block_rsv
;
3496 struct btrfs_space_info
*space_info
;
3497 struct btrfs_trans_handle
*trans
;
3502 unsigned long nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3504 unsigned long progress
;
3506 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
3507 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3508 space_info
= block_rsv
->space_info
;
3511 reserved
= space_info
->bytes_may_use
;
3512 progress
= space_info
->reservation_progress
;
3518 if (root
->fs_info
->delalloc_bytes
== 0) {
3521 btrfs_wait_ordered_extents(root
, 0, 0);
3525 max_reclaim
= min(reserved
, to_reclaim
);
3526 nr_pages
= max_t(unsigned long, nr_pages
,
3527 max_reclaim
>> PAGE_CACHE_SHIFT
);
3528 while (loops
< 1024) {
3529 /* have the flusher threads jump in and do some IO */
3531 nr_pages
= min_t(unsigned long, nr_pages
,
3532 root
->fs_info
->delalloc_bytes
>> PAGE_CACHE_SHIFT
);
3533 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
,
3534 WB_REASON_FS_FREE_SPACE
);
3536 spin_lock(&space_info
->lock
);
3537 if (reserved
> space_info
->bytes_may_use
)
3538 reclaimed
+= reserved
- space_info
->bytes_may_use
;
3539 reserved
= space_info
->bytes_may_use
;
3540 spin_unlock(&space_info
->lock
);
3544 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3547 if (trans
&& trans
->transaction
->blocked
)
3550 if (wait_ordered
&& !trans
) {
3551 btrfs_wait_ordered_extents(root
, 0, 0);
3553 time_left
= schedule_timeout_interruptible(1);
3555 /* We were interrupted, exit */
3560 /* we've kicked the IO a few times, if anything has been freed,
3561 * exit. There is no sense in looping here for a long time
3562 * when we really need to commit the transaction, or there are
3563 * just too many writers without enough free space
3568 if (progress
!= space_info
->reservation_progress
)
3574 return reclaimed
>= to_reclaim
;
3578 * maybe_commit_transaction - possibly commit the transaction if its ok to
3579 * @root - the root we're allocating for
3580 * @bytes - the number of bytes we want to reserve
3581 * @force - force the commit
3583 * This will check to make sure that committing the transaction will actually
3584 * get us somewhere and then commit the transaction if it does. Otherwise it
3585 * will return -ENOSPC.
3587 static int may_commit_transaction(struct btrfs_root
*root
,
3588 struct btrfs_space_info
*space_info
,
3589 u64 bytes
, int force
)
3591 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
3592 struct btrfs_trans_handle
*trans
;
3594 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
3601 /* See if there is enough pinned space to make this reservation */
3602 spin_lock(&space_info
->lock
);
3603 if (space_info
->bytes_pinned
>= bytes
) {
3604 spin_unlock(&space_info
->lock
);
3607 spin_unlock(&space_info
->lock
);
3610 * See if there is some space in the delayed insertion reservation for
3613 if (space_info
!= delayed_rsv
->space_info
)
3616 spin_lock(&space_info
->lock
);
3617 spin_lock(&delayed_rsv
->lock
);
3618 if (space_info
->bytes_pinned
+ delayed_rsv
->size
< bytes
) {
3619 spin_unlock(&delayed_rsv
->lock
);
3620 spin_unlock(&space_info
->lock
);
3623 spin_unlock(&delayed_rsv
->lock
);
3624 spin_unlock(&space_info
->lock
);
3627 trans
= btrfs_join_transaction(root
);
3631 return btrfs_commit_transaction(trans
, root
);
3635 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3636 * @root - the root we're allocating for
3637 * @block_rsv - the block_rsv we're allocating for
3638 * @orig_bytes - the number of bytes we want
3639 * @flush - wether or not we can flush to make our reservation
3641 * This will reserve orgi_bytes number of bytes from the space info associated
3642 * with the block_rsv. If there is not enough space it will make an attempt to
3643 * flush out space to make room. It will do this by flushing delalloc if
3644 * possible or committing the transaction. If flush is 0 then no attempts to
3645 * regain reservations will be made and this will fail if there is not enough
3648 static int reserve_metadata_bytes(struct btrfs_root
*root
,
3649 struct btrfs_block_rsv
*block_rsv
,
3650 u64 orig_bytes
, int flush
)
3652 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3654 u64 num_bytes
= orig_bytes
;
3657 bool committed
= false;
3658 bool flushing
= false;
3659 bool wait_ordered
= false;
3663 spin_lock(&space_info
->lock
);
3665 * We only want to wait if somebody other than us is flushing and we are
3666 * actually alloed to flush.
3668 while (flush
&& !flushing
&& space_info
->flush
) {
3669 spin_unlock(&space_info
->lock
);
3671 * If we have a trans handle we can't wait because the flusher
3672 * may have to commit the transaction, which would mean we would
3673 * deadlock since we are waiting for the flusher to finish, but
3674 * hold the current transaction open.
3676 if (current
->journal_info
)
3678 ret
= wait_event_interruptible(space_info
->wait
,
3679 !space_info
->flush
);
3680 /* Must have been interrupted, return */
3684 spin_lock(&space_info
->lock
);
3688 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3689 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3690 space_info
->bytes_may_use
;
3693 * The idea here is that we've not already over-reserved the block group
3694 * then we can go ahead and save our reservation first and then start
3695 * flushing if we need to. Otherwise if we've already overcommitted
3696 * lets start flushing stuff first and then come back and try to make
3699 if (used
<= space_info
->total_bytes
) {
3700 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
3701 space_info
->bytes_may_use
+= orig_bytes
;
3702 trace_btrfs_space_reservation(root
->fs_info
,
3704 (u64
)(unsigned long)space_info
,
3709 * Ok set num_bytes to orig_bytes since we aren't
3710 * overocmmitted, this way we only try and reclaim what
3713 num_bytes
= orig_bytes
;
3717 * Ok we're over committed, set num_bytes to the overcommitted
3718 * amount plus the amount of bytes that we need for this
3721 wait_ordered
= true;
3722 num_bytes
= used
- space_info
->total_bytes
+
3723 (orig_bytes
* (retries
+ 1));
3727 u64 profile
= btrfs_get_alloc_profile(root
, 0);
3731 * If we have a lot of space that's pinned, don't bother doing
3732 * the overcommit dance yet and just commit the transaction.
3734 avail
= (space_info
->total_bytes
- space_info
->bytes_used
) * 8;
3736 if (space_info
->bytes_pinned
>= avail
&& flush
&& !committed
) {
3737 space_info
->flush
= 1;
3739 spin_unlock(&space_info
->lock
);
3740 ret
= may_commit_transaction(root
, space_info
,
3748 spin_lock(&root
->fs_info
->free_chunk_lock
);
3749 avail
= root
->fs_info
->free_chunk_space
;
3752 * If we have dup, raid1 or raid10 then only half of the free
3753 * space is actually useable.
3755 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
3756 BTRFS_BLOCK_GROUP_RAID1
|
3757 BTRFS_BLOCK_GROUP_RAID10
))
3761 * If we aren't flushing don't let us overcommit too much, say
3762 * 1/8th of the space. If we can flush, let it overcommit up to
3769 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3771 if (used
+ num_bytes
< space_info
->total_bytes
+ avail
) {
3772 space_info
->bytes_may_use
+= orig_bytes
;
3773 trace_btrfs_space_reservation(root
->fs_info
,
3775 (u64
)(unsigned long)space_info
,
3779 wait_ordered
= true;
3784 * Couldn't make our reservation, save our place so while we're trying
3785 * to reclaim space we can actually use it instead of somebody else
3786 * stealing it from us.
3790 space_info
->flush
= 1;
3793 spin_unlock(&space_info
->lock
);
3799 * We do synchronous shrinking since we don't actually unreserve
3800 * metadata until after the IO is completed.
3802 ret
= shrink_delalloc(root
, num_bytes
, wait_ordered
);
3809 * So if we were overcommitted it's possible that somebody else flushed
3810 * out enough space and we simply didn't have enough space to reclaim,
3811 * so go back around and try again.
3814 wait_ordered
= true;
3823 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
3831 spin_lock(&space_info
->lock
);
3832 space_info
->flush
= 0;
3833 wake_up_all(&space_info
->wait
);
3834 spin_unlock(&space_info
->lock
);
3839 static struct btrfs_block_rsv
*get_block_rsv(struct btrfs_trans_handle
*trans
,
3840 struct btrfs_root
*root
)
3842 struct btrfs_block_rsv
*block_rsv
= NULL
;
3844 if (root
->ref_cows
|| root
== root
->fs_info
->csum_root
)
3845 block_rsv
= trans
->block_rsv
;
3848 block_rsv
= root
->block_rsv
;
3851 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3856 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3860 spin_lock(&block_rsv
->lock
);
3861 if (block_rsv
->reserved
>= num_bytes
) {
3862 block_rsv
->reserved
-= num_bytes
;
3863 if (block_rsv
->reserved
< block_rsv
->size
)
3864 block_rsv
->full
= 0;
3867 spin_unlock(&block_rsv
->lock
);
3871 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3872 u64 num_bytes
, int update_size
)
3874 spin_lock(&block_rsv
->lock
);
3875 block_rsv
->reserved
+= num_bytes
;
3877 block_rsv
->size
+= num_bytes
;
3878 else if (block_rsv
->reserved
>= block_rsv
->size
)
3879 block_rsv
->full
= 1;
3880 spin_unlock(&block_rsv
->lock
);
3883 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
3884 struct btrfs_block_rsv
*block_rsv
,
3885 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3887 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3889 spin_lock(&block_rsv
->lock
);
3890 if (num_bytes
== (u64
)-1)
3891 num_bytes
= block_rsv
->size
;
3892 block_rsv
->size
-= num_bytes
;
3893 if (block_rsv
->reserved
>= block_rsv
->size
) {
3894 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3895 block_rsv
->reserved
= block_rsv
->size
;
3896 block_rsv
->full
= 1;
3900 spin_unlock(&block_rsv
->lock
);
3902 if (num_bytes
> 0) {
3904 spin_lock(&dest
->lock
);
3908 bytes_to_add
= dest
->size
- dest
->reserved
;
3909 bytes_to_add
= min(num_bytes
, bytes_to_add
);
3910 dest
->reserved
+= bytes_to_add
;
3911 if (dest
->reserved
>= dest
->size
)
3913 num_bytes
-= bytes_to_add
;
3915 spin_unlock(&dest
->lock
);
3918 spin_lock(&space_info
->lock
);
3919 space_info
->bytes_may_use
-= num_bytes
;
3920 trace_btrfs_space_reservation(fs_info
, "space_info",
3921 (u64
)(unsigned long)space_info
,
3923 space_info
->reservation_progress
++;
3924 spin_unlock(&space_info
->lock
);
3929 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
3930 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
3934 ret
= block_rsv_use_bytes(src
, num_bytes
);
3938 block_rsv_add_bytes(dst
, num_bytes
, 1);
3942 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
3944 memset(rsv
, 0, sizeof(*rsv
));
3945 spin_lock_init(&rsv
->lock
);
3948 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
3950 struct btrfs_block_rsv
*block_rsv
;
3951 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3953 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
3957 btrfs_init_block_rsv(block_rsv
);
3958 block_rsv
->space_info
= __find_space_info(fs_info
,
3959 BTRFS_BLOCK_GROUP_METADATA
);
3963 void btrfs_free_block_rsv(struct btrfs_root
*root
,
3964 struct btrfs_block_rsv
*rsv
)
3966 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
3970 static inline int __block_rsv_add(struct btrfs_root
*root
,
3971 struct btrfs_block_rsv
*block_rsv
,
3972 u64 num_bytes
, int flush
)
3979 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
3981 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
3988 int btrfs_block_rsv_add(struct btrfs_root
*root
,
3989 struct btrfs_block_rsv
*block_rsv
,
3992 return __block_rsv_add(root
, block_rsv
, num_bytes
, 1);
3995 int btrfs_block_rsv_add_noflush(struct btrfs_root
*root
,
3996 struct btrfs_block_rsv
*block_rsv
,
3999 return __block_rsv_add(root
, block_rsv
, num_bytes
, 0);
4002 int btrfs_block_rsv_check(struct btrfs_root
*root
,
4003 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
4011 spin_lock(&block_rsv
->lock
);
4012 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
4013 if (block_rsv
->reserved
>= num_bytes
)
4015 spin_unlock(&block_rsv
->lock
);
4020 static inline int __btrfs_block_rsv_refill(struct btrfs_root
*root
,
4021 struct btrfs_block_rsv
*block_rsv
,
4022 u64 min_reserved
, int flush
)
4030 spin_lock(&block_rsv
->lock
);
4031 num_bytes
= min_reserved
;
4032 if (block_rsv
->reserved
>= num_bytes
)
4035 num_bytes
-= block_rsv
->reserved
;
4036 spin_unlock(&block_rsv
->lock
);
4041 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4043 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
4050 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
4051 struct btrfs_block_rsv
*block_rsv
,
4054 return __btrfs_block_rsv_refill(root
, block_rsv
, min_reserved
, 1);
4057 int btrfs_block_rsv_refill_noflush(struct btrfs_root
*root
,
4058 struct btrfs_block_rsv
*block_rsv
,
4061 return __btrfs_block_rsv_refill(root
, block_rsv
, min_reserved
, 0);
4064 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
4065 struct btrfs_block_rsv
*dst_rsv
,
4068 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4071 void btrfs_block_rsv_release(struct btrfs_root
*root
,
4072 struct btrfs_block_rsv
*block_rsv
,
4075 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4076 if (global_rsv
->full
|| global_rsv
== block_rsv
||
4077 block_rsv
->space_info
!= global_rsv
->space_info
)
4079 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
4084 * helper to calculate size of global block reservation.
4085 * the desired value is sum of space used by extent tree,
4086 * checksum tree and root tree
4088 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
4090 struct btrfs_space_info
*sinfo
;
4094 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
4096 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4097 spin_lock(&sinfo
->lock
);
4098 data_used
= sinfo
->bytes_used
;
4099 spin_unlock(&sinfo
->lock
);
4101 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4102 spin_lock(&sinfo
->lock
);
4103 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4105 meta_used
= sinfo
->bytes_used
;
4106 spin_unlock(&sinfo
->lock
);
4108 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
4110 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
4112 if (num_bytes
* 3 > meta_used
)
4113 num_bytes
= div64_u64(meta_used
, 3);
4115 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
4118 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4120 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4121 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
4124 num_bytes
= calc_global_metadata_size(fs_info
);
4126 spin_lock(&block_rsv
->lock
);
4127 spin_lock(&sinfo
->lock
);
4129 block_rsv
->size
= num_bytes
;
4131 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
4132 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
4133 sinfo
->bytes_may_use
;
4135 if (sinfo
->total_bytes
> num_bytes
) {
4136 num_bytes
= sinfo
->total_bytes
- num_bytes
;
4137 block_rsv
->reserved
+= num_bytes
;
4138 sinfo
->bytes_may_use
+= num_bytes
;
4139 trace_btrfs_space_reservation(fs_info
, "space_info",
4140 (u64
)(unsigned long)sinfo
, num_bytes
, 1);
4143 if (block_rsv
->reserved
>= block_rsv
->size
) {
4144 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4145 sinfo
->bytes_may_use
-= num_bytes
;
4146 trace_btrfs_space_reservation(fs_info
, "space_info",
4147 (u64
)(unsigned long)sinfo
, num_bytes
, 0);
4148 sinfo
->reservation_progress
++;
4149 block_rsv
->reserved
= block_rsv
->size
;
4150 block_rsv
->full
= 1;
4153 spin_unlock(&sinfo
->lock
);
4154 spin_unlock(&block_rsv
->lock
);
4157 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4159 struct btrfs_space_info
*space_info
;
4161 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4162 fs_info
->chunk_block_rsv
.space_info
= space_info
;
4164 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4165 fs_info
->global_block_rsv
.space_info
= space_info
;
4166 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
4167 fs_info
->trans_block_rsv
.space_info
= space_info
;
4168 fs_info
->empty_block_rsv
.space_info
= space_info
;
4169 fs_info
->delayed_block_rsv
.space_info
= space_info
;
4171 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
4172 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
4173 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
4174 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
4175 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
4177 update_global_block_rsv(fs_info
);
4180 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4182 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
4184 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
4185 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
4186 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
4187 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
4188 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
4189 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
4190 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
4191 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
4194 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4195 struct btrfs_root
*root
)
4197 if (!trans
->bytes_reserved
)
4200 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4201 (u64
)(unsigned long)trans
,
4202 trans
->bytes_reserved
, 0);
4203 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
4204 trans
->bytes_reserved
= 0;
4207 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4208 struct inode
*inode
)
4210 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4211 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4212 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4215 * We need to hold space in order to delete our orphan item once we've
4216 * added it, so this takes the reservation so we can release it later
4217 * when we are truly done with the orphan item.
4219 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4220 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4221 btrfs_ino(inode
), num_bytes
, 1);
4222 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4225 void btrfs_orphan_release_metadata(struct inode
*inode
)
4227 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4228 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4229 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4230 btrfs_ino(inode
), num_bytes
, 0);
4231 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4234 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
4235 struct btrfs_pending_snapshot
*pending
)
4237 struct btrfs_root
*root
= pending
->root
;
4238 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4239 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
4241 * two for root back/forward refs, two for directory entries
4242 * and one for root of the snapshot.
4244 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
4245 dst_rsv
->space_info
= src_rsv
->space_info
;
4246 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4250 * drop_outstanding_extent - drop an outstanding extent
4251 * @inode: the inode we're dropping the extent for
4253 * This is called when we are freeing up an outstanding extent, either called
4254 * after an error or after an extent is written. This will return the number of
4255 * reserved extents that need to be freed. This must be called with
4256 * BTRFS_I(inode)->lock held.
4258 static unsigned drop_outstanding_extent(struct inode
*inode
)
4260 unsigned drop_inode_space
= 0;
4261 unsigned dropped_extents
= 0;
4263 BUG_ON(!BTRFS_I(inode
)->outstanding_extents
);
4264 BTRFS_I(inode
)->outstanding_extents
--;
4266 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
4267 BTRFS_I(inode
)->delalloc_meta_reserved
) {
4268 drop_inode_space
= 1;
4269 BTRFS_I(inode
)->delalloc_meta_reserved
= 0;
4273 * If we have more or the same amount of outsanding extents than we have
4274 * reserved then we need to leave the reserved extents count alone.
4276 if (BTRFS_I(inode
)->outstanding_extents
>=
4277 BTRFS_I(inode
)->reserved_extents
)
4278 return drop_inode_space
;
4280 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
4281 BTRFS_I(inode
)->outstanding_extents
;
4282 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
4283 return dropped_extents
+ drop_inode_space
;
4287 * calc_csum_metadata_size - return the amount of metada space that must be
4288 * reserved/free'd for the given bytes.
4289 * @inode: the inode we're manipulating
4290 * @num_bytes: the number of bytes in question
4291 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4293 * This adjusts the number of csum_bytes in the inode and then returns the
4294 * correct amount of metadata that must either be reserved or freed. We
4295 * calculate how many checksums we can fit into one leaf and then divide the
4296 * number of bytes that will need to be checksumed by this value to figure out
4297 * how many checksums will be required. If we are adding bytes then the number
4298 * may go up and we will return the number of additional bytes that must be
4299 * reserved. If it is going down we will return the number of bytes that must
4302 * This must be called with BTRFS_I(inode)->lock held.
4304 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
4307 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4309 int num_csums_per_leaf
;
4313 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
4314 BTRFS_I(inode
)->csum_bytes
== 0)
4317 old_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4319 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
4321 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
4322 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
4323 num_csums_per_leaf
= (int)div64_u64(csum_size
,
4324 sizeof(struct btrfs_csum_item
) +
4325 sizeof(struct btrfs_disk_key
));
4326 num_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4327 num_csums
= num_csums
+ num_csums_per_leaf
- 1;
4328 num_csums
= num_csums
/ num_csums_per_leaf
;
4330 old_csums
= old_csums
+ num_csums_per_leaf
- 1;
4331 old_csums
= old_csums
/ num_csums_per_leaf
;
4333 /* No change, no need to reserve more */
4334 if (old_csums
== num_csums
)
4338 return btrfs_calc_trans_metadata_size(root
,
4339 num_csums
- old_csums
);
4341 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
4344 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
4346 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4347 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4350 unsigned nr_extents
= 0;
4351 int extra_reserve
= 0;
4355 /* Need to be holding the i_mutex here if we aren't free space cache */
4356 if (btrfs_is_free_space_inode(root
, inode
))
4359 if (flush
&& btrfs_transaction_in_commit(root
->fs_info
))
4360 schedule_timeout(1);
4362 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
4363 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4365 spin_lock(&BTRFS_I(inode
)->lock
);
4366 BTRFS_I(inode
)->outstanding_extents
++;
4368 if (BTRFS_I(inode
)->outstanding_extents
>
4369 BTRFS_I(inode
)->reserved_extents
)
4370 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
4371 BTRFS_I(inode
)->reserved_extents
;
4374 * Add an item to reserve for updating the inode when we complete the
4377 if (!BTRFS_I(inode
)->delalloc_meta_reserved
) {
4382 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
4383 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
4384 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
4385 spin_unlock(&BTRFS_I(inode
)->lock
);
4387 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
4392 spin_lock(&BTRFS_I(inode
)->lock
);
4393 dropped
= drop_outstanding_extent(inode
);
4395 * If the inodes csum_bytes is the same as the original
4396 * csum_bytes then we know we haven't raced with any free()ers
4397 * so we can just reduce our inodes csum bytes and carry on.
4398 * Otherwise we have to do the normal free thing to account for
4399 * the case that the free side didn't free up its reserve
4400 * because of this outstanding reservation.
4402 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
)
4403 calc_csum_metadata_size(inode
, num_bytes
, 0);
4405 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
4406 spin_unlock(&BTRFS_I(inode
)->lock
);
4408 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4411 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
4412 trace_btrfs_space_reservation(root
->fs_info
,
4417 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
4421 spin_lock(&BTRFS_I(inode
)->lock
);
4422 if (extra_reserve
) {
4423 BTRFS_I(inode
)->delalloc_meta_reserved
= 1;
4426 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
4427 spin_unlock(&BTRFS_I(inode
)->lock
);
4428 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
4431 trace_btrfs_space_reservation(root
->fs_info
,"delalloc",
4432 btrfs_ino(inode
), to_reserve
, 1);
4433 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4439 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4440 * @inode: the inode to release the reservation for
4441 * @num_bytes: the number of bytes we're releasing
4443 * This will release the metadata reservation for an inode. This can be called
4444 * once we complete IO for a given set of bytes to release their metadata
4447 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
4449 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4453 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4454 spin_lock(&BTRFS_I(inode
)->lock
);
4455 dropped
= drop_outstanding_extent(inode
);
4457 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
4458 spin_unlock(&BTRFS_I(inode
)->lock
);
4460 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4462 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
4463 btrfs_ino(inode
), to_free
, 0);
4464 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4469 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4470 * @inode: inode we're writing to
4471 * @num_bytes: the number of bytes we want to allocate
4473 * This will do the following things
4475 * o reserve space in the data space info for num_bytes
4476 * o reserve space in the metadata space info based on number of outstanding
4477 * extents and how much csums will be needed
4478 * o add to the inodes ->delalloc_bytes
4479 * o add it to the fs_info's delalloc inodes list.
4481 * This will return 0 for success and -ENOSPC if there is no space left.
4483 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4487 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4491 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4493 btrfs_free_reserved_data_space(inode
, num_bytes
);
4501 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4502 * @inode: inode we're releasing space for
4503 * @num_bytes: the number of bytes we want to free up
4505 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4506 * called in the case that we don't need the metadata AND data reservations
4507 * anymore. So if there is an error or we insert an inline extent.
4509 * This function will release the metadata space that was not used and will
4510 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4511 * list if there are no delalloc bytes left.
4513 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4515 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4516 btrfs_free_reserved_data_space(inode
, num_bytes
);
4519 static int update_block_group(struct btrfs_trans_handle
*trans
,
4520 struct btrfs_root
*root
,
4521 u64 bytenr
, u64 num_bytes
, int alloc
)
4523 struct btrfs_block_group_cache
*cache
= NULL
;
4524 struct btrfs_fs_info
*info
= root
->fs_info
;
4525 u64 total
= num_bytes
;
4530 /* block accounting for super block */
4531 spin_lock(&info
->delalloc_lock
);
4532 old_val
= btrfs_super_bytes_used(info
->super_copy
);
4534 old_val
+= num_bytes
;
4536 old_val
-= num_bytes
;
4537 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
4538 spin_unlock(&info
->delalloc_lock
);
4541 cache
= btrfs_lookup_block_group(info
, bytenr
);
4544 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4545 BTRFS_BLOCK_GROUP_RAID1
|
4546 BTRFS_BLOCK_GROUP_RAID10
))
4551 * If this block group has free space cache written out, we
4552 * need to make sure to load it if we are removing space. This
4553 * is because we need the unpinning stage to actually add the
4554 * space back to the block group, otherwise we will leak space.
4556 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4557 cache_block_group(cache
, trans
, NULL
, 1);
4559 byte_in_group
= bytenr
- cache
->key
.objectid
;
4560 WARN_ON(byte_in_group
> cache
->key
.offset
);
4562 spin_lock(&cache
->space_info
->lock
);
4563 spin_lock(&cache
->lock
);
4565 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
4566 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4567 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4570 old_val
= btrfs_block_group_used(&cache
->item
);
4571 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4573 old_val
+= num_bytes
;
4574 btrfs_set_block_group_used(&cache
->item
, old_val
);
4575 cache
->reserved
-= num_bytes
;
4576 cache
->space_info
->bytes_reserved
-= num_bytes
;
4577 cache
->space_info
->bytes_used
+= num_bytes
;
4578 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4579 spin_unlock(&cache
->lock
);
4580 spin_unlock(&cache
->space_info
->lock
);
4582 old_val
-= num_bytes
;
4583 btrfs_set_block_group_used(&cache
->item
, old_val
);
4584 cache
->pinned
+= num_bytes
;
4585 cache
->space_info
->bytes_pinned
+= num_bytes
;
4586 cache
->space_info
->bytes_used
-= num_bytes
;
4587 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4588 spin_unlock(&cache
->lock
);
4589 spin_unlock(&cache
->space_info
->lock
);
4591 set_extent_dirty(info
->pinned_extents
,
4592 bytenr
, bytenr
+ num_bytes
- 1,
4593 GFP_NOFS
| __GFP_NOFAIL
);
4595 btrfs_put_block_group(cache
);
4597 bytenr
+= num_bytes
;
4602 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4604 struct btrfs_block_group_cache
*cache
;
4607 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4611 bytenr
= cache
->key
.objectid
;
4612 btrfs_put_block_group(cache
);
4617 static int pin_down_extent(struct btrfs_root
*root
,
4618 struct btrfs_block_group_cache
*cache
,
4619 u64 bytenr
, u64 num_bytes
, int reserved
)
4621 spin_lock(&cache
->space_info
->lock
);
4622 spin_lock(&cache
->lock
);
4623 cache
->pinned
+= num_bytes
;
4624 cache
->space_info
->bytes_pinned
+= num_bytes
;
4626 cache
->reserved
-= num_bytes
;
4627 cache
->space_info
->bytes_reserved
-= num_bytes
;
4629 spin_unlock(&cache
->lock
);
4630 spin_unlock(&cache
->space_info
->lock
);
4632 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4633 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4638 * this function must be called within transaction
4640 int btrfs_pin_extent(struct btrfs_root
*root
,
4641 u64 bytenr
, u64 num_bytes
, int reserved
)
4643 struct btrfs_block_group_cache
*cache
;
4645 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4648 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4650 btrfs_put_block_group(cache
);
4655 * this function must be called within transaction
4657 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle
*trans
,
4658 struct btrfs_root
*root
,
4659 u64 bytenr
, u64 num_bytes
)
4661 struct btrfs_block_group_cache
*cache
;
4663 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4667 * pull in the free space cache (if any) so that our pin
4668 * removes the free space from the cache. We have load_only set
4669 * to one because the slow code to read in the free extents does check
4670 * the pinned extents.
4672 cache_block_group(cache
, trans
, root
, 1);
4674 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
4676 /* remove us from the free space cache (if we're there at all) */
4677 btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
4678 btrfs_put_block_group(cache
);
4683 * btrfs_update_reserved_bytes - update the block_group and space info counters
4684 * @cache: The cache we are manipulating
4685 * @num_bytes: The number of bytes in question
4686 * @reserve: One of the reservation enums
4688 * This is called by the allocator when it reserves space, or by somebody who is
4689 * freeing space that was never actually used on disk. For example if you
4690 * reserve some space for a new leaf in transaction A and before transaction A
4691 * commits you free that leaf, you call this with reserve set to 0 in order to
4692 * clear the reservation.
4694 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4695 * ENOSPC accounting. For data we handle the reservation through clearing the
4696 * delalloc bits in the io_tree. We have to do this since we could end up
4697 * allocating less disk space for the amount of data we have reserved in the
4698 * case of compression.
4700 * If this is a reservation and the block group has become read only we cannot
4701 * make the reservation and return -EAGAIN, otherwise this function always
4704 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4705 u64 num_bytes
, int reserve
)
4707 struct btrfs_space_info
*space_info
= cache
->space_info
;
4709 spin_lock(&space_info
->lock
);
4710 spin_lock(&cache
->lock
);
4711 if (reserve
!= RESERVE_FREE
) {
4715 cache
->reserved
+= num_bytes
;
4716 space_info
->bytes_reserved
+= num_bytes
;
4717 if (reserve
== RESERVE_ALLOC
) {
4718 trace_btrfs_space_reservation(cache
->fs_info
,
4720 (u64
)(unsigned long)space_info
,
4722 space_info
->bytes_may_use
-= num_bytes
;
4727 space_info
->bytes_readonly
+= num_bytes
;
4728 cache
->reserved
-= num_bytes
;
4729 space_info
->bytes_reserved
-= num_bytes
;
4730 space_info
->reservation_progress
++;
4732 spin_unlock(&cache
->lock
);
4733 spin_unlock(&space_info
->lock
);
4737 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4738 struct btrfs_root
*root
)
4740 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4741 struct btrfs_caching_control
*next
;
4742 struct btrfs_caching_control
*caching_ctl
;
4743 struct btrfs_block_group_cache
*cache
;
4745 down_write(&fs_info
->extent_commit_sem
);
4747 list_for_each_entry_safe(caching_ctl
, next
,
4748 &fs_info
->caching_block_groups
, list
) {
4749 cache
= caching_ctl
->block_group
;
4750 if (block_group_cache_done(cache
)) {
4751 cache
->last_byte_to_unpin
= (u64
)-1;
4752 list_del_init(&caching_ctl
->list
);
4753 put_caching_control(caching_ctl
);
4755 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4759 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4760 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4762 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4764 up_write(&fs_info
->extent_commit_sem
);
4766 update_global_block_rsv(fs_info
);
4770 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4772 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4773 struct btrfs_block_group_cache
*cache
= NULL
;
4776 while (start
<= end
) {
4778 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4780 btrfs_put_block_group(cache
);
4781 cache
= btrfs_lookup_block_group(fs_info
, start
);
4785 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4786 len
= min(len
, end
+ 1 - start
);
4788 if (start
< cache
->last_byte_to_unpin
) {
4789 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4790 btrfs_add_free_space(cache
, start
, len
);
4795 spin_lock(&cache
->space_info
->lock
);
4796 spin_lock(&cache
->lock
);
4797 cache
->pinned
-= len
;
4798 cache
->space_info
->bytes_pinned
-= len
;
4800 cache
->space_info
->bytes_readonly
+= len
;
4801 spin_unlock(&cache
->lock
);
4802 spin_unlock(&cache
->space_info
->lock
);
4806 btrfs_put_block_group(cache
);
4810 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4811 struct btrfs_root
*root
)
4813 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4814 struct extent_io_tree
*unpin
;
4819 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4820 unpin
= &fs_info
->freed_extents
[1];
4822 unpin
= &fs_info
->freed_extents
[0];
4825 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4830 if (btrfs_test_opt(root
, DISCARD
))
4831 ret
= btrfs_discard_extent(root
, start
,
4832 end
+ 1 - start
, NULL
);
4834 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4835 unpin_extent_range(root
, start
, end
);
4842 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4843 struct btrfs_root
*root
,
4844 u64 bytenr
, u64 num_bytes
, u64 parent
,
4845 u64 root_objectid
, u64 owner_objectid
,
4846 u64 owner_offset
, int refs_to_drop
,
4847 struct btrfs_delayed_extent_op
*extent_op
)
4849 struct btrfs_key key
;
4850 struct btrfs_path
*path
;
4851 struct btrfs_fs_info
*info
= root
->fs_info
;
4852 struct btrfs_root
*extent_root
= info
->extent_root
;
4853 struct extent_buffer
*leaf
;
4854 struct btrfs_extent_item
*ei
;
4855 struct btrfs_extent_inline_ref
*iref
;
4858 int extent_slot
= 0;
4859 int found_extent
= 0;
4864 path
= btrfs_alloc_path();
4869 path
->leave_spinning
= 1;
4871 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4872 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4874 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4875 bytenr
, num_bytes
, parent
,
4876 root_objectid
, owner_objectid
,
4879 extent_slot
= path
->slots
[0];
4880 while (extent_slot
>= 0) {
4881 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4883 if (key
.objectid
!= bytenr
)
4885 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4886 key
.offset
== num_bytes
) {
4890 if (path
->slots
[0] - extent_slot
> 5)
4894 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4895 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4896 if (found_extent
&& item_size
< sizeof(*ei
))
4899 if (!found_extent
) {
4901 ret
= remove_extent_backref(trans
, extent_root
, path
,
4905 btrfs_release_path(path
);
4906 path
->leave_spinning
= 1;
4908 key
.objectid
= bytenr
;
4909 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4910 key
.offset
= num_bytes
;
4912 ret
= btrfs_search_slot(trans
, extent_root
,
4915 printk(KERN_ERR
"umm, got %d back from search"
4916 ", was looking for %llu\n", ret
,
4917 (unsigned long long)bytenr
);
4919 btrfs_print_leaf(extent_root
,
4923 extent_slot
= path
->slots
[0];
4926 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4928 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
4929 "parent %llu root %llu owner %llu offset %llu\n",
4930 (unsigned long long)bytenr
,
4931 (unsigned long long)parent
,
4932 (unsigned long long)root_objectid
,
4933 (unsigned long long)owner_objectid
,
4934 (unsigned long long)owner_offset
);
4937 leaf
= path
->nodes
[0];
4938 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4940 if (item_size
< sizeof(*ei
)) {
4941 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
4942 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
4946 btrfs_release_path(path
);
4947 path
->leave_spinning
= 1;
4949 key
.objectid
= bytenr
;
4950 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4951 key
.offset
= num_bytes
;
4953 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
4956 printk(KERN_ERR
"umm, got %d back from search"
4957 ", was looking for %llu\n", ret
,
4958 (unsigned long long)bytenr
);
4959 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4962 extent_slot
= path
->slots
[0];
4963 leaf
= path
->nodes
[0];
4964 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4967 BUG_ON(item_size
< sizeof(*ei
));
4968 ei
= btrfs_item_ptr(leaf
, extent_slot
,
4969 struct btrfs_extent_item
);
4970 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
4971 struct btrfs_tree_block_info
*bi
;
4972 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
4973 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
4974 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
4977 refs
= btrfs_extent_refs(leaf
, ei
);
4978 BUG_ON(refs
< refs_to_drop
);
4979 refs
-= refs_to_drop
;
4983 __run_delayed_extent_op(extent_op
, leaf
, ei
);
4985 * In the case of inline back ref, reference count will
4986 * be updated by remove_extent_backref
4989 BUG_ON(!found_extent
);
4991 btrfs_set_extent_refs(leaf
, ei
, refs
);
4992 btrfs_mark_buffer_dirty(leaf
);
4995 ret
= remove_extent_backref(trans
, extent_root
, path
,
5002 BUG_ON(is_data
&& refs_to_drop
!=
5003 extent_data_ref_count(root
, path
, iref
));
5005 BUG_ON(path
->slots
[0] != extent_slot
);
5007 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
5008 path
->slots
[0] = extent_slot
;
5013 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
5016 btrfs_release_path(path
);
5019 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
5022 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
5023 bytenr
>> PAGE_CACHE_SHIFT
,
5024 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
5027 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
5030 btrfs_free_path(path
);
5035 * when we free an block, it is possible (and likely) that we free the last
5036 * delayed ref for that extent as well. This searches the delayed ref tree for
5037 * a given extent, and if there are no other delayed refs to be processed, it
5038 * removes it from the tree.
5040 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
5041 struct btrfs_root
*root
, u64 bytenr
)
5043 struct btrfs_delayed_ref_head
*head
;
5044 struct btrfs_delayed_ref_root
*delayed_refs
;
5045 struct btrfs_delayed_ref_node
*ref
;
5046 struct rb_node
*node
;
5049 delayed_refs
= &trans
->transaction
->delayed_refs
;
5050 spin_lock(&delayed_refs
->lock
);
5051 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
5055 node
= rb_prev(&head
->node
.rb_node
);
5059 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
5061 /* there are still entries for this ref, we can't drop it */
5062 if (ref
->bytenr
== bytenr
)
5065 if (head
->extent_op
) {
5066 if (!head
->must_insert_reserved
)
5068 kfree(head
->extent_op
);
5069 head
->extent_op
= NULL
;
5073 * waiting for the lock here would deadlock. If someone else has it
5074 * locked they are already in the process of dropping it anyway
5076 if (!mutex_trylock(&head
->mutex
))
5080 * at this point we have a head with no other entries. Go
5081 * ahead and process it.
5083 head
->node
.in_tree
= 0;
5084 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
5086 delayed_refs
->num_entries
--;
5087 if (waitqueue_active(&delayed_refs
->seq_wait
))
5088 wake_up(&delayed_refs
->seq_wait
);
5091 * we don't take a ref on the node because we're removing it from the
5092 * tree, so we just steal the ref the tree was holding.
5094 delayed_refs
->num_heads
--;
5095 if (list_empty(&head
->cluster
))
5096 delayed_refs
->num_heads_ready
--;
5098 list_del_init(&head
->cluster
);
5099 spin_unlock(&delayed_refs
->lock
);
5101 BUG_ON(head
->extent_op
);
5102 if (head
->must_insert_reserved
)
5105 mutex_unlock(&head
->mutex
);
5106 btrfs_put_delayed_ref(&head
->node
);
5109 spin_unlock(&delayed_refs
->lock
);
5113 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
5114 struct btrfs_root
*root
,
5115 struct extent_buffer
*buf
,
5116 u64 parent
, int last_ref
, int for_cow
)
5118 struct btrfs_block_group_cache
*cache
= NULL
;
5121 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5122 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
5123 buf
->start
, buf
->len
,
5124 parent
, root
->root_key
.objectid
,
5125 btrfs_header_level(buf
),
5126 BTRFS_DROP_DELAYED_REF
, NULL
, for_cow
);
5133 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
5135 if (btrfs_header_generation(buf
) == trans
->transid
) {
5136 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5137 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
5142 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
5143 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
5147 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
5149 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
5150 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
);
5154 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5157 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
5158 btrfs_put_block_group(cache
);
5161 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
5162 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
5163 u64 owner
, u64 offset
, int for_cow
)
5166 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5169 * tree log blocks never actually go into the extent allocation
5170 * tree, just update pinning info and exit early.
5172 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5173 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
5174 /* unlocks the pinned mutex */
5175 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
5177 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
5178 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
5180 parent
, root_objectid
, (int)owner
,
5181 BTRFS_DROP_DELAYED_REF
, NULL
, for_cow
);
5184 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
5186 parent
, root_objectid
, owner
,
5187 offset
, BTRFS_DROP_DELAYED_REF
,
5194 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
5196 u64 mask
= ((u64
)root
->stripesize
- 1);
5197 u64 ret
= (val
+ mask
) & ~mask
;
5202 * when we wait for progress in the block group caching, its because
5203 * our allocation attempt failed at least once. So, we must sleep
5204 * and let some progress happen before we try again.
5206 * This function will sleep at least once waiting for new free space to
5207 * show up, and then it will check the block group free space numbers
5208 * for our min num_bytes. Another option is to have it go ahead
5209 * and look in the rbtree for a free extent of a given size, but this
5213 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
5216 struct btrfs_caching_control
*caching_ctl
;
5219 caching_ctl
= get_caching_control(cache
);
5223 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
5224 (cache
->free_space_ctl
->free_space
>= num_bytes
));
5226 put_caching_control(caching_ctl
);
5231 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
5233 struct btrfs_caching_control
*caching_ctl
;
5236 caching_ctl
= get_caching_control(cache
);
5240 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
5242 put_caching_control(caching_ctl
);
5246 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
5249 if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID10
)
5251 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID1
)
5253 else if (cache
->flags
& BTRFS_BLOCK_GROUP_DUP
)
5255 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID0
)
5262 enum btrfs_loop_type
{
5263 LOOP_FIND_IDEAL
= 0,
5264 LOOP_CACHING_NOWAIT
= 1,
5265 LOOP_CACHING_WAIT
= 2,
5266 LOOP_ALLOC_CHUNK
= 3,
5267 LOOP_NO_EMPTY_SIZE
= 4,
5271 * walks the btree of allocated extents and find a hole of a given size.
5272 * The key ins is changed to record the hole:
5273 * ins->objectid == block start
5274 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5275 * ins->offset == number of blocks
5276 * Any available blocks before search_start are skipped.
5278 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
5279 struct btrfs_root
*orig_root
,
5280 u64 num_bytes
, u64 empty_size
,
5281 u64 search_start
, u64 search_end
,
5282 u64 hint_byte
, struct btrfs_key
*ins
,
5286 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
5287 struct btrfs_free_cluster
*last_ptr
= NULL
;
5288 struct btrfs_block_group_cache
*block_group
= NULL
;
5289 struct btrfs_block_group_cache
*used_block_group
;
5290 int empty_cluster
= 2 * 1024 * 1024;
5291 int allowed_chunk_alloc
= 0;
5292 int done_chunk_alloc
= 0;
5293 struct btrfs_space_info
*space_info
;
5296 int alloc_type
= (data
& BTRFS_BLOCK_GROUP_DATA
) ?
5297 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
5298 bool found_uncached_bg
= false;
5299 bool failed_cluster_refill
= false;
5300 bool failed_alloc
= false;
5301 bool use_cluster
= true;
5302 bool have_caching_bg
= false;
5303 u64 ideal_cache_percent
= 0;
5304 u64 ideal_cache_offset
= 0;
5306 WARN_ON(num_bytes
< root
->sectorsize
);
5307 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
5311 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, data
);
5313 space_info
= __find_space_info(root
->fs_info
, data
);
5315 printk(KERN_ERR
"No space info for %llu\n", data
);
5320 * If the space info is for both data and metadata it means we have a
5321 * small filesystem and we can't use the clustering stuff.
5323 if (btrfs_mixed_space_info(space_info
))
5324 use_cluster
= false;
5326 if (orig_root
->ref_cows
|| empty_size
)
5327 allowed_chunk_alloc
= 1;
5329 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
5330 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
5331 if (!btrfs_test_opt(root
, SSD
))
5332 empty_cluster
= 64 * 1024;
5335 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
5336 btrfs_test_opt(root
, SSD
)) {
5337 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
5341 spin_lock(&last_ptr
->lock
);
5342 if (last_ptr
->block_group
)
5343 hint_byte
= last_ptr
->window_start
;
5344 spin_unlock(&last_ptr
->lock
);
5347 search_start
= max(search_start
, first_logical_byte(root
, 0));
5348 search_start
= max(search_start
, hint_byte
);
5353 if (search_start
== hint_byte
) {
5355 block_group
= btrfs_lookup_block_group(root
->fs_info
,
5357 used_block_group
= block_group
;
5359 * we don't want to use the block group if it doesn't match our
5360 * allocation bits, or if its not cached.
5362 * However if we are re-searching with an ideal block group
5363 * picked out then we don't care that the block group is cached.
5365 if (block_group
&& block_group_bits(block_group
, data
) &&
5366 (block_group
->cached
!= BTRFS_CACHE_NO
||
5367 search_start
== ideal_cache_offset
)) {
5368 down_read(&space_info
->groups_sem
);
5369 if (list_empty(&block_group
->list
) ||
5372 * someone is removing this block group,
5373 * we can't jump into the have_block_group
5374 * target because our list pointers are not
5377 btrfs_put_block_group(block_group
);
5378 up_read(&space_info
->groups_sem
);
5380 index
= get_block_group_index(block_group
);
5381 goto have_block_group
;
5383 } else if (block_group
) {
5384 btrfs_put_block_group(block_group
);
5388 have_caching_bg
= false;
5389 down_read(&space_info
->groups_sem
);
5390 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
5395 used_block_group
= block_group
;
5396 btrfs_get_block_group(block_group
);
5397 search_start
= block_group
->key
.objectid
;
5400 * this can happen if we end up cycling through all the
5401 * raid types, but we want to make sure we only allocate
5402 * for the proper type.
5404 if (!block_group_bits(block_group
, data
)) {
5405 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
5406 BTRFS_BLOCK_GROUP_RAID1
|
5407 BTRFS_BLOCK_GROUP_RAID10
;
5410 * if they asked for extra copies and this block group
5411 * doesn't provide them, bail. This does allow us to
5412 * fill raid0 from raid1.
5414 if ((data
& extra
) && !(block_group
->flags
& extra
))
5419 cached
= block_group_cache_done(block_group
);
5420 if (unlikely(!cached
)) {
5423 found_uncached_bg
= true;
5424 ret
= cache_block_group(block_group
, trans
,
5426 if (block_group
->cached
== BTRFS_CACHE_FINISHED
)
5429 free_percent
= btrfs_block_group_used(&block_group
->item
);
5430 free_percent
*= 100;
5431 free_percent
= div64_u64(free_percent
,
5432 block_group
->key
.offset
);
5433 free_percent
= 100 - free_percent
;
5434 if (free_percent
> ideal_cache_percent
&&
5435 likely(!block_group
->ro
)) {
5436 ideal_cache_offset
= block_group
->key
.objectid
;
5437 ideal_cache_percent
= free_percent
;
5441 * The caching workers are limited to 2 threads, so we
5442 * can queue as much work as we care to.
5444 if (loop
> LOOP_FIND_IDEAL
) {
5445 ret
= cache_block_group(block_group
, trans
,
5451 * If loop is set for cached only, try the next block
5454 if (loop
== LOOP_FIND_IDEAL
)
5459 if (unlikely(block_group
->ro
))
5463 * Ok we want to try and use the cluster allocator, so
5468 * the refill lock keeps out other
5469 * people trying to start a new cluster
5471 spin_lock(&last_ptr
->refill_lock
);
5472 used_block_group
= last_ptr
->block_group
;
5473 if (used_block_group
!= block_group
&&
5474 (!used_block_group
||
5475 used_block_group
->ro
||
5476 !block_group_bits(used_block_group
, data
))) {
5477 used_block_group
= block_group
;
5478 goto refill_cluster
;
5481 if (used_block_group
!= block_group
)
5482 btrfs_get_block_group(used_block_group
);
5484 offset
= btrfs_alloc_from_cluster(used_block_group
,
5485 last_ptr
, num_bytes
, used_block_group
->key
.objectid
);
5487 /* we have a block, we're done */
5488 spin_unlock(&last_ptr
->refill_lock
);
5489 trace_btrfs_reserve_extent_cluster(root
,
5490 block_group
, search_start
, num_bytes
);
5494 WARN_ON(last_ptr
->block_group
!= used_block_group
);
5495 if (used_block_group
!= block_group
) {
5496 btrfs_put_block_group(used_block_group
);
5497 used_block_group
= block_group
;
5500 BUG_ON(used_block_group
!= block_group
);
5501 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5502 * set up a new clusters, so lets just skip it
5503 * and let the allocator find whatever block
5504 * it can find. If we reach this point, we
5505 * will have tried the cluster allocator
5506 * plenty of times and not have found
5507 * anything, so we are likely way too
5508 * fragmented for the clustering stuff to find
5511 * However, if the cluster is taken from the
5512 * current block group, release the cluster
5513 * first, so that we stand a better chance of
5514 * succeeding in the unclustered
5516 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
5517 last_ptr
->block_group
!= block_group
) {
5518 spin_unlock(&last_ptr
->refill_lock
);
5519 goto unclustered_alloc
;
5523 * this cluster didn't work out, free it and
5526 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5528 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
5529 spin_unlock(&last_ptr
->refill_lock
);
5530 goto unclustered_alloc
;
5533 /* allocate a cluster in this block group */
5534 ret
= btrfs_find_space_cluster(trans
, root
,
5535 block_group
, last_ptr
,
5536 search_start
, num_bytes
,
5537 empty_cluster
+ empty_size
);
5540 * now pull our allocation out of this
5543 offset
= btrfs_alloc_from_cluster(block_group
,
5544 last_ptr
, num_bytes
,
5547 /* we found one, proceed */
5548 spin_unlock(&last_ptr
->refill_lock
);
5549 trace_btrfs_reserve_extent_cluster(root
,
5550 block_group
, search_start
,
5554 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5555 && !failed_cluster_refill
) {
5556 spin_unlock(&last_ptr
->refill_lock
);
5558 failed_cluster_refill
= true;
5559 wait_block_group_cache_progress(block_group
,
5560 num_bytes
+ empty_cluster
+ empty_size
);
5561 goto have_block_group
;
5565 * at this point we either didn't find a cluster
5566 * or we weren't able to allocate a block from our
5567 * cluster. Free the cluster we've been trying
5568 * to use, and go to the next block group
5570 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5571 spin_unlock(&last_ptr
->refill_lock
);
5576 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
5578 block_group
->free_space_ctl
->free_space
<
5579 num_bytes
+ empty_cluster
+ empty_size
) {
5580 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5583 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5585 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5586 num_bytes
, empty_size
);
5588 * If we didn't find a chunk, and we haven't failed on this
5589 * block group before, and this block group is in the middle of
5590 * caching and we are ok with waiting, then go ahead and wait
5591 * for progress to be made, and set failed_alloc to true.
5593 * If failed_alloc is true then we've already waited on this
5594 * block group once and should move on to the next block group.
5596 if (!offset
&& !failed_alloc
&& !cached
&&
5597 loop
> LOOP_CACHING_NOWAIT
) {
5598 wait_block_group_cache_progress(block_group
,
5599 num_bytes
+ empty_size
);
5600 failed_alloc
= true;
5601 goto have_block_group
;
5602 } else if (!offset
) {
5604 have_caching_bg
= true;
5608 search_start
= stripe_align(root
, offset
);
5609 /* move on to the next group */
5610 if (search_start
+ num_bytes
>= search_end
) {
5611 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5615 /* move on to the next group */
5616 if (search_start
+ num_bytes
>
5617 used_block_group
->key
.objectid
+ used_block_group
->key
.offset
) {
5618 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5622 if (offset
< search_start
)
5623 btrfs_add_free_space(used_block_group
, offset
,
5624 search_start
- offset
);
5625 BUG_ON(offset
> search_start
);
5627 ret
= btrfs_update_reserved_bytes(used_block_group
, num_bytes
,
5629 if (ret
== -EAGAIN
) {
5630 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5634 /* we are all good, lets return */
5635 ins
->objectid
= search_start
;
5636 ins
->offset
= num_bytes
;
5638 trace_btrfs_reserve_extent(orig_root
, block_group
,
5639 search_start
, num_bytes
);
5640 if (offset
< search_start
)
5641 btrfs_add_free_space(used_block_group
, offset
,
5642 search_start
- offset
);
5643 BUG_ON(offset
> search_start
);
5644 if (used_block_group
!= block_group
)
5645 btrfs_put_block_group(used_block_group
);
5646 btrfs_put_block_group(block_group
);
5649 failed_cluster_refill
= false;
5650 failed_alloc
= false;
5651 BUG_ON(index
!= get_block_group_index(block_group
));
5652 if (used_block_group
!= block_group
)
5653 btrfs_put_block_group(used_block_group
);
5654 btrfs_put_block_group(block_group
);
5656 up_read(&space_info
->groups_sem
);
5658 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
5661 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5664 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5665 * for them to make caching progress. Also
5666 * determine the best possible bg to cache
5667 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5668 * caching kthreads as we move along
5669 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5670 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5671 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5674 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5676 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
5677 found_uncached_bg
= false;
5679 if (!ideal_cache_percent
)
5683 * 1 of the following 2 things have happened so far
5685 * 1) We found an ideal block group for caching that
5686 * is mostly full and will cache quickly, so we might
5687 * as well wait for it.
5689 * 2) We searched for cached only and we didn't find
5690 * anything, and we didn't start any caching kthreads
5691 * either, so chances are we will loop through and
5692 * start a couple caching kthreads, and then come back
5693 * around and just wait for them. This will be slower
5694 * because we will have 2 caching kthreads reading at
5695 * the same time when we could have just started one
5696 * and waited for it to get far enough to give us an
5697 * allocation, so go ahead and go to the wait caching
5700 loop
= LOOP_CACHING_WAIT
;
5701 search_start
= ideal_cache_offset
;
5702 ideal_cache_percent
= 0;
5704 } else if (loop
== LOOP_FIND_IDEAL
) {
5706 * Didn't find a uncached bg, wait on anything we find
5709 loop
= LOOP_CACHING_WAIT
;
5715 if (loop
== LOOP_ALLOC_CHUNK
) {
5716 if (allowed_chunk_alloc
) {
5717 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
5718 2 * 1024 * 1024, data
,
5719 CHUNK_ALLOC_LIMITED
);
5720 allowed_chunk_alloc
= 0;
5722 done_chunk_alloc
= 1;
5723 } else if (!done_chunk_alloc
&&
5724 space_info
->force_alloc
==
5725 CHUNK_ALLOC_NO_FORCE
) {
5726 space_info
->force_alloc
= CHUNK_ALLOC_LIMITED
;
5730 * We didn't allocate a chunk, go ahead and drop the
5731 * empty size and loop again.
5733 if (!done_chunk_alloc
)
5734 loop
= LOOP_NO_EMPTY_SIZE
;
5737 if (loop
== LOOP_NO_EMPTY_SIZE
) {
5743 } else if (!ins
->objectid
) {
5745 } else if (ins
->objectid
) {
5752 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5753 int dump_block_groups
)
5755 struct btrfs_block_group_cache
*cache
;
5758 spin_lock(&info
->lock
);
5759 printk(KERN_INFO
"space_info %llu has %llu free, is %sfull\n",
5760 (unsigned long long)info
->flags
,
5761 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5762 info
->bytes_pinned
- info
->bytes_reserved
-
5763 info
->bytes_readonly
),
5764 (info
->full
) ? "" : "not ");
5765 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5766 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5767 (unsigned long long)info
->total_bytes
,
5768 (unsigned long long)info
->bytes_used
,
5769 (unsigned long long)info
->bytes_pinned
,
5770 (unsigned long long)info
->bytes_reserved
,
5771 (unsigned long long)info
->bytes_may_use
,
5772 (unsigned long long)info
->bytes_readonly
);
5773 spin_unlock(&info
->lock
);
5775 if (!dump_block_groups
)
5778 down_read(&info
->groups_sem
);
5780 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5781 spin_lock(&cache
->lock
);
5782 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
5783 "%llu pinned %llu reserved\n",
5784 (unsigned long long)cache
->key
.objectid
,
5785 (unsigned long long)cache
->key
.offset
,
5786 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5787 (unsigned long long)cache
->pinned
,
5788 (unsigned long long)cache
->reserved
);
5789 btrfs_dump_free_space(cache
, bytes
);
5790 spin_unlock(&cache
->lock
);
5792 if (++index
< BTRFS_NR_RAID_TYPES
)
5794 up_read(&info
->groups_sem
);
5797 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5798 struct btrfs_root
*root
,
5799 u64 num_bytes
, u64 min_alloc_size
,
5800 u64 empty_size
, u64 hint_byte
,
5801 u64 search_end
, struct btrfs_key
*ins
,
5804 bool final_tried
= false;
5806 u64 search_start
= 0;
5808 data
= btrfs_get_alloc_profile(root
, data
);
5811 * the only place that sets empty_size is btrfs_realloc_node, which
5812 * is not called recursively on allocations
5814 if (empty_size
|| root
->ref_cows
)
5815 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5816 num_bytes
+ 2 * 1024 * 1024, data
,
5817 CHUNK_ALLOC_NO_FORCE
);
5819 WARN_ON(num_bytes
< root
->sectorsize
);
5820 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5821 search_start
, search_end
, hint_byte
,
5824 if (ret
== -ENOSPC
) {
5826 num_bytes
= num_bytes
>> 1;
5827 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5828 num_bytes
= max(num_bytes
, min_alloc_size
);
5829 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5830 num_bytes
, data
, CHUNK_ALLOC_FORCE
);
5831 if (num_bytes
== min_alloc_size
)
5834 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
5835 struct btrfs_space_info
*sinfo
;
5837 sinfo
= __find_space_info(root
->fs_info
, data
);
5838 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5839 "wanted %llu\n", (unsigned long long)data
,
5840 (unsigned long long)num_bytes
);
5841 dump_space_info(sinfo
, num_bytes
, 1);
5845 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
5850 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
5851 u64 start
, u64 len
, int pin
)
5853 struct btrfs_block_group_cache
*cache
;
5856 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5858 printk(KERN_ERR
"Unable to find block group for %llu\n",
5859 (unsigned long long)start
);
5863 if (btrfs_test_opt(root
, DISCARD
))
5864 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
5867 pin_down_extent(root
, cache
, start
, len
, 1);
5869 btrfs_add_free_space(cache
, start
, len
);
5870 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
);
5872 btrfs_put_block_group(cache
);
5874 trace_btrfs_reserved_extent_free(root
, start
, len
);
5879 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
5882 return __btrfs_free_reserved_extent(root
, start
, len
, 0);
5885 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
5888 return __btrfs_free_reserved_extent(root
, start
, len
, 1);
5891 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5892 struct btrfs_root
*root
,
5893 u64 parent
, u64 root_objectid
,
5894 u64 flags
, u64 owner
, u64 offset
,
5895 struct btrfs_key
*ins
, int ref_mod
)
5898 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5899 struct btrfs_extent_item
*extent_item
;
5900 struct btrfs_extent_inline_ref
*iref
;
5901 struct btrfs_path
*path
;
5902 struct extent_buffer
*leaf
;
5907 type
= BTRFS_SHARED_DATA_REF_KEY
;
5909 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5911 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5913 path
= btrfs_alloc_path();
5917 path
->leave_spinning
= 1;
5918 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5922 leaf
= path
->nodes
[0];
5923 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5924 struct btrfs_extent_item
);
5925 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5926 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5927 btrfs_set_extent_flags(leaf
, extent_item
,
5928 flags
| BTRFS_EXTENT_FLAG_DATA
);
5930 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5931 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5933 struct btrfs_shared_data_ref
*ref
;
5934 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5935 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5936 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5938 struct btrfs_extent_data_ref
*ref
;
5939 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5940 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5941 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5942 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5943 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5946 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5947 btrfs_free_path(path
);
5949 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5951 printk(KERN_ERR
"btrfs update block group failed for %llu "
5952 "%llu\n", (unsigned long long)ins
->objectid
,
5953 (unsigned long long)ins
->offset
);
5959 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
5960 struct btrfs_root
*root
,
5961 u64 parent
, u64 root_objectid
,
5962 u64 flags
, struct btrfs_disk_key
*key
,
5963 int level
, struct btrfs_key
*ins
)
5966 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5967 struct btrfs_extent_item
*extent_item
;
5968 struct btrfs_tree_block_info
*block_info
;
5969 struct btrfs_extent_inline_ref
*iref
;
5970 struct btrfs_path
*path
;
5971 struct extent_buffer
*leaf
;
5972 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
5974 path
= btrfs_alloc_path();
5978 path
->leave_spinning
= 1;
5979 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5983 leaf
= path
->nodes
[0];
5984 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5985 struct btrfs_extent_item
);
5986 btrfs_set_extent_refs(leaf
, extent_item
, 1);
5987 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5988 btrfs_set_extent_flags(leaf
, extent_item
,
5989 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
5990 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
5992 btrfs_set_tree_block_key(leaf
, block_info
, key
);
5993 btrfs_set_tree_block_level(leaf
, block_info
, level
);
5995 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
5997 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
5998 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5999 BTRFS_SHARED_BLOCK_REF_KEY
);
6000 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
6002 btrfs_set_extent_inline_ref_type(leaf
, iref
,
6003 BTRFS_TREE_BLOCK_REF_KEY
);
6004 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
6007 btrfs_mark_buffer_dirty(leaf
);
6008 btrfs_free_path(path
);
6010 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
6012 printk(KERN_ERR
"btrfs update block group failed for %llu "
6013 "%llu\n", (unsigned long long)ins
->objectid
,
6014 (unsigned long long)ins
->offset
);
6020 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
6021 struct btrfs_root
*root
,
6022 u64 root_objectid
, u64 owner
,
6023 u64 offset
, struct btrfs_key
*ins
)
6027 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
6029 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
6031 root_objectid
, owner
, offset
,
6032 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
6037 * this is used by the tree logging recovery code. It records that
6038 * an extent has been allocated and makes sure to clear the free
6039 * space cache bits as well
6041 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
6042 struct btrfs_root
*root
,
6043 u64 root_objectid
, u64 owner
, u64 offset
,
6044 struct btrfs_key
*ins
)
6047 struct btrfs_block_group_cache
*block_group
;
6048 struct btrfs_caching_control
*caching_ctl
;
6049 u64 start
= ins
->objectid
;
6050 u64 num_bytes
= ins
->offset
;
6052 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
6053 cache_block_group(block_group
, trans
, NULL
, 0);
6054 caching_ctl
= get_caching_control(block_group
);
6057 BUG_ON(!block_group_cache_done(block_group
));
6058 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6061 mutex_lock(&caching_ctl
->mutex
);
6063 if (start
>= caching_ctl
->progress
) {
6064 ret
= add_excluded_extent(root
, start
, num_bytes
);
6066 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6067 ret
= btrfs_remove_free_space(block_group
,
6071 num_bytes
= caching_ctl
->progress
- start
;
6072 ret
= btrfs_remove_free_space(block_group
,
6076 start
= caching_ctl
->progress
;
6077 num_bytes
= ins
->objectid
+ ins
->offset
-
6078 caching_ctl
->progress
;
6079 ret
= add_excluded_extent(root
, start
, num_bytes
);
6083 mutex_unlock(&caching_ctl
->mutex
);
6084 put_caching_control(caching_ctl
);
6087 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
6088 RESERVE_ALLOC_NO_ACCOUNT
);
6090 btrfs_put_block_group(block_group
);
6091 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
6092 0, owner
, offset
, ins
, 1);
6096 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
6097 struct btrfs_root
*root
,
6098 u64 bytenr
, u32 blocksize
,
6101 struct extent_buffer
*buf
;
6103 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6105 return ERR_PTR(-ENOMEM
);
6106 btrfs_set_header_generation(buf
, trans
->transid
);
6107 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
6108 btrfs_tree_lock(buf
);
6109 clean_tree_block(trans
, root
, buf
);
6111 btrfs_set_lock_blocking(buf
);
6112 btrfs_set_buffer_uptodate(buf
);
6114 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6116 * we allow two log transactions at a time, use different
6117 * EXENT bit to differentiate dirty pages.
6119 if (root
->log_transid
% 2 == 0)
6120 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
6121 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6123 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
6124 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6126 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
6127 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6129 trans
->blocks_used
++;
6130 /* this returns a buffer locked for blocking */
6134 static struct btrfs_block_rsv
*
6135 use_block_rsv(struct btrfs_trans_handle
*trans
,
6136 struct btrfs_root
*root
, u32 blocksize
)
6138 struct btrfs_block_rsv
*block_rsv
;
6139 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
6142 block_rsv
= get_block_rsv(trans
, root
);
6144 if (block_rsv
->size
== 0) {
6145 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
, 0);
6147 * If we couldn't reserve metadata bytes try and use some from
6148 * the global reserve.
6150 if (ret
&& block_rsv
!= global_rsv
) {
6151 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
6154 return ERR_PTR(ret
);
6156 return ERR_PTR(ret
);
6161 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
6165 static DEFINE_RATELIMIT_STATE(_rs
,
6166 DEFAULT_RATELIMIT_INTERVAL
,
6167 /*DEFAULT_RATELIMIT_BURST*/ 2);
6168 if (__ratelimit(&_rs
)) {
6169 printk(KERN_DEBUG
"btrfs: block rsv returned %d\n", ret
);
6172 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
, 0);
6175 } else if (ret
&& block_rsv
!= global_rsv
) {
6176 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
6182 return ERR_PTR(-ENOSPC
);
6185 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
6186 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
6188 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
6189 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
6193 * finds a free extent and does all the dirty work required for allocation
6194 * returns the key for the extent through ins, and a tree buffer for
6195 * the first block of the extent through buf.
6197 * returns the tree buffer or NULL.
6199 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
6200 struct btrfs_root
*root
, u32 blocksize
,
6201 u64 parent
, u64 root_objectid
,
6202 struct btrfs_disk_key
*key
, int level
,
6203 u64 hint
, u64 empty_size
, int for_cow
)
6205 struct btrfs_key ins
;
6206 struct btrfs_block_rsv
*block_rsv
;
6207 struct extent_buffer
*buf
;
6212 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
6213 if (IS_ERR(block_rsv
))
6214 return ERR_CAST(block_rsv
);
6216 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
6217 empty_size
, hint
, (u64
)-1, &ins
, 0);
6219 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
6220 return ERR_PTR(ret
);
6223 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
6225 BUG_ON(IS_ERR(buf
));
6227 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
6229 parent
= ins
.objectid
;
6230 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6234 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6235 struct btrfs_delayed_extent_op
*extent_op
;
6236 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
6239 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
6241 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
6242 extent_op
->flags_to_set
= flags
;
6243 extent_op
->update_key
= 1;
6244 extent_op
->update_flags
= 1;
6245 extent_op
->is_data
= 0;
6247 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6249 ins
.offset
, parent
, root_objectid
,
6250 level
, BTRFS_ADD_DELAYED_EXTENT
,
6251 extent_op
, for_cow
);
6257 struct walk_control
{
6258 u64 refs
[BTRFS_MAX_LEVEL
];
6259 u64 flags
[BTRFS_MAX_LEVEL
];
6260 struct btrfs_key update_progress
;
6271 #define DROP_REFERENCE 1
6272 #define UPDATE_BACKREF 2
6274 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
6275 struct btrfs_root
*root
,
6276 struct walk_control
*wc
,
6277 struct btrfs_path
*path
)
6285 struct btrfs_key key
;
6286 struct extent_buffer
*eb
;
6291 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
6292 wc
->reada_count
= wc
->reada_count
* 2 / 3;
6293 wc
->reada_count
= max(wc
->reada_count
, 2);
6295 wc
->reada_count
= wc
->reada_count
* 3 / 2;
6296 wc
->reada_count
= min_t(int, wc
->reada_count
,
6297 BTRFS_NODEPTRS_PER_BLOCK(root
));
6300 eb
= path
->nodes
[wc
->level
];
6301 nritems
= btrfs_header_nritems(eb
);
6302 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
6304 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
6305 if (nread
>= wc
->reada_count
)
6309 bytenr
= btrfs_node_blockptr(eb
, slot
);
6310 generation
= btrfs_node_ptr_generation(eb
, slot
);
6312 if (slot
== path
->slots
[wc
->level
])
6315 if (wc
->stage
== UPDATE_BACKREF
&&
6316 generation
<= root
->root_key
.offset
)
6319 /* We don't lock the tree block, it's OK to be racy here */
6320 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6325 if (wc
->stage
== DROP_REFERENCE
) {
6329 if (wc
->level
== 1 &&
6330 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6332 if (!wc
->update_ref
||
6333 generation
<= root
->root_key
.offset
)
6335 btrfs_node_key_to_cpu(eb
, &key
, slot
);
6336 ret
= btrfs_comp_cpu_keys(&key
,
6337 &wc
->update_progress
);
6341 if (wc
->level
== 1 &&
6342 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6346 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
6352 wc
->reada_slot
= slot
;
6356 * hepler to process tree block while walking down the tree.
6358 * when wc->stage == UPDATE_BACKREF, this function updates
6359 * back refs for pointers in the block.
6361 * NOTE: return value 1 means we should stop walking down.
6363 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
6364 struct btrfs_root
*root
,
6365 struct btrfs_path
*path
,
6366 struct walk_control
*wc
, int lookup_info
)
6368 int level
= wc
->level
;
6369 struct extent_buffer
*eb
= path
->nodes
[level
];
6370 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6373 if (wc
->stage
== UPDATE_BACKREF
&&
6374 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
6378 * when reference count of tree block is 1, it won't increase
6379 * again. once full backref flag is set, we never clear it.
6382 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
6383 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
6384 BUG_ON(!path
->locks
[level
]);
6385 ret
= btrfs_lookup_extent_info(trans
, root
,
6390 BUG_ON(wc
->refs
[level
] == 0);
6393 if (wc
->stage
== DROP_REFERENCE
) {
6394 if (wc
->refs
[level
] > 1)
6397 if (path
->locks
[level
] && !wc
->keep_locks
) {
6398 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6399 path
->locks
[level
] = 0;
6404 /* wc->stage == UPDATE_BACKREF */
6405 if (!(wc
->flags
[level
] & flag
)) {
6406 BUG_ON(!path
->locks
[level
]);
6407 ret
= btrfs_inc_ref(trans
, root
, eb
, 1, wc
->for_reloc
);
6409 ret
= btrfs_dec_ref(trans
, root
, eb
, 0, wc
->for_reloc
);
6411 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
6414 wc
->flags
[level
] |= flag
;
6418 * the block is shared by multiple trees, so it's not good to
6419 * keep the tree lock
6421 if (path
->locks
[level
] && level
> 0) {
6422 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6423 path
->locks
[level
] = 0;
6429 * hepler to process tree block pointer.
6431 * when wc->stage == DROP_REFERENCE, this function checks
6432 * reference count of the block pointed to. if the block
6433 * is shared and we need update back refs for the subtree
6434 * rooted at the block, this function changes wc->stage to
6435 * UPDATE_BACKREF. if the block is shared and there is no
6436 * need to update back, this function drops the reference
6439 * NOTE: return value 1 means we should stop walking down.
6441 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
6442 struct btrfs_root
*root
,
6443 struct btrfs_path
*path
,
6444 struct walk_control
*wc
, int *lookup_info
)
6450 struct btrfs_key key
;
6451 struct extent_buffer
*next
;
6452 int level
= wc
->level
;
6456 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
6457 path
->slots
[level
]);
6459 * if the lower level block was created before the snapshot
6460 * was created, we know there is no need to update back refs
6463 if (wc
->stage
== UPDATE_BACKREF
&&
6464 generation
<= root
->root_key
.offset
) {
6469 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
6470 blocksize
= btrfs_level_size(root
, level
- 1);
6472 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
6474 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6479 btrfs_tree_lock(next
);
6480 btrfs_set_lock_blocking(next
);
6482 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6483 &wc
->refs
[level
- 1],
6484 &wc
->flags
[level
- 1]);
6486 BUG_ON(wc
->refs
[level
- 1] == 0);
6489 if (wc
->stage
== DROP_REFERENCE
) {
6490 if (wc
->refs
[level
- 1] > 1) {
6492 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6495 if (!wc
->update_ref
||
6496 generation
<= root
->root_key
.offset
)
6499 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6500 path
->slots
[level
]);
6501 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6505 wc
->stage
= UPDATE_BACKREF
;
6506 wc
->shared_level
= level
- 1;
6510 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6514 if (!btrfs_buffer_uptodate(next
, generation
)) {
6515 btrfs_tree_unlock(next
);
6516 free_extent_buffer(next
);
6522 if (reada
&& level
== 1)
6523 reada_walk_down(trans
, root
, wc
, path
);
6524 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6527 btrfs_tree_lock(next
);
6528 btrfs_set_lock_blocking(next
);
6532 BUG_ON(level
!= btrfs_header_level(next
));
6533 path
->nodes
[level
] = next
;
6534 path
->slots
[level
] = 0;
6535 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6541 wc
->refs
[level
- 1] = 0;
6542 wc
->flags
[level
- 1] = 0;
6543 if (wc
->stage
== DROP_REFERENCE
) {
6544 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6545 parent
= path
->nodes
[level
]->start
;
6547 BUG_ON(root
->root_key
.objectid
!=
6548 btrfs_header_owner(path
->nodes
[level
]));
6552 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6553 root
->root_key
.objectid
, level
- 1, 0, 0);
6556 btrfs_tree_unlock(next
);
6557 free_extent_buffer(next
);
6563 * hepler to process tree block while walking up the tree.
6565 * when wc->stage == DROP_REFERENCE, this function drops
6566 * reference count on the block.
6568 * when wc->stage == UPDATE_BACKREF, this function changes
6569 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6570 * to UPDATE_BACKREF previously while processing the block.
6572 * NOTE: return value 1 means we should stop walking up.
6574 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6575 struct btrfs_root
*root
,
6576 struct btrfs_path
*path
,
6577 struct walk_control
*wc
)
6580 int level
= wc
->level
;
6581 struct extent_buffer
*eb
= path
->nodes
[level
];
6584 if (wc
->stage
== UPDATE_BACKREF
) {
6585 BUG_ON(wc
->shared_level
< level
);
6586 if (level
< wc
->shared_level
)
6589 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6593 wc
->stage
= DROP_REFERENCE
;
6594 wc
->shared_level
= -1;
6595 path
->slots
[level
] = 0;
6598 * check reference count again if the block isn't locked.
6599 * we should start walking down the tree again if reference
6602 if (!path
->locks
[level
]) {
6604 btrfs_tree_lock(eb
);
6605 btrfs_set_lock_blocking(eb
);
6606 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6608 ret
= btrfs_lookup_extent_info(trans
, root
,
6613 BUG_ON(wc
->refs
[level
] == 0);
6614 if (wc
->refs
[level
] == 1) {
6615 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6621 /* wc->stage == DROP_REFERENCE */
6622 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6624 if (wc
->refs
[level
] == 1) {
6626 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6627 ret
= btrfs_dec_ref(trans
, root
, eb
, 1,
6630 ret
= btrfs_dec_ref(trans
, root
, eb
, 0,
6634 /* make block locked assertion in clean_tree_block happy */
6635 if (!path
->locks
[level
] &&
6636 btrfs_header_generation(eb
) == trans
->transid
) {
6637 btrfs_tree_lock(eb
);
6638 btrfs_set_lock_blocking(eb
);
6639 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6641 clean_tree_block(trans
, root
, eb
);
6644 if (eb
== root
->node
) {
6645 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6648 BUG_ON(root
->root_key
.objectid
!=
6649 btrfs_header_owner(eb
));
6651 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6652 parent
= path
->nodes
[level
+ 1]->start
;
6654 BUG_ON(root
->root_key
.objectid
!=
6655 btrfs_header_owner(path
->nodes
[level
+ 1]));
6658 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1, 0);
6660 wc
->refs
[level
] = 0;
6661 wc
->flags
[level
] = 0;
6665 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6666 struct btrfs_root
*root
,
6667 struct btrfs_path
*path
,
6668 struct walk_control
*wc
)
6670 int level
= wc
->level
;
6671 int lookup_info
= 1;
6674 while (level
>= 0) {
6675 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6682 if (path
->slots
[level
] >=
6683 btrfs_header_nritems(path
->nodes
[level
]))
6686 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6688 path
->slots
[level
]++;
6697 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6698 struct btrfs_root
*root
,
6699 struct btrfs_path
*path
,
6700 struct walk_control
*wc
, int max_level
)
6702 int level
= wc
->level
;
6705 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6706 while (level
< max_level
&& path
->nodes
[level
]) {
6708 if (path
->slots
[level
] + 1 <
6709 btrfs_header_nritems(path
->nodes
[level
])) {
6710 path
->slots
[level
]++;
6713 ret
= walk_up_proc(trans
, root
, path
, wc
);
6717 if (path
->locks
[level
]) {
6718 btrfs_tree_unlock_rw(path
->nodes
[level
],
6719 path
->locks
[level
]);
6720 path
->locks
[level
] = 0;
6722 free_extent_buffer(path
->nodes
[level
]);
6723 path
->nodes
[level
] = NULL
;
6731 * drop a subvolume tree.
6733 * this function traverses the tree freeing any blocks that only
6734 * referenced by the tree.
6736 * when a shared tree block is found. this function decreases its
6737 * reference count by one. if update_ref is true, this function
6738 * also make sure backrefs for the shared block and all lower level
6739 * blocks are properly updated.
6741 void btrfs_drop_snapshot(struct btrfs_root
*root
,
6742 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
6745 struct btrfs_path
*path
;
6746 struct btrfs_trans_handle
*trans
;
6747 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6748 struct btrfs_root_item
*root_item
= &root
->root_item
;
6749 struct walk_control
*wc
;
6750 struct btrfs_key key
;
6755 path
= btrfs_alloc_path();
6761 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6763 btrfs_free_path(path
);
6768 trans
= btrfs_start_transaction(tree_root
, 0);
6769 BUG_ON(IS_ERR(trans
));
6772 trans
->block_rsv
= block_rsv
;
6774 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6775 level
= btrfs_header_level(root
->node
);
6776 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6777 btrfs_set_lock_blocking(path
->nodes
[level
]);
6778 path
->slots
[level
] = 0;
6779 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6780 memset(&wc
->update_progress
, 0,
6781 sizeof(wc
->update_progress
));
6783 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6784 memcpy(&wc
->update_progress
, &key
,
6785 sizeof(wc
->update_progress
));
6787 level
= root_item
->drop_level
;
6789 path
->lowest_level
= level
;
6790 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6791 path
->lowest_level
= 0;
6799 * unlock our path, this is safe because only this
6800 * function is allowed to delete this snapshot
6802 btrfs_unlock_up_safe(path
, 0);
6804 level
= btrfs_header_level(root
->node
);
6806 btrfs_tree_lock(path
->nodes
[level
]);
6807 btrfs_set_lock_blocking(path
->nodes
[level
]);
6809 ret
= btrfs_lookup_extent_info(trans
, root
,
6810 path
->nodes
[level
]->start
,
6811 path
->nodes
[level
]->len
,
6815 BUG_ON(wc
->refs
[level
] == 0);
6817 if (level
== root_item
->drop_level
)
6820 btrfs_tree_unlock(path
->nodes
[level
]);
6821 WARN_ON(wc
->refs
[level
] != 1);
6827 wc
->shared_level
= -1;
6828 wc
->stage
= DROP_REFERENCE
;
6829 wc
->update_ref
= update_ref
;
6831 wc
->for_reloc
= for_reloc
;
6832 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6835 ret
= walk_down_tree(trans
, root
, path
, wc
);
6841 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6848 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6852 if (wc
->stage
== DROP_REFERENCE
) {
6854 btrfs_node_key(path
->nodes
[level
],
6855 &root_item
->drop_progress
,
6856 path
->slots
[level
]);
6857 root_item
->drop_level
= level
;
6860 BUG_ON(wc
->level
== 0);
6861 if (btrfs_should_end_transaction(trans
, tree_root
)) {
6862 ret
= btrfs_update_root(trans
, tree_root
,
6867 btrfs_end_transaction_throttle(trans
, tree_root
);
6868 trans
= btrfs_start_transaction(tree_root
, 0);
6869 BUG_ON(IS_ERR(trans
));
6871 trans
->block_rsv
= block_rsv
;
6874 btrfs_release_path(path
);
6877 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6880 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6881 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6885 /* if we fail to delete the orphan item this time
6886 * around, it'll get picked up the next time.
6888 * The most common failure here is just -ENOENT.
6890 btrfs_del_orphan_item(trans
, tree_root
,
6891 root
->root_key
.objectid
);
6895 if (root
->in_radix
) {
6896 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6898 free_extent_buffer(root
->node
);
6899 free_extent_buffer(root
->commit_root
);
6903 btrfs_end_transaction_throttle(trans
, tree_root
);
6905 btrfs_free_path(path
);
6908 btrfs_std_error(root
->fs_info
, err
);
6913 * drop subtree rooted at tree block 'node'.
6915 * NOTE: this function will unlock and release tree block 'node'
6916 * only used by relocation code
6918 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
6919 struct btrfs_root
*root
,
6920 struct extent_buffer
*node
,
6921 struct extent_buffer
*parent
)
6923 struct btrfs_path
*path
;
6924 struct walk_control
*wc
;
6930 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6932 path
= btrfs_alloc_path();
6936 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6938 btrfs_free_path(path
);
6942 btrfs_assert_tree_locked(parent
);
6943 parent_level
= btrfs_header_level(parent
);
6944 extent_buffer_get(parent
);
6945 path
->nodes
[parent_level
] = parent
;
6946 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
6948 btrfs_assert_tree_locked(node
);
6949 level
= btrfs_header_level(node
);
6950 path
->nodes
[level
] = node
;
6951 path
->slots
[level
] = 0;
6952 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6954 wc
->refs
[parent_level
] = 1;
6955 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6957 wc
->shared_level
= -1;
6958 wc
->stage
= DROP_REFERENCE
;
6962 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6965 wret
= walk_down_tree(trans
, root
, path
, wc
);
6971 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
6979 btrfs_free_path(path
);
6983 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
6986 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
6987 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
6989 if (root
->fs_info
->balance_ctl
) {
6990 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
6993 /* pick restriper's target profile and return */
6994 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
6995 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
6996 tgt
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
6997 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
6998 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
6999 tgt
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
7000 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
7001 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
7002 tgt
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
7006 /* extended -> chunk profile */
7007 tgt
&= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
7013 * we add in the count of missing devices because we want
7014 * to make sure that any RAID levels on a degraded FS
7015 * continue to be honored.
7017 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
7018 root
->fs_info
->fs_devices
->missing_devices
;
7020 if (num_devices
== 1) {
7021 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7022 stripped
= flags
& ~stripped
;
7024 /* turn raid0 into single device chunks */
7025 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7028 /* turn mirroring into duplication */
7029 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7030 BTRFS_BLOCK_GROUP_RAID10
))
7031 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7034 /* they already had raid on here, just return */
7035 if (flags
& stripped
)
7038 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7039 stripped
= flags
& ~stripped
;
7041 /* switch duplicated blocks with raid1 */
7042 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7043 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
7045 /* turn single device chunks into raid0 */
7046 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
7051 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
7053 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7055 u64 min_allocable_bytes
;
7060 * We need some metadata space and system metadata space for
7061 * allocating chunks in some corner cases until we force to set
7062 * it to be readonly.
7065 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
7067 min_allocable_bytes
= 1 * 1024 * 1024;
7069 min_allocable_bytes
= 0;
7071 spin_lock(&sinfo
->lock
);
7072 spin_lock(&cache
->lock
);
7079 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7080 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7082 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
7083 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
7084 min_allocable_bytes
<= sinfo
->total_bytes
) {
7085 sinfo
->bytes_readonly
+= num_bytes
;
7090 spin_unlock(&cache
->lock
);
7091 spin_unlock(&sinfo
->lock
);
7095 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
7096 struct btrfs_block_group_cache
*cache
)
7099 struct btrfs_trans_handle
*trans
;
7105 trans
= btrfs_join_transaction(root
);
7106 BUG_ON(IS_ERR(trans
));
7108 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
7109 if (alloc_flags
!= cache
->flags
)
7110 do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
7113 ret
= set_block_group_ro(cache
, 0);
7116 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
7117 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
7121 ret
= set_block_group_ro(cache
, 0);
7123 btrfs_end_transaction(trans
, root
);
7127 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
7128 struct btrfs_root
*root
, u64 type
)
7130 u64 alloc_flags
= get_alloc_profile(root
, type
);
7131 return do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
7136 * helper to account the unused space of all the readonly block group in the
7137 * list. takes mirrors into account.
7139 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
7141 struct btrfs_block_group_cache
*block_group
;
7145 list_for_each_entry(block_group
, groups_list
, list
) {
7146 spin_lock(&block_group
->lock
);
7148 if (!block_group
->ro
) {
7149 spin_unlock(&block_group
->lock
);
7153 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7154 BTRFS_BLOCK_GROUP_RAID10
|
7155 BTRFS_BLOCK_GROUP_DUP
))
7160 free_bytes
+= (block_group
->key
.offset
-
7161 btrfs_block_group_used(&block_group
->item
)) *
7164 spin_unlock(&block_group
->lock
);
7171 * helper to account the unused space of all the readonly block group in the
7172 * space_info. takes mirrors into account.
7174 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
7179 spin_lock(&sinfo
->lock
);
7181 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
7182 if (!list_empty(&sinfo
->block_groups
[i
]))
7183 free_bytes
+= __btrfs_get_ro_block_group_free_space(
7184 &sinfo
->block_groups
[i
]);
7186 spin_unlock(&sinfo
->lock
);
7191 int btrfs_set_block_group_rw(struct btrfs_root
*root
,
7192 struct btrfs_block_group_cache
*cache
)
7194 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7199 spin_lock(&sinfo
->lock
);
7200 spin_lock(&cache
->lock
);
7201 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7202 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7203 sinfo
->bytes_readonly
-= num_bytes
;
7205 spin_unlock(&cache
->lock
);
7206 spin_unlock(&sinfo
->lock
);
7211 * checks to see if its even possible to relocate this block group.
7213 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7214 * ok to go ahead and try.
7216 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
7218 struct btrfs_block_group_cache
*block_group
;
7219 struct btrfs_space_info
*space_info
;
7220 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7221 struct btrfs_device
*device
;
7229 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
7231 /* odd, couldn't find the block group, leave it alone */
7235 min_free
= btrfs_block_group_used(&block_group
->item
);
7237 /* no bytes used, we're good */
7241 space_info
= block_group
->space_info
;
7242 spin_lock(&space_info
->lock
);
7244 full
= space_info
->full
;
7247 * if this is the last block group we have in this space, we can't
7248 * relocate it unless we're able to allocate a new chunk below.
7250 * Otherwise, we need to make sure we have room in the space to handle
7251 * all of the extents from this block group. If we can, we're good
7253 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
7254 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
7255 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
7256 min_free
< space_info
->total_bytes
)) {
7257 spin_unlock(&space_info
->lock
);
7260 spin_unlock(&space_info
->lock
);
7263 * ok we don't have enough space, but maybe we have free space on our
7264 * devices to allocate new chunks for relocation, so loop through our
7265 * alloc devices and guess if we have enough space. However, if we
7266 * were marked as full, then we know there aren't enough chunks, and we
7281 index
= get_block_group_index(block_group
);
7286 } else if (index
== 1) {
7288 } else if (index
== 2) {
7291 } else if (index
== 3) {
7292 dev_min
= fs_devices
->rw_devices
;
7293 do_div(min_free
, dev_min
);
7296 mutex_lock(&root
->fs_info
->chunk_mutex
);
7297 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
7301 * check to make sure we can actually find a chunk with enough
7302 * space to fit our block group in.
7304 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
7305 ret
= find_free_dev_extent(device
, min_free
,
7310 if (dev_nr
>= dev_min
)
7316 mutex_unlock(&root
->fs_info
->chunk_mutex
);
7318 btrfs_put_block_group(block_group
);
7322 static int find_first_block_group(struct btrfs_root
*root
,
7323 struct btrfs_path
*path
, struct btrfs_key
*key
)
7326 struct btrfs_key found_key
;
7327 struct extent_buffer
*leaf
;
7330 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7335 slot
= path
->slots
[0];
7336 leaf
= path
->nodes
[0];
7337 if (slot
>= btrfs_header_nritems(leaf
)) {
7338 ret
= btrfs_next_leaf(root
, path
);
7345 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7347 if (found_key
.objectid
>= key
->objectid
&&
7348 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7358 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
7360 struct btrfs_block_group_cache
*block_group
;
7364 struct inode
*inode
;
7366 block_group
= btrfs_lookup_first_block_group(info
, last
);
7367 while (block_group
) {
7368 spin_lock(&block_group
->lock
);
7369 if (block_group
->iref
)
7371 spin_unlock(&block_group
->lock
);
7372 block_group
= next_block_group(info
->tree_root
,
7382 inode
= block_group
->inode
;
7383 block_group
->iref
= 0;
7384 block_group
->inode
= NULL
;
7385 spin_unlock(&block_group
->lock
);
7387 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
7388 btrfs_put_block_group(block_group
);
7392 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7394 struct btrfs_block_group_cache
*block_group
;
7395 struct btrfs_space_info
*space_info
;
7396 struct btrfs_caching_control
*caching_ctl
;
7399 down_write(&info
->extent_commit_sem
);
7400 while (!list_empty(&info
->caching_block_groups
)) {
7401 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
7402 struct btrfs_caching_control
, list
);
7403 list_del(&caching_ctl
->list
);
7404 put_caching_control(caching_ctl
);
7406 up_write(&info
->extent_commit_sem
);
7408 spin_lock(&info
->block_group_cache_lock
);
7409 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7410 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7412 rb_erase(&block_group
->cache_node
,
7413 &info
->block_group_cache_tree
);
7414 spin_unlock(&info
->block_group_cache_lock
);
7416 down_write(&block_group
->space_info
->groups_sem
);
7417 list_del(&block_group
->list
);
7418 up_write(&block_group
->space_info
->groups_sem
);
7420 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7421 wait_block_group_cache_done(block_group
);
7424 * We haven't cached this block group, which means we could
7425 * possibly have excluded extents on this block group.
7427 if (block_group
->cached
== BTRFS_CACHE_NO
)
7428 free_excluded_extents(info
->extent_root
, block_group
);
7430 btrfs_remove_free_space_cache(block_group
);
7431 btrfs_put_block_group(block_group
);
7433 spin_lock(&info
->block_group_cache_lock
);
7435 spin_unlock(&info
->block_group_cache_lock
);
7437 /* now that all the block groups are freed, go through and
7438 * free all the space_info structs. This is only called during
7439 * the final stages of unmount, and so we know nobody is
7440 * using them. We call synchronize_rcu() once before we start,
7441 * just to be on the safe side.
7445 release_global_block_rsv(info
);
7447 while(!list_empty(&info
->space_info
)) {
7448 space_info
= list_entry(info
->space_info
.next
,
7449 struct btrfs_space_info
,
7451 if (space_info
->bytes_pinned
> 0 ||
7452 space_info
->bytes_reserved
> 0 ||
7453 space_info
->bytes_may_use
> 0) {
7455 dump_space_info(space_info
, 0, 0);
7457 list_del(&space_info
->list
);
7463 static void __link_block_group(struct btrfs_space_info
*space_info
,
7464 struct btrfs_block_group_cache
*cache
)
7466 int index
= get_block_group_index(cache
);
7468 down_write(&space_info
->groups_sem
);
7469 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
7470 up_write(&space_info
->groups_sem
);
7473 int btrfs_read_block_groups(struct btrfs_root
*root
)
7475 struct btrfs_path
*path
;
7477 struct btrfs_block_group_cache
*cache
;
7478 struct btrfs_fs_info
*info
= root
->fs_info
;
7479 struct btrfs_space_info
*space_info
;
7480 struct btrfs_key key
;
7481 struct btrfs_key found_key
;
7482 struct extent_buffer
*leaf
;
7486 root
= info
->extent_root
;
7489 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7490 path
= btrfs_alloc_path();
7495 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
7496 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
7497 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
7499 if (btrfs_test_opt(root
, CLEAR_CACHE
))
7503 ret
= find_first_block_group(root
, path
, &key
);
7508 leaf
= path
->nodes
[0];
7509 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7510 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7515 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7517 if (!cache
->free_space_ctl
) {
7523 atomic_set(&cache
->count
, 1);
7524 spin_lock_init(&cache
->lock
);
7525 cache
->fs_info
= info
;
7526 INIT_LIST_HEAD(&cache
->list
);
7527 INIT_LIST_HEAD(&cache
->cluster_list
);
7530 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
7532 read_extent_buffer(leaf
, &cache
->item
,
7533 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7534 sizeof(cache
->item
));
7535 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7537 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7538 btrfs_release_path(path
);
7539 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7540 cache
->sectorsize
= root
->sectorsize
;
7542 btrfs_init_free_space_ctl(cache
);
7545 * We need to exclude the super stripes now so that the space
7546 * info has super bytes accounted for, otherwise we'll think
7547 * we have more space than we actually do.
7549 exclude_super_stripes(root
, cache
);
7552 * check for two cases, either we are full, and therefore
7553 * don't need to bother with the caching work since we won't
7554 * find any space, or we are empty, and we can just add all
7555 * the space in and be done with it. This saves us _alot_ of
7556 * time, particularly in the full case.
7558 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7559 cache
->last_byte_to_unpin
= (u64
)-1;
7560 cache
->cached
= BTRFS_CACHE_FINISHED
;
7561 free_excluded_extents(root
, cache
);
7562 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7563 cache
->last_byte_to_unpin
= (u64
)-1;
7564 cache
->cached
= BTRFS_CACHE_FINISHED
;
7565 add_new_free_space(cache
, root
->fs_info
,
7567 found_key
.objectid
+
7569 free_excluded_extents(root
, cache
);
7572 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7573 btrfs_block_group_used(&cache
->item
),
7576 cache
->space_info
= space_info
;
7577 spin_lock(&cache
->space_info
->lock
);
7578 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7579 spin_unlock(&cache
->space_info
->lock
);
7581 __link_block_group(space_info
, cache
);
7583 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7586 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7587 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7588 set_block_group_ro(cache
, 1);
7591 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
7592 if (!(get_alloc_profile(root
, space_info
->flags
) &
7593 (BTRFS_BLOCK_GROUP_RAID10
|
7594 BTRFS_BLOCK_GROUP_RAID1
|
7595 BTRFS_BLOCK_GROUP_DUP
)))
7598 * avoid allocating from un-mirrored block group if there are
7599 * mirrored block groups.
7601 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
7602 set_block_group_ro(cache
, 1);
7603 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
7604 set_block_group_ro(cache
, 1);
7607 init_global_block_rsv(info
);
7610 btrfs_free_path(path
);
7614 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7615 struct btrfs_root
*root
, u64 bytes_used
,
7616 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7620 struct btrfs_root
*extent_root
;
7621 struct btrfs_block_group_cache
*cache
;
7623 extent_root
= root
->fs_info
->extent_root
;
7625 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7627 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7630 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7632 if (!cache
->free_space_ctl
) {
7637 cache
->key
.objectid
= chunk_offset
;
7638 cache
->key
.offset
= size
;
7639 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7640 cache
->sectorsize
= root
->sectorsize
;
7641 cache
->fs_info
= root
->fs_info
;
7643 atomic_set(&cache
->count
, 1);
7644 spin_lock_init(&cache
->lock
);
7645 INIT_LIST_HEAD(&cache
->list
);
7646 INIT_LIST_HEAD(&cache
->cluster_list
);
7648 btrfs_init_free_space_ctl(cache
);
7650 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7651 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7652 cache
->flags
= type
;
7653 btrfs_set_block_group_flags(&cache
->item
, type
);
7655 cache
->last_byte_to_unpin
= (u64
)-1;
7656 cache
->cached
= BTRFS_CACHE_FINISHED
;
7657 exclude_super_stripes(root
, cache
);
7659 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7660 chunk_offset
+ size
);
7662 free_excluded_extents(root
, cache
);
7664 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7665 &cache
->space_info
);
7667 update_global_block_rsv(root
->fs_info
);
7669 spin_lock(&cache
->space_info
->lock
);
7670 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7671 spin_unlock(&cache
->space_info
->lock
);
7673 __link_block_group(cache
->space_info
, cache
);
7675 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7678 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7679 sizeof(cache
->item
));
7682 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7687 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
7689 u64 extra_flags
= flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
;
7691 /* chunk -> extended profile */
7692 if (extra_flags
== 0)
7693 extra_flags
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
7695 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
7696 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
7697 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
7698 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
7699 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
7700 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
7703 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7704 struct btrfs_root
*root
, u64 group_start
)
7706 struct btrfs_path
*path
;
7707 struct btrfs_block_group_cache
*block_group
;
7708 struct btrfs_free_cluster
*cluster
;
7709 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
7710 struct btrfs_key key
;
7711 struct inode
*inode
;
7716 root
= root
->fs_info
->extent_root
;
7718 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7719 BUG_ON(!block_group
);
7720 BUG_ON(!block_group
->ro
);
7723 * Free the reserved super bytes from this block group before
7726 free_excluded_extents(root
, block_group
);
7728 memcpy(&key
, &block_group
->key
, sizeof(key
));
7729 index
= get_block_group_index(block_group
);
7730 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
7731 BTRFS_BLOCK_GROUP_RAID1
|
7732 BTRFS_BLOCK_GROUP_RAID10
))
7737 /* make sure this block group isn't part of an allocation cluster */
7738 cluster
= &root
->fs_info
->data_alloc_cluster
;
7739 spin_lock(&cluster
->refill_lock
);
7740 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7741 spin_unlock(&cluster
->refill_lock
);
7744 * make sure this block group isn't part of a metadata
7745 * allocation cluster
7747 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7748 spin_lock(&cluster
->refill_lock
);
7749 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7750 spin_unlock(&cluster
->refill_lock
);
7752 path
= btrfs_alloc_path();
7758 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
7759 if (!IS_ERR(inode
)) {
7760 ret
= btrfs_orphan_add(trans
, inode
);
7763 /* One for the block groups ref */
7764 spin_lock(&block_group
->lock
);
7765 if (block_group
->iref
) {
7766 block_group
->iref
= 0;
7767 block_group
->inode
= NULL
;
7768 spin_unlock(&block_group
->lock
);
7771 spin_unlock(&block_group
->lock
);
7773 /* One for our lookup ref */
7774 btrfs_add_delayed_iput(inode
);
7777 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
7778 key
.offset
= block_group
->key
.objectid
;
7781 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
7785 btrfs_release_path(path
);
7787 ret
= btrfs_del_item(trans
, tree_root
, path
);
7790 btrfs_release_path(path
);
7793 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7794 rb_erase(&block_group
->cache_node
,
7795 &root
->fs_info
->block_group_cache_tree
);
7796 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7798 down_write(&block_group
->space_info
->groups_sem
);
7800 * we must use list_del_init so people can check to see if they
7801 * are still on the list after taking the semaphore
7803 list_del_init(&block_group
->list
);
7804 if (list_empty(&block_group
->space_info
->block_groups
[index
]))
7805 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
7806 up_write(&block_group
->space_info
->groups_sem
);
7808 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7809 wait_block_group_cache_done(block_group
);
7811 btrfs_remove_free_space_cache(block_group
);
7813 spin_lock(&block_group
->space_info
->lock
);
7814 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7815 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7816 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
7817 spin_unlock(&block_group
->space_info
->lock
);
7819 memcpy(&key
, &block_group
->key
, sizeof(key
));
7821 btrfs_clear_space_info_full(root
->fs_info
);
7823 btrfs_put_block_group(block_group
);
7824 btrfs_put_block_group(block_group
);
7826 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7832 ret
= btrfs_del_item(trans
, root
, path
);
7834 btrfs_free_path(path
);
7838 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
7840 struct btrfs_space_info
*space_info
;
7841 struct btrfs_super_block
*disk_super
;
7847 disk_super
= fs_info
->super_copy
;
7848 if (!btrfs_super_root(disk_super
))
7851 features
= btrfs_super_incompat_flags(disk_super
);
7852 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
7855 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
7856 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7861 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
7862 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7864 flags
= BTRFS_BLOCK_GROUP_METADATA
;
7865 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7869 flags
= BTRFS_BLOCK_GROUP_DATA
;
7870 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7876 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
7878 return unpin_extent_range(root
, start
, end
);
7881 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
7882 u64 num_bytes
, u64
*actual_bytes
)
7884 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
7887 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
7889 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7890 struct btrfs_block_group_cache
*cache
= NULL
;
7895 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
7899 * try to trim all FS space, our block group may start from non-zero.
7901 if (range
->len
== total_bytes
)
7902 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
7904 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
7907 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
7908 btrfs_put_block_group(cache
);
7912 start
= max(range
->start
, cache
->key
.objectid
);
7913 end
= min(range
->start
+ range
->len
,
7914 cache
->key
.objectid
+ cache
->key
.offset
);
7916 if (end
- start
>= range
->minlen
) {
7917 if (!block_group_cache_done(cache
)) {
7918 ret
= cache_block_group(cache
, NULL
, root
, 0);
7920 wait_block_group_cache_done(cache
);
7922 ret
= btrfs_trim_block_group(cache
,
7928 trimmed
+= group_trimmed
;
7930 btrfs_put_block_group(cache
);
7935 cache
= next_block_group(fs_info
->tree_root
, cache
);
7938 range
->len
= trimmed
;