2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
27 #include "transaction.h"
30 #include "inode-map.h"
32 #define BTRFS_ROOT_TRANS_TAG 0
34 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
36 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
37 if (atomic_dec_and_test(&transaction
->use_count
)) {
38 BUG_ON(!list_empty(&transaction
->list
));
39 WARN_ON(transaction
->delayed_refs
.root
.rb_node
);
40 WARN_ON(!list_empty(&transaction
->delayed_refs
.seq_head
));
41 memset(transaction
, 0, sizeof(*transaction
));
42 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
46 static noinline
void switch_commit_root(struct btrfs_root
*root
)
48 free_extent_buffer(root
->commit_root
);
49 root
->commit_root
= btrfs_root_node(root
);
53 * either allocate a new transaction or hop into the existing one
55 static noinline
int join_transaction(struct btrfs_root
*root
, int nofail
)
57 struct btrfs_transaction
*cur_trans
;
59 spin_lock(&root
->fs_info
->trans_lock
);
61 if (root
->fs_info
->trans_no_join
) {
63 spin_unlock(&root
->fs_info
->trans_lock
);
68 cur_trans
= root
->fs_info
->running_transaction
;
70 atomic_inc(&cur_trans
->use_count
);
71 atomic_inc(&cur_trans
->num_writers
);
72 cur_trans
->num_joined
++;
73 spin_unlock(&root
->fs_info
->trans_lock
);
76 spin_unlock(&root
->fs_info
->trans_lock
);
78 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
82 spin_lock(&root
->fs_info
->trans_lock
);
83 if (root
->fs_info
->running_transaction
) {
85 * someone started a transaction after we unlocked. Make sure
86 * to redo the trans_no_join checks above
88 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
89 cur_trans
= root
->fs_info
->running_transaction
;
93 atomic_set(&cur_trans
->num_writers
, 1);
94 cur_trans
->num_joined
= 0;
95 init_waitqueue_head(&cur_trans
->writer_wait
);
96 init_waitqueue_head(&cur_trans
->commit_wait
);
97 cur_trans
->in_commit
= 0;
98 cur_trans
->blocked
= 0;
100 * One for this trans handle, one so it will live on until we
101 * commit the transaction.
103 atomic_set(&cur_trans
->use_count
, 2);
104 cur_trans
->commit_done
= 0;
105 cur_trans
->start_time
= get_seconds();
107 cur_trans
->delayed_refs
.root
= RB_ROOT
;
108 cur_trans
->delayed_refs
.num_entries
= 0;
109 cur_trans
->delayed_refs
.num_heads_ready
= 0;
110 cur_trans
->delayed_refs
.num_heads
= 0;
111 cur_trans
->delayed_refs
.flushing
= 0;
112 cur_trans
->delayed_refs
.run_delayed_start
= 0;
113 cur_trans
->delayed_refs
.seq
= 1;
114 init_waitqueue_head(&cur_trans
->delayed_refs
.seq_wait
);
115 spin_lock_init(&cur_trans
->commit_lock
);
116 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
117 INIT_LIST_HEAD(&cur_trans
->delayed_refs
.seq_head
);
119 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
120 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
121 extent_io_tree_init(&cur_trans
->dirty_pages
,
122 root
->fs_info
->btree_inode
->i_mapping
);
123 root
->fs_info
->generation
++;
124 cur_trans
->transid
= root
->fs_info
->generation
;
125 root
->fs_info
->running_transaction
= cur_trans
;
126 spin_unlock(&root
->fs_info
->trans_lock
);
132 * this does all the record keeping required to make sure that a reference
133 * counted root is properly recorded in a given transaction. This is required
134 * to make sure the old root from before we joined the transaction is deleted
135 * when the transaction commits
137 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
138 struct btrfs_root
*root
)
140 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
141 WARN_ON(root
== root
->fs_info
->extent_root
);
142 WARN_ON(root
->commit_root
!= root
->node
);
145 * see below for in_trans_setup usage rules
146 * we have the reloc mutex held now, so there
147 * is only one writer in this function
149 root
->in_trans_setup
= 1;
151 /* make sure readers find in_trans_setup before
152 * they find our root->last_trans update
156 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
157 if (root
->last_trans
== trans
->transid
) {
158 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
161 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
162 (unsigned long)root
->root_key
.objectid
,
163 BTRFS_ROOT_TRANS_TAG
);
164 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
165 root
->last_trans
= trans
->transid
;
167 /* this is pretty tricky. We don't want to
168 * take the relocation lock in btrfs_record_root_in_trans
169 * unless we're really doing the first setup for this root in
172 * Normally we'd use root->last_trans as a flag to decide
173 * if we want to take the expensive mutex.
175 * But, we have to set root->last_trans before we
176 * init the relocation root, otherwise, we trip over warnings
177 * in ctree.c. The solution used here is to flag ourselves
178 * with root->in_trans_setup. When this is 1, we're still
179 * fixing up the reloc trees and everyone must wait.
181 * When this is zero, they can trust root->last_trans and fly
182 * through btrfs_record_root_in_trans without having to take the
183 * lock. smp_wmb() makes sure that all the writes above are
184 * done before we pop in the zero below
186 btrfs_init_reloc_root(trans
, root
);
188 root
->in_trans_setup
= 0;
194 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
195 struct btrfs_root
*root
)
201 * see record_root_in_trans for comments about in_trans_setup usage
205 if (root
->last_trans
== trans
->transid
&&
206 !root
->in_trans_setup
)
209 mutex_lock(&root
->fs_info
->reloc_mutex
);
210 record_root_in_trans(trans
, root
);
211 mutex_unlock(&root
->fs_info
->reloc_mutex
);
216 /* wait for commit against the current transaction to become unblocked
217 * when this is done, it is safe to start a new transaction, but the current
218 * transaction might not be fully on disk.
220 static void wait_current_trans(struct btrfs_root
*root
)
222 struct btrfs_transaction
*cur_trans
;
224 spin_lock(&root
->fs_info
->trans_lock
);
225 cur_trans
= root
->fs_info
->running_transaction
;
226 if (cur_trans
&& cur_trans
->blocked
) {
227 atomic_inc(&cur_trans
->use_count
);
228 spin_unlock(&root
->fs_info
->trans_lock
);
230 wait_event(root
->fs_info
->transaction_wait
,
231 !cur_trans
->blocked
);
232 put_transaction(cur_trans
);
234 spin_unlock(&root
->fs_info
->trans_lock
);
238 enum btrfs_trans_type
{
245 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
247 if (root
->fs_info
->log_root_recovering
)
250 if (type
== TRANS_USERSPACE
)
253 if (type
== TRANS_START
&&
254 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
260 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
261 u64 num_items
, int type
)
263 struct btrfs_trans_handle
*h
;
264 struct btrfs_transaction
*cur_trans
;
268 if (root
->fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
269 return ERR_PTR(-EROFS
);
271 if (current
->journal_info
) {
272 WARN_ON(type
!= TRANS_JOIN
&& type
!= TRANS_JOIN_NOLOCK
);
273 h
= current
->journal_info
;
275 h
->orig_rsv
= h
->block_rsv
;
281 * Do the reservation before we join the transaction so we can do all
282 * the appropriate flushing if need be.
284 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
285 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
286 ret
= btrfs_block_rsv_add(root
,
287 &root
->fs_info
->trans_block_rsv
,
293 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
295 return ERR_PTR(-ENOMEM
);
297 if (may_wait_transaction(root
, type
))
298 wait_current_trans(root
);
301 ret
= join_transaction(root
, type
== TRANS_JOIN_NOLOCK
);
303 wait_current_trans(root
);
304 } while (ret
== -EBUSY
);
307 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
311 cur_trans
= root
->fs_info
->running_transaction
;
313 h
->transid
= cur_trans
->transid
;
314 h
->transaction
= cur_trans
;
316 h
->bytes_reserved
= 0;
317 h
->delayed_ref_updates
= 0;
323 if (cur_trans
->blocked
&& may_wait_transaction(root
, type
)) {
324 btrfs_commit_transaction(h
, root
);
329 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
330 (u64
)(unsigned long)h
,
332 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
333 h
->bytes_reserved
= num_bytes
;
337 btrfs_record_root_in_trans(h
, root
);
339 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
340 current
->journal_info
= h
;
344 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
347 return start_transaction(root
, num_items
, TRANS_START
);
349 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
351 return start_transaction(root
, 0, TRANS_JOIN
);
354 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
356 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
);
359 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
361 return start_transaction(root
, 0, TRANS_USERSPACE
);
364 /* wait for a transaction commit to be fully complete */
365 static noinline
void wait_for_commit(struct btrfs_root
*root
,
366 struct btrfs_transaction
*commit
)
368 wait_event(commit
->commit_wait
, commit
->commit_done
);
371 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
373 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
378 if (transid
<= root
->fs_info
->last_trans_committed
)
381 /* find specified transaction */
382 spin_lock(&root
->fs_info
->trans_lock
);
383 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
384 if (t
->transid
== transid
) {
386 atomic_inc(&cur_trans
->use_count
);
389 if (t
->transid
> transid
)
392 spin_unlock(&root
->fs_info
->trans_lock
);
395 goto out
; /* bad transid */
397 /* find newest transaction that is committing | committed */
398 spin_lock(&root
->fs_info
->trans_lock
);
399 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
405 atomic_inc(&cur_trans
->use_count
);
409 spin_unlock(&root
->fs_info
->trans_lock
);
411 goto out
; /* nothing committing|committed */
414 wait_for_commit(root
, cur_trans
);
416 put_transaction(cur_trans
);
422 void btrfs_throttle(struct btrfs_root
*root
)
424 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
425 wait_current_trans(root
);
428 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
429 struct btrfs_root
*root
)
433 ret
= btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
437 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
438 struct btrfs_root
*root
)
440 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
441 struct btrfs_block_rsv
*rsv
= trans
->block_rsv
;
445 if (cur_trans
->blocked
|| cur_trans
->delayed_refs
.flushing
)
449 * We need to do this in case we're deleting csums so the global block
450 * rsv get's used instead of the csum block rsv.
452 trans
->block_rsv
= NULL
;
454 updates
= trans
->delayed_ref_updates
;
455 trans
->delayed_ref_updates
= 0;
457 btrfs_run_delayed_refs(trans
, root
, updates
);
459 trans
->block_rsv
= rsv
;
461 return should_end_transaction(trans
, root
);
464 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
465 struct btrfs_root
*root
, int throttle
, int lock
)
467 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
468 struct btrfs_fs_info
*info
= root
->fs_info
;
471 if (--trans
->use_count
) {
472 trans
->block_rsv
= trans
->orig_rsv
;
476 btrfs_trans_release_metadata(trans
, root
);
477 trans
->block_rsv
= NULL
;
479 unsigned long cur
= trans
->delayed_ref_updates
;
480 trans
->delayed_ref_updates
= 0;
482 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
483 trans
->delayed_ref_updates
= 0;
484 btrfs_run_delayed_refs(trans
, root
, cur
);
491 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
492 should_end_transaction(trans
, root
)) {
493 trans
->transaction
->blocked
= 1;
497 if (lock
&& cur_trans
->blocked
&& !cur_trans
->in_commit
) {
500 * We may race with somebody else here so end up having
501 * to call end_transaction on ourselves again, so inc
505 return btrfs_commit_transaction(trans
, root
);
507 wake_up_process(info
->transaction_kthread
);
511 WARN_ON(cur_trans
!= info
->running_transaction
);
512 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
513 atomic_dec(&cur_trans
->num_writers
);
516 if (waitqueue_active(&cur_trans
->writer_wait
))
517 wake_up(&cur_trans
->writer_wait
);
518 put_transaction(cur_trans
);
520 if (current
->journal_info
== trans
)
521 current
->journal_info
= NULL
;
522 memset(trans
, 0, sizeof(*trans
));
523 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
526 btrfs_run_delayed_iputs(root
);
531 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
532 struct btrfs_root
*root
)
536 ret
= __btrfs_end_transaction(trans
, root
, 0, 1);
542 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
543 struct btrfs_root
*root
)
547 ret
= __btrfs_end_transaction(trans
, root
, 1, 1);
553 int btrfs_end_transaction_nolock(struct btrfs_trans_handle
*trans
,
554 struct btrfs_root
*root
)
558 ret
= __btrfs_end_transaction(trans
, root
, 0, 0);
564 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle
*trans
,
565 struct btrfs_root
*root
)
567 return __btrfs_end_transaction(trans
, root
, 1, 1);
571 * when btree blocks are allocated, they have some corresponding bits set for
572 * them in one of two extent_io trees. This is used to make sure all of
573 * those extents are sent to disk but does not wait on them
575 int btrfs_write_marked_extents(struct btrfs_root
*root
,
576 struct extent_io_tree
*dirty_pages
, int mark
)
580 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
584 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
586 convert_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
, mark
,
588 err
= filemap_fdatawrite_range(mapping
, start
, end
);
600 * when btree blocks are allocated, they have some corresponding bits set for
601 * them in one of two extent_io trees. This is used to make sure all of
602 * those extents are on disk for transaction or log commit. We wait
603 * on all the pages and clear them from the dirty pages state tree
605 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
606 struct extent_io_tree
*dirty_pages
, int mark
)
610 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
614 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
616 clear_extent_bits(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
, GFP_NOFS
);
617 err
= filemap_fdatawait_range(mapping
, start
, end
);
629 * when btree blocks are allocated, they have some corresponding bits set for
630 * them in one of two extent_io trees. This is used to make sure all of
631 * those extents are on disk for transaction or log commit
633 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
634 struct extent_io_tree
*dirty_pages
, int mark
)
639 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
640 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
649 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
650 struct btrfs_root
*root
)
652 if (!trans
|| !trans
->transaction
) {
653 struct inode
*btree_inode
;
654 btree_inode
= root
->fs_info
->btree_inode
;
655 return filemap_write_and_wait(btree_inode
->i_mapping
);
657 return btrfs_write_and_wait_marked_extents(root
,
658 &trans
->transaction
->dirty_pages
,
663 * this is used to update the root pointer in the tree of tree roots.
665 * But, in the case of the extent allocation tree, updating the root
666 * pointer may allocate blocks which may change the root of the extent
669 * So, this loops and repeats and makes sure the cowonly root didn't
670 * change while the root pointer was being updated in the metadata.
672 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
673 struct btrfs_root
*root
)
678 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
680 old_root_used
= btrfs_root_used(&root
->root_item
);
681 btrfs_write_dirty_block_groups(trans
, root
);
684 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
685 if (old_root_bytenr
== root
->node
->start
&&
686 old_root_used
== btrfs_root_used(&root
->root_item
))
689 btrfs_set_root_node(&root
->root_item
, root
->node
);
690 ret
= btrfs_update_root(trans
, tree_root
,
695 old_root_used
= btrfs_root_used(&root
->root_item
);
696 ret
= btrfs_write_dirty_block_groups(trans
, root
);
700 if (root
!= root
->fs_info
->extent_root
)
701 switch_commit_root(root
);
707 * update all the cowonly tree roots on disk
709 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
710 struct btrfs_root
*root
)
712 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
713 struct list_head
*next
;
714 struct extent_buffer
*eb
;
717 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
720 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
721 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
722 btrfs_tree_unlock(eb
);
723 free_extent_buffer(eb
);
725 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
728 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
729 next
= fs_info
->dirty_cowonly_roots
.next
;
731 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
733 update_cowonly_root(trans
, root
);
736 down_write(&fs_info
->extent_commit_sem
);
737 switch_commit_root(fs_info
->extent_root
);
738 up_write(&fs_info
->extent_commit_sem
);
744 * dead roots are old snapshots that need to be deleted. This allocates
745 * a dirty root struct and adds it into the list of dead roots that need to
748 int btrfs_add_dead_root(struct btrfs_root
*root
)
750 spin_lock(&root
->fs_info
->trans_lock
);
751 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
752 spin_unlock(&root
->fs_info
->trans_lock
);
757 * update all the cowonly tree roots on disk
759 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
760 struct btrfs_root
*root
)
762 struct btrfs_root
*gang
[8];
763 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
768 spin_lock(&fs_info
->fs_roots_radix_lock
);
770 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
773 BTRFS_ROOT_TRANS_TAG
);
776 for (i
= 0; i
< ret
; i
++) {
778 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
779 (unsigned long)root
->root_key
.objectid
,
780 BTRFS_ROOT_TRANS_TAG
);
781 spin_unlock(&fs_info
->fs_roots_radix_lock
);
783 btrfs_free_log(trans
, root
);
784 btrfs_update_reloc_root(trans
, root
);
785 btrfs_orphan_commit_root(trans
, root
);
787 btrfs_save_ino_cache(root
, trans
);
789 /* see comments in should_cow_block() */
793 if (root
->commit_root
!= root
->node
) {
794 mutex_lock(&root
->fs_commit_mutex
);
795 switch_commit_root(root
);
796 btrfs_unpin_free_ino(root
);
797 mutex_unlock(&root
->fs_commit_mutex
);
799 btrfs_set_root_node(&root
->root_item
,
803 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
806 spin_lock(&fs_info
->fs_roots_radix_lock
);
811 spin_unlock(&fs_info
->fs_roots_radix_lock
);
816 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
817 * otherwise every leaf in the btree is read and defragged.
819 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
821 struct btrfs_fs_info
*info
= root
->fs_info
;
822 struct btrfs_trans_handle
*trans
;
826 if (xchg(&root
->defrag_running
, 1))
830 trans
= btrfs_start_transaction(root
, 0);
832 return PTR_ERR(trans
);
834 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
836 nr
= trans
->blocks_used
;
837 btrfs_end_transaction(trans
, root
);
838 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
841 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
844 root
->defrag_running
= 0;
849 * new snapshots need to be created at a very specific time in the
850 * transaction commit. This does the actual creation
852 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
853 struct btrfs_fs_info
*fs_info
,
854 struct btrfs_pending_snapshot
*pending
)
856 struct btrfs_key key
;
857 struct btrfs_root_item
*new_root_item
;
858 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
859 struct btrfs_root
*root
= pending
->root
;
860 struct btrfs_root
*parent_root
;
861 struct btrfs_block_rsv
*rsv
;
862 struct inode
*parent_inode
;
863 struct dentry
*parent
;
864 struct dentry
*dentry
;
865 struct extent_buffer
*tmp
;
866 struct extent_buffer
*old
;
873 rsv
= trans
->block_rsv
;
875 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
876 if (!new_root_item
) {
877 pending
->error
= -ENOMEM
;
881 ret
= btrfs_find_free_objectid(tree_root
, &objectid
);
883 pending
->error
= ret
;
887 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
889 if (to_reserve
> 0) {
890 ret
= btrfs_block_rsv_add_noflush(root
, &pending
->block_rsv
,
893 pending
->error
= ret
;
898 key
.objectid
= objectid
;
899 key
.offset
= (u64
)-1;
900 key
.type
= BTRFS_ROOT_ITEM_KEY
;
902 trans
->block_rsv
= &pending
->block_rsv
;
904 dentry
= pending
->dentry
;
905 parent
= dget_parent(dentry
);
906 parent_inode
= parent
->d_inode
;
907 parent_root
= BTRFS_I(parent_inode
)->root
;
908 record_root_in_trans(trans
, parent_root
);
911 * insert the directory item
913 ret
= btrfs_set_inode_index(parent_inode
, &index
);
915 ret
= btrfs_insert_dir_item(trans
, parent_root
,
916 dentry
->d_name
.name
, dentry
->d_name
.len
,
918 BTRFS_FT_DIR
, index
);
920 pending
->error
= -EEXIST
;
925 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
926 dentry
->d_name
.len
* 2);
927 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
931 * pull in the delayed directory update
932 * and the delayed inode item
933 * otherwise we corrupt the FS during
936 ret
= btrfs_run_delayed_items(trans
, root
);
939 record_root_in_trans(trans
, root
);
940 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
941 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
942 btrfs_check_and_init_root_item(new_root_item
);
944 root_flags
= btrfs_root_flags(new_root_item
);
945 if (pending
->readonly
)
946 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
948 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
949 btrfs_set_root_flags(new_root_item
, root_flags
);
951 old
= btrfs_lock_root_node(root
);
952 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
953 btrfs_set_lock_blocking(old
);
955 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
956 btrfs_tree_unlock(old
);
957 free_extent_buffer(old
);
959 /* see comments in should_cow_block() */
963 btrfs_set_root_node(new_root_item
, tmp
);
964 /* record when the snapshot was created in key.offset */
965 key
.offset
= trans
->transid
;
966 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
967 btrfs_tree_unlock(tmp
);
968 free_extent_buffer(tmp
);
972 * insert root back/forward references
974 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
975 parent_root
->root_key
.objectid
,
976 btrfs_ino(parent_inode
), index
,
977 dentry
->d_name
.name
, dentry
->d_name
.len
);
981 key
.offset
= (u64
)-1;
982 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
983 BUG_ON(IS_ERR(pending
->snap
));
985 btrfs_reloc_post_snapshot(trans
, pending
);
987 kfree(new_root_item
);
988 trans
->block_rsv
= rsv
;
989 btrfs_block_rsv_release(root
, &pending
->block_rsv
, (u64
)-1);
994 * create all the snapshots we've scheduled for creation
996 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
997 struct btrfs_fs_info
*fs_info
)
999 struct btrfs_pending_snapshot
*pending
;
1000 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1002 list_for_each_entry(pending
, head
, list
)
1003 create_pending_snapshot(trans
, fs_info
, pending
);
1007 static void update_super_roots(struct btrfs_root
*root
)
1009 struct btrfs_root_item
*root_item
;
1010 struct btrfs_super_block
*super
;
1012 super
= root
->fs_info
->super_copy
;
1014 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1015 super
->chunk_root
= root_item
->bytenr
;
1016 super
->chunk_root_generation
= root_item
->generation
;
1017 super
->chunk_root_level
= root_item
->level
;
1019 root_item
= &root
->fs_info
->tree_root
->root_item
;
1020 super
->root
= root_item
->bytenr
;
1021 super
->generation
= root_item
->generation
;
1022 super
->root_level
= root_item
->level
;
1023 if (btrfs_test_opt(root
, SPACE_CACHE
))
1024 super
->cache_generation
= root_item
->generation
;
1027 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1030 spin_lock(&info
->trans_lock
);
1031 if (info
->running_transaction
)
1032 ret
= info
->running_transaction
->in_commit
;
1033 spin_unlock(&info
->trans_lock
);
1037 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1040 spin_lock(&info
->trans_lock
);
1041 if (info
->running_transaction
)
1042 ret
= info
->running_transaction
->blocked
;
1043 spin_unlock(&info
->trans_lock
);
1048 * wait for the current transaction commit to start and block subsequent
1051 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1052 struct btrfs_transaction
*trans
)
1054 wait_event(root
->fs_info
->transaction_blocked_wait
, trans
->in_commit
);
1058 * wait for the current transaction to start and then become unblocked.
1061 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1062 struct btrfs_transaction
*trans
)
1064 wait_event(root
->fs_info
->transaction_wait
,
1065 trans
->commit_done
|| (trans
->in_commit
&& !trans
->blocked
));
1069 * commit transactions asynchronously. once btrfs_commit_transaction_async
1070 * returns, any subsequent transaction will not be allowed to join.
1072 struct btrfs_async_commit
{
1073 struct btrfs_trans_handle
*newtrans
;
1074 struct btrfs_root
*root
;
1075 struct delayed_work work
;
1078 static void do_async_commit(struct work_struct
*work
)
1080 struct btrfs_async_commit
*ac
=
1081 container_of(work
, struct btrfs_async_commit
, work
.work
);
1083 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1087 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1088 struct btrfs_root
*root
,
1089 int wait_for_unblock
)
1091 struct btrfs_async_commit
*ac
;
1092 struct btrfs_transaction
*cur_trans
;
1094 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1098 INIT_DELAYED_WORK(&ac
->work
, do_async_commit
);
1100 ac
->newtrans
= btrfs_join_transaction(root
);
1101 if (IS_ERR(ac
->newtrans
)) {
1102 int err
= PTR_ERR(ac
->newtrans
);
1107 /* take transaction reference */
1108 cur_trans
= trans
->transaction
;
1109 atomic_inc(&cur_trans
->use_count
);
1111 btrfs_end_transaction(trans
, root
);
1112 schedule_delayed_work(&ac
->work
, 0);
1114 /* wait for transaction to start and unblock */
1115 if (wait_for_unblock
)
1116 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1118 wait_current_trans_commit_start(root
, cur_trans
);
1120 if (current
->journal_info
== trans
)
1121 current
->journal_info
= NULL
;
1123 put_transaction(cur_trans
);
1128 * btrfs_transaction state sequence:
1129 * in_commit = 0, blocked = 0 (initial)
1130 * in_commit = 1, blocked = 1
1134 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1135 struct btrfs_root
*root
)
1137 unsigned long joined
= 0;
1138 struct btrfs_transaction
*cur_trans
;
1139 struct btrfs_transaction
*prev_trans
= NULL
;
1142 int should_grow
= 0;
1143 unsigned long now
= get_seconds();
1144 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
1146 btrfs_run_ordered_operations(root
, 0);
1148 btrfs_trans_release_metadata(trans
, root
);
1149 trans
->block_rsv
= NULL
;
1151 /* make a pass through all the delayed refs we have so far
1152 * any runnings procs may add more while we are here
1154 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1157 cur_trans
= trans
->transaction
;
1159 * set the flushing flag so procs in this transaction have to
1160 * start sending their work down.
1162 cur_trans
->delayed_refs
.flushing
= 1;
1164 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1167 spin_lock(&cur_trans
->commit_lock
);
1168 if (cur_trans
->in_commit
) {
1169 spin_unlock(&cur_trans
->commit_lock
);
1170 atomic_inc(&cur_trans
->use_count
);
1171 btrfs_end_transaction(trans
, root
);
1173 wait_for_commit(root
, cur_trans
);
1175 put_transaction(cur_trans
);
1180 trans
->transaction
->in_commit
= 1;
1181 trans
->transaction
->blocked
= 1;
1182 spin_unlock(&cur_trans
->commit_lock
);
1183 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1185 spin_lock(&root
->fs_info
->trans_lock
);
1186 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1187 prev_trans
= list_entry(cur_trans
->list
.prev
,
1188 struct btrfs_transaction
, list
);
1189 if (!prev_trans
->commit_done
) {
1190 atomic_inc(&prev_trans
->use_count
);
1191 spin_unlock(&root
->fs_info
->trans_lock
);
1193 wait_for_commit(root
, prev_trans
);
1195 put_transaction(prev_trans
);
1197 spin_unlock(&root
->fs_info
->trans_lock
);
1200 spin_unlock(&root
->fs_info
->trans_lock
);
1203 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
1207 int snap_pending
= 0;
1209 joined
= cur_trans
->num_joined
;
1210 if (!list_empty(&trans
->transaction
->pending_snapshots
))
1213 WARN_ON(cur_trans
!= trans
->transaction
);
1215 if (flush_on_commit
|| snap_pending
) {
1216 btrfs_start_delalloc_inodes(root
, 1);
1217 ret
= btrfs_wait_ordered_extents(root
, 0, 1);
1221 ret
= btrfs_run_delayed_items(trans
, root
);
1225 * rename don't use btrfs_join_transaction, so, once we
1226 * set the transaction to blocked above, we aren't going
1227 * to get any new ordered operations. We can safely run
1228 * it here and no for sure that nothing new will be added
1231 btrfs_run_ordered_operations(root
, 1);
1233 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
1234 TASK_UNINTERRUPTIBLE
);
1236 if (atomic_read(&cur_trans
->num_writers
) > 1)
1237 schedule_timeout(MAX_SCHEDULE_TIMEOUT
);
1238 else if (should_grow
)
1239 schedule_timeout(1);
1241 finish_wait(&cur_trans
->writer_wait
, &wait
);
1242 } while (atomic_read(&cur_trans
->num_writers
) > 1 ||
1243 (should_grow
&& cur_trans
->num_joined
!= joined
));
1246 * Ok now we need to make sure to block out any other joins while we
1247 * commit the transaction. We could have started a join before setting
1248 * no_join so make sure to wait for num_writers to == 1 again.
1250 spin_lock(&root
->fs_info
->trans_lock
);
1251 root
->fs_info
->trans_no_join
= 1;
1252 spin_unlock(&root
->fs_info
->trans_lock
);
1253 wait_event(cur_trans
->writer_wait
,
1254 atomic_read(&cur_trans
->num_writers
) == 1);
1257 * the reloc mutex makes sure that we stop
1258 * the balancing code from coming in and moving
1259 * extents around in the middle of the commit
1261 mutex_lock(&root
->fs_info
->reloc_mutex
);
1263 ret
= btrfs_run_delayed_items(trans
, root
);
1266 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1269 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1273 * make sure none of the code above managed to slip in a
1276 btrfs_assert_delayed_root_empty(root
);
1278 WARN_ON(cur_trans
!= trans
->transaction
);
1280 btrfs_scrub_pause(root
);
1281 /* btrfs_commit_tree_roots is responsible for getting the
1282 * various roots consistent with each other. Every pointer
1283 * in the tree of tree roots has to point to the most up to date
1284 * root for every subvolume and other tree. So, we have to keep
1285 * the tree logging code from jumping in and changing any
1288 * At this point in the commit, there can't be any tree-log
1289 * writers, but a little lower down we drop the trans mutex
1290 * and let new people in. By holding the tree_log_mutex
1291 * from now until after the super is written, we avoid races
1292 * with the tree-log code.
1294 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1296 ret
= commit_fs_roots(trans
, root
);
1299 /* commit_fs_roots gets rid of all the tree log roots, it is now
1300 * safe to free the root of tree log roots
1302 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1304 ret
= commit_cowonly_roots(trans
, root
);
1307 btrfs_prepare_extent_commit(trans
, root
);
1309 cur_trans
= root
->fs_info
->running_transaction
;
1311 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1312 root
->fs_info
->tree_root
->node
);
1313 switch_commit_root(root
->fs_info
->tree_root
);
1315 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1316 root
->fs_info
->chunk_root
->node
);
1317 switch_commit_root(root
->fs_info
->chunk_root
);
1319 update_super_roots(root
);
1321 if (!root
->fs_info
->log_root_recovering
) {
1322 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
1323 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
1326 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
1327 sizeof(*root
->fs_info
->super_copy
));
1329 trans
->transaction
->blocked
= 0;
1330 spin_lock(&root
->fs_info
->trans_lock
);
1331 root
->fs_info
->running_transaction
= NULL
;
1332 root
->fs_info
->trans_no_join
= 0;
1333 spin_unlock(&root
->fs_info
->trans_lock
);
1334 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1336 wake_up(&root
->fs_info
->transaction_wait
);
1338 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1340 write_ctree_super(trans
, root
, 0);
1343 * the super is written, we can safely allow the tree-loggers
1344 * to go about their business
1346 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1348 btrfs_finish_extent_commit(trans
, root
);
1350 cur_trans
->commit_done
= 1;
1352 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1354 wake_up(&cur_trans
->commit_wait
);
1356 spin_lock(&root
->fs_info
->trans_lock
);
1357 list_del_init(&cur_trans
->list
);
1358 spin_unlock(&root
->fs_info
->trans_lock
);
1360 put_transaction(cur_trans
);
1361 put_transaction(cur_trans
);
1363 trace_btrfs_transaction_commit(root
);
1365 btrfs_scrub_continue(root
);
1367 if (current
->journal_info
== trans
)
1368 current
->journal_info
= NULL
;
1370 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1372 if (current
!= root
->fs_info
->transaction_kthread
)
1373 btrfs_run_delayed_iputs(root
);
1379 * interface function to delete all the snapshots we have scheduled for deletion
1381 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1384 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1386 spin_lock(&fs_info
->trans_lock
);
1387 list_splice_init(&fs_info
->dead_roots
, &list
);
1388 spin_unlock(&fs_info
->trans_lock
);
1390 while (!list_empty(&list
)) {
1391 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1392 list_del(&root
->root_list
);
1394 btrfs_kill_all_delayed_nodes(root
);
1396 if (btrfs_header_backref_rev(root
->node
) <
1397 BTRFS_MIXED_BACKREF_REV
)
1398 btrfs_drop_snapshot(root
, NULL
, 0, 0);
1400 btrfs_drop_snapshot(root
, NULL
, 1, 0);