asm-generic: Use __BITS_PER_LONG in statfs.h
[zen-stable.git] / fs / udf / super.c
blobc09a84daaf50ce5ae6ae2f1fccbd96fbd2d74653
1 /*
2 * super.c
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
27 * HISTORY
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
41 #include "udfdecl.h"
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <asm/byteorder.h>
61 #include "udf_sb.h"
62 #include "udf_i.h"
64 #include <linux/init.h>
65 #include <asm/uaccess.h>
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
76 #define UDF_DEFAULT_BLOCKSIZE 2048
78 /* These are the "meat" - everything else is stuffing */
79 static int udf_fill_super(struct super_block *, void *, int);
80 static void udf_put_super(struct super_block *);
81 static int udf_sync_fs(struct super_block *, int);
82 static int udf_remount_fs(struct super_block *, int *, char *);
83 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
84 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
85 struct kernel_lb_addr *);
86 static void udf_load_fileset(struct super_block *, struct buffer_head *,
87 struct kernel_lb_addr *);
88 static void udf_open_lvid(struct super_block *);
89 static void udf_close_lvid(struct super_block *);
90 static unsigned int udf_count_free(struct super_block *);
91 static int udf_statfs(struct dentry *, struct kstatfs *);
92 static int udf_show_options(struct seq_file *, struct dentry *);
94 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
96 struct logicalVolIntegrityDesc *lvid =
97 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
98 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
99 __u32 offset = number_of_partitions * 2 *
100 sizeof(uint32_t)/sizeof(uint8_t);
101 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
104 /* UDF filesystem type */
105 static struct dentry *udf_mount(struct file_system_type *fs_type,
106 int flags, const char *dev_name, void *data)
108 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
111 static struct file_system_type udf_fstype = {
112 .owner = THIS_MODULE,
113 .name = "udf",
114 .mount = udf_mount,
115 .kill_sb = kill_block_super,
116 .fs_flags = FS_REQUIRES_DEV,
119 static struct kmem_cache *udf_inode_cachep;
121 static struct inode *udf_alloc_inode(struct super_block *sb)
123 struct udf_inode_info *ei;
124 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
125 if (!ei)
126 return NULL;
128 ei->i_unique = 0;
129 ei->i_lenExtents = 0;
130 ei->i_next_alloc_block = 0;
131 ei->i_next_alloc_goal = 0;
132 ei->i_strat4096 = 0;
133 init_rwsem(&ei->i_data_sem);
135 return &ei->vfs_inode;
138 static void udf_i_callback(struct rcu_head *head)
140 struct inode *inode = container_of(head, struct inode, i_rcu);
141 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
144 static void udf_destroy_inode(struct inode *inode)
146 call_rcu(&inode->i_rcu, udf_i_callback);
149 static void init_once(void *foo)
151 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
153 ei->i_ext.i_data = NULL;
154 inode_init_once(&ei->vfs_inode);
157 static int init_inodecache(void)
159 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
160 sizeof(struct udf_inode_info),
161 0, (SLAB_RECLAIM_ACCOUNT |
162 SLAB_MEM_SPREAD),
163 init_once);
164 if (!udf_inode_cachep)
165 return -ENOMEM;
166 return 0;
169 static void destroy_inodecache(void)
171 kmem_cache_destroy(udf_inode_cachep);
174 /* Superblock operations */
175 static const struct super_operations udf_sb_ops = {
176 .alloc_inode = udf_alloc_inode,
177 .destroy_inode = udf_destroy_inode,
178 .write_inode = udf_write_inode,
179 .evict_inode = udf_evict_inode,
180 .put_super = udf_put_super,
181 .sync_fs = udf_sync_fs,
182 .statfs = udf_statfs,
183 .remount_fs = udf_remount_fs,
184 .show_options = udf_show_options,
187 struct udf_options {
188 unsigned char novrs;
189 unsigned int blocksize;
190 unsigned int session;
191 unsigned int lastblock;
192 unsigned int anchor;
193 unsigned int volume;
194 unsigned short partition;
195 unsigned int fileset;
196 unsigned int rootdir;
197 unsigned int flags;
198 umode_t umask;
199 gid_t gid;
200 uid_t uid;
201 umode_t fmode;
202 umode_t dmode;
203 struct nls_table *nls_map;
206 static int __init init_udf_fs(void)
208 int err;
210 err = init_inodecache();
211 if (err)
212 goto out1;
213 err = register_filesystem(&udf_fstype);
214 if (err)
215 goto out;
217 return 0;
219 out:
220 destroy_inodecache();
222 out1:
223 return err;
226 static void __exit exit_udf_fs(void)
228 unregister_filesystem(&udf_fstype);
229 destroy_inodecache();
232 module_init(init_udf_fs)
233 module_exit(exit_udf_fs)
235 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
237 struct udf_sb_info *sbi = UDF_SB(sb);
239 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
240 GFP_KERNEL);
241 if (!sbi->s_partmaps) {
242 udf_err(sb, "Unable to allocate space for %d partition maps\n",
243 count);
244 sbi->s_partitions = 0;
245 return -ENOMEM;
248 sbi->s_partitions = count;
249 return 0;
252 static int udf_show_options(struct seq_file *seq, struct dentry *root)
254 struct super_block *sb = root->d_sb;
255 struct udf_sb_info *sbi = UDF_SB(sb);
257 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
258 seq_puts(seq, ",nostrict");
259 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
260 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
261 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
262 seq_puts(seq, ",unhide");
263 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
264 seq_puts(seq, ",undelete");
265 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
266 seq_puts(seq, ",noadinicb");
267 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
268 seq_puts(seq, ",shortad");
269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
270 seq_puts(seq, ",uid=forget");
271 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
272 seq_puts(seq, ",uid=ignore");
273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
274 seq_puts(seq, ",gid=forget");
275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
276 seq_puts(seq, ",gid=ignore");
277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
278 seq_printf(seq, ",uid=%u", sbi->s_uid);
279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
280 seq_printf(seq, ",gid=%u", sbi->s_gid);
281 if (sbi->s_umask != 0)
282 seq_printf(seq, ",umask=%ho", sbi->s_umask);
283 if (sbi->s_fmode != UDF_INVALID_MODE)
284 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
285 if (sbi->s_dmode != UDF_INVALID_MODE)
286 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
287 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
288 seq_printf(seq, ",session=%u", sbi->s_session);
289 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
290 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
291 if (sbi->s_anchor != 0)
292 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
294 * volume, partition, fileset and rootdir seem to be ignored
295 * currently
297 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
298 seq_puts(seq, ",utf8");
299 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
300 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
302 return 0;
306 * udf_parse_options
308 * PURPOSE
309 * Parse mount options.
311 * DESCRIPTION
312 * The following mount options are supported:
314 * gid= Set the default group.
315 * umask= Set the default umask.
316 * mode= Set the default file permissions.
317 * dmode= Set the default directory permissions.
318 * uid= Set the default user.
319 * bs= Set the block size.
320 * unhide Show otherwise hidden files.
321 * undelete Show deleted files in lists.
322 * adinicb Embed data in the inode (default)
323 * noadinicb Don't embed data in the inode
324 * shortad Use short ad's
325 * longad Use long ad's (default)
326 * nostrict Unset strict conformance
327 * iocharset= Set the NLS character set
329 * The remaining are for debugging and disaster recovery:
331 * novrs Skip volume sequence recognition
333 * The following expect a offset from 0.
335 * session= Set the CDROM session (default= last session)
336 * anchor= Override standard anchor location. (default= 256)
337 * volume= Override the VolumeDesc location. (unused)
338 * partition= Override the PartitionDesc location. (unused)
339 * lastblock= Set the last block of the filesystem/
341 * The following expect a offset from the partition root.
343 * fileset= Override the fileset block location. (unused)
344 * rootdir= Override the root directory location. (unused)
345 * WARNING: overriding the rootdir to a non-directory may
346 * yield highly unpredictable results.
348 * PRE-CONDITIONS
349 * options Pointer to mount options string.
350 * uopts Pointer to mount options variable.
352 * POST-CONDITIONS
353 * <return> 1 Mount options parsed okay.
354 * <return> 0 Error parsing mount options.
356 * HISTORY
357 * July 1, 1997 - Andrew E. Mileski
358 * Written, tested, and released.
361 enum {
362 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
363 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
364 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
365 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
366 Opt_rootdir, Opt_utf8, Opt_iocharset,
367 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
368 Opt_fmode, Opt_dmode
371 static const match_table_t tokens = {
372 {Opt_novrs, "novrs"},
373 {Opt_nostrict, "nostrict"},
374 {Opt_bs, "bs=%u"},
375 {Opt_unhide, "unhide"},
376 {Opt_undelete, "undelete"},
377 {Opt_noadinicb, "noadinicb"},
378 {Opt_adinicb, "adinicb"},
379 {Opt_shortad, "shortad"},
380 {Opt_longad, "longad"},
381 {Opt_uforget, "uid=forget"},
382 {Opt_uignore, "uid=ignore"},
383 {Opt_gforget, "gid=forget"},
384 {Opt_gignore, "gid=ignore"},
385 {Opt_gid, "gid=%u"},
386 {Opt_uid, "uid=%u"},
387 {Opt_umask, "umask=%o"},
388 {Opt_session, "session=%u"},
389 {Opt_lastblock, "lastblock=%u"},
390 {Opt_anchor, "anchor=%u"},
391 {Opt_volume, "volume=%u"},
392 {Opt_partition, "partition=%u"},
393 {Opt_fileset, "fileset=%u"},
394 {Opt_rootdir, "rootdir=%u"},
395 {Opt_utf8, "utf8"},
396 {Opt_iocharset, "iocharset=%s"},
397 {Opt_fmode, "mode=%o"},
398 {Opt_dmode, "dmode=%o"},
399 {Opt_err, NULL}
402 static int udf_parse_options(char *options, struct udf_options *uopt,
403 bool remount)
405 char *p;
406 int option;
408 uopt->novrs = 0;
409 uopt->partition = 0xFFFF;
410 uopt->session = 0xFFFFFFFF;
411 uopt->lastblock = 0;
412 uopt->anchor = 0;
413 uopt->volume = 0xFFFFFFFF;
414 uopt->rootdir = 0xFFFFFFFF;
415 uopt->fileset = 0xFFFFFFFF;
416 uopt->nls_map = NULL;
418 if (!options)
419 return 1;
421 while ((p = strsep(&options, ",")) != NULL) {
422 substring_t args[MAX_OPT_ARGS];
423 int token;
424 if (!*p)
425 continue;
427 token = match_token(p, tokens, args);
428 switch (token) {
429 case Opt_novrs:
430 uopt->novrs = 1;
431 break;
432 case Opt_bs:
433 if (match_int(&args[0], &option))
434 return 0;
435 uopt->blocksize = option;
436 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
437 break;
438 case Opt_unhide:
439 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
440 break;
441 case Opt_undelete:
442 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
443 break;
444 case Opt_noadinicb:
445 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
446 break;
447 case Opt_adinicb:
448 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
449 break;
450 case Opt_shortad:
451 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
452 break;
453 case Opt_longad:
454 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
455 break;
456 case Opt_gid:
457 if (match_int(args, &option))
458 return 0;
459 uopt->gid = option;
460 uopt->flags |= (1 << UDF_FLAG_GID_SET);
461 break;
462 case Opt_uid:
463 if (match_int(args, &option))
464 return 0;
465 uopt->uid = option;
466 uopt->flags |= (1 << UDF_FLAG_UID_SET);
467 break;
468 case Opt_umask:
469 if (match_octal(args, &option))
470 return 0;
471 uopt->umask = option;
472 break;
473 case Opt_nostrict:
474 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
475 break;
476 case Opt_session:
477 if (match_int(args, &option))
478 return 0;
479 uopt->session = option;
480 if (!remount)
481 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
482 break;
483 case Opt_lastblock:
484 if (match_int(args, &option))
485 return 0;
486 uopt->lastblock = option;
487 if (!remount)
488 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
489 break;
490 case Opt_anchor:
491 if (match_int(args, &option))
492 return 0;
493 uopt->anchor = option;
494 break;
495 case Opt_volume:
496 if (match_int(args, &option))
497 return 0;
498 uopt->volume = option;
499 break;
500 case Opt_partition:
501 if (match_int(args, &option))
502 return 0;
503 uopt->partition = option;
504 break;
505 case Opt_fileset:
506 if (match_int(args, &option))
507 return 0;
508 uopt->fileset = option;
509 break;
510 case Opt_rootdir:
511 if (match_int(args, &option))
512 return 0;
513 uopt->rootdir = option;
514 break;
515 case Opt_utf8:
516 uopt->flags |= (1 << UDF_FLAG_UTF8);
517 break;
518 #ifdef CONFIG_UDF_NLS
519 case Opt_iocharset:
520 uopt->nls_map = load_nls(args[0].from);
521 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
522 break;
523 #endif
524 case Opt_uignore:
525 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
526 break;
527 case Opt_uforget:
528 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
529 break;
530 case Opt_gignore:
531 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
532 break;
533 case Opt_gforget:
534 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
535 break;
536 case Opt_fmode:
537 if (match_octal(args, &option))
538 return 0;
539 uopt->fmode = option & 0777;
540 break;
541 case Opt_dmode:
542 if (match_octal(args, &option))
543 return 0;
544 uopt->dmode = option & 0777;
545 break;
546 default:
547 pr_err("bad mount option \"%s\" or missing value\n", p);
548 return 0;
551 return 1;
554 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
556 struct udf_options uopt;
557 struct udf_sb_info *sbi = UDF_SB(sb);
558 int error = 0;
560 uopt.flags = sbi->s_flags;
561 uopt.uid = sbi->s_uid;
562 uopt.gid = sbi->s_gid;
563 uopt.umask = sbi->s_umask;
564 uopt.fmode = sbi->s_fmode;
565 uopt.dmode = sbi->s_dmode;
567 if (!udf_parse_options(options, &uopt, true))
568 return -EINVAL;
570 write_lock(&sbi->s_cred_lock);
571 sbi->s_flags = uopt.flags;
572 sbi->s_uid = uopt.uid;
573 sbi->s_gid = uopt.gid;
574 sbi->s_umask = uopt.umask;
575 sbi->s_fmode = uopt.fmode;
576 sbi->s_dmode = uopt.dmode;
577 write_unlock(&sbi->s_cred_lock);
579 if (sbi->s_lvid_bh) {
580 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
581 if (write_rev > UDF_MAX_WRITE_VERSION)
582 *flags |= MS_RDONLY;
585 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
586 goto out_unlock;
588 if (*flags & MS_RDONLY)
589 udf_close_lvid(sb);
590 else
591 udf_open_lvid(sb);
593 out_unlock:
594 return error;
597 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
598 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
599 static loff_t udf_check_vsd(struct super_block *sb)
601 struct volStructDesc *vsd = NULL;
602 loff_t sector = 32768;
603 int sectorsize;
604 struct buffer_head *bh = NULL;
605 int nsr02 = 0;
606 int nsr03 = 0;
607 struct udf_sb_info *sbi;
609 sbi = UDF_SB(sb);
610 if (sb->s_blocksize < sizeof(struct volStructDesc))
611 sectorsize = sizeof(struct volStructDesc);
612 else
613 sectorsize = sb->s_blocksize;
615 sector += (sbi->s_session << sb->s_blocksize_bits);
617 udf_debug("Starting at sector %u (%ld byte sectors)\n",
618 (unsigned int)(sector >> sb->s_blocksize_bits),
619 sb->s_blocksize);
620 /* Process the sequence (if applicable) */
621 for (; !nsr02 && !nsr03; sector += sectorsize) {
622 /* Read a block */
623 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
624 if (!bh)
625 break;
627 /* Look for ISO descriptors */
628 vsd = (struct volStructDesc *)(bh->b_data +
629 (sector & (sb->s_blocksize - 1)));
631 if (vsd->stdIdent[0] == 0) {
632 brelse(bh);
633 break;
634 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
635 VSD_STD_ID_LEN)) {
636 switch (vsd->structType) {
637 case 0:
638 udf_debug("ISO9660 Boot Record found\n");
639 break;
640 case 1:
641 udf_debug("ISO9660 Primary Volume Descriptor found\n");
642 break;
643 case 2:
644 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
645 break;
646 case 3:
647 udf_debug("ISO9660 Volume Partition Descriptor found\n");
648 break;
649 case 255:
650 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
651 break;
652 default:
653 udf_debug("ISO9660 VRS (%u) found\n",
654 vsd->structType);
655 break;
657 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
658 VSD_STD_ID_LEN))
659 ; /* nothing */
660 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
661 VSD_STD_ID_LEN)) {
662 brelse(bh);
663 break;
664 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
665 VSD_STD_ID_LEN))
666 nsr02 = sector;
667 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
668 VSD_STD_ID_LEN))
669 nsr03 = sector;
670 brelse(bh);
673 if (nsr03)
674 return nsr03;
675 else if (nsr02)
676 return nsr02;
677 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
678 return -1;
679 else
680 return 0;
683 static int udf_find_fileset(struct super_block *sb,
684 struct kernel_lb_addr *fileset,
685 struct kernel_lb_addr *root)
687 struct buffer_head *bh = NULL;
688 long lastblock;
689 uint16_t ident;
690 struct udf_sb_info *sbi;
692 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
693 fileset->partitionReferenceNum != 0xFFFF) {
694 bh = udf_read_ptagged(sb, fileset, 0, &ident);
696 if (!bh) {
697 return 1;
698 } else if (ident != TAG_IDENT_FSD) {
699 brelse(bh);
700 return 1;
705 sbi = UDF_SB(sb);
706 if (!bh) {
707 /* Search backwards through the partitions */
708 struct kernel_lb_addr newfileset;
710 /* --> cvg: FIXME - is it reasonable? */
711 return 1;
713 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
714 (newfileset.partitionReferenceNum != 0xFFFF &&
715 fileset->logicalBlockNum == 0xFFFFFFFF &&
716 fileset->partitionReferenceNum == 0xFFFF);
717 newfileset.partitionReferenceNum--) {
718 lastblock = sbi->s_partmaps
719 [newfileset.partitionReferenceNum]
720 .s_partition_len;
721 newfileset.logicalBlockNum = 0;
723 do {
724 bh = udf_read_ptagged(sb, &newfileset, 0,
725 &ident);
726 if (!bh) {
727 newfileset.logicalBlockNum++;
728 continue;
731 switch (ident) {
732 case TAG_IDENT_SBD:
734 struct spaceBitmapDesc *sp;
735 sp = (struct spaceBitmapDesc *)
736 bh->b_data;
737 newfileset.logicalBlockNum += 1 +
738 ((le32_to_cpu(sp->numOfBytes) +
739 sizeof(struct spaceBitmapDesc)
740 - 1) >> sb->s_blocksize_bits);
741 brelse(bh);
742 break;
744 case TAG_IDENT_FSD:
745 *fileset = newfileset;
746 break;
747 default:
748 newfileset.logicalBlockNum++;
749 brelse(bh);
750 bh = NULL;
751 break;
753 } while (newfileset.logicalBlockNum < lastblock &&
754 fileset->logicalBlockNum == 0xFFFFFFFF &&
755 fileset->partitionReferenceNum == 0xFFFF);
759 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
760 fileset->partitionReferenceNum != 0xFFFF) && bh) {
761 udf_debug("Fileset at block=%d, partition=%d\n",
762 fileset->logicalBlockNum,
763 fileset->partitionReferenceNum);
765 sbi->s_partition = fileset->partitionReferenceNum;
766 udf_load_fileset(sb, bh, root);
767 brelse(bh);
768 return 0;
770 return 1;
773 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
775 struct primaryVolDesc *pvoldesc;
776 struct ustr *instr, *outstr;
777 struct buffer_head *bh;
778 uint16_t ident;
779 int ret = 1;
781 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
782 if (!instr)
783 return 1;
785 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
786 if (!outstr)
787 goto out1;
789 bh = udf_read_tagged(sb, block, block, &ident);
790 if (!bh)
791 goto out2;
793 BUG_ON(ident != TAG_IDENT_PVD);
795 pvoldesc = (struct primaryVolDesc *)bh->b_data;
797 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
798 pvoldesc->recordingDateAndTime)) {
799 #ifdef UDFFS_DEBUG
800 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
801 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
802 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
803 ts->minute, le16_to_cpu(ts->typeAndTimezone));
804 #endif
807 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
808 if (udf_CS0toUTF8(outstr, instr)) {
809 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
810 outstr->u_len > 31 ? 31 : outstr->u_len);
811 udf_debug("volIdent[] = '%s'\n",
812 UDF_SB(sb)->s_volume_ident);
815 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
816 if (udf_CS0toUTF8(outstr, instr))
817 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
819 brelse(bh);
820 ret = 0;
821 out2:
822 kfree(outstr);
823 out1:
824 kfree(instr);
825 return ret;
828 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
829 u32 meta_file_loc, u32 partition_num)
831 struct kernel_lb_addr addr;
832 struct inode *metadata_fe;
834 addr.logicalBlockNum = meta_file_loc;
835 addr.partitionReferenceNum = partition_num;
837 metadata_fe = udf_iget(sb, &addr);
839 if (metadata_fe == NULL)
840 udf_warn(sb, "metadata inode efe not found\n");
841 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
842 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
843 iput(metadata_fe);
844 metadata_fe = NULL;
847 return metadata_fe;
850 static int udf_load_metadata_files(struct super_block *sb, int partition)
852 struct udf_sb_info *sbi = UDF_SB(sb);
853 struct udf_part_map *map;
854 struct udf_meta_data *mdata;
855 struct kernel_lb_addr addr;
857 map = &sbi->s_partmaps[partition];
858 mdata = &map->s_type_specific.s_metadata;
860 /* metadata address */
861 udf_debug("Metadata file location: block = %d part = %d\n",
862 mdata->s_meta_file_loc, map->s_partition_num);
864 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
865 mdata->s_meta_file_loc, map->s_partition_num);
867 if (mdata->s_metadata_fe == NULL) {
868 /* mirror file entry */
869 udf_debug("Mirror metadata file location: block = %d part = %d\n",
870 mdata->s_mirror_file_loc, map->s_partition_num);
872 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
873 mdata->s_mirror_file_loc, map->s_partition_num);
875 if (mdata->s_mirror_fe == NULL) {
876 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
877 goto error_exit;
882 * bitmap file entry
883 * Note:
884 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
886 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
887 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
888 addr.partitionReferenceNum = map->s_partition_num;
890 udf_debug("Bitmap file location: block = %d part = %d\n",
891 addr.logicalBlockNum, addr.partitionReferenceNum);
893 mdata->s_bitmap_fe = udf_iget(sb, &addr);
895 if (mdata->s_bitmap_fe == NULL) {
896 if (sb->s_flags & MS_RDONLY)
897 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
898 else {
899 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
900 goto error_exit;
905 udf_debug("udf_load_metadata_files Ok\n");
907 return 0;
909 error_exit:
910 return 1;
913 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
914 struct kernel_lb_addr *root)
916 struct fileSetDesc *fset;
918 fset = (struct fileSetDesc *)bh->b_data;
920 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
922 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
924 udf_debug("Rootdir at block=%d, partition=%d\n",
925 root->logicalBlockNum, root->partitionReferenceNum);
928 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
930 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
931 return DIV_ROUND_UP(map->s_partition_len +
932 (sizeof(struct spaceBitmapDesc) << 3),
933 sb->s_blocksize * 8);
936 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
938 struct udf_bitmap *bitmap;
939 int nr_groups;
940 int size;
942 nr_groups = udf_compute_nr_groups(sb, index);
943 size = sizeof(struct udf_bitmap) +
944 (sizeof(struct buffer_head *) * nr_groups);
946 if (size <= PAGE_SIZE)
947 bitmap = kzalloc(size, GFP_KERNEL);
948 else
949 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
951 if (bitmap == NULL) {
952 udf_err(sb, "Unable to allocate space for bitmap and %d buffer_head pointers\n",
953 nr_groups);
954 return NULL;
957 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
958 bitmap->s_nr_groups = nr_groups;
959 return bitmap;
962 static int udf_fill_partdesc_info(struct super_block *sb,
963 struct partitionDesc *p, int p_index)
965 struct udf_part_map *map;
966 struct udf_sb_info *sbi = UDF_SB(sb);
967 struct partitionHeaderDesc *phd;
969 map = &sbi->s_partmaps[p_index];
971 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
972 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
974 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
975 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
976 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
977 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
978 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
979 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
980 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
981 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
983 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
984 p_index, map->s_partition_type,
985 map->s_partition_root, map->s_partition_len);
987 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
988 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
989 return 0;
991 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
992 if (phd->unallocSpaceTable.extLength) {
993 struct kernel_lb_addr loc = {
994 .logicalBlockNum = le32_to_cpu(
995 phd->unallocSpaceTable.extPosition),
996 .partitionReferenceNum = p_index,
999 map->s_uspace.s_table = udf_iget(sb, &loc);
1000 if (!map->s_uspace.s_table) {
1001 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002 p_index);
1003 return 1;
1005 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007 p_index, map->s_uspace.s_table->i_ino);
1010 if (phd->unallocSpaceBitmap.extLength) {
1011 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012 if (!bitmap)
1013 return 1;
1014 map->s_uspace.s_bitmap = bitmap;
1015 bitmap->s_extLength = le32_to_cpu(
1016 phd->unallocSpaceBitmap.extLength);
1017 bitmap->s_extPosition = le32_to_cpu(
1018 phd->unallocSpaceBitmap.extPosition);
1019 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021 p_index, bitmap->s_extPosition);
1024 if (phd->partitionIntegrityTable.extLength)
1025 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1027 if (phd->freedSpaceTable.extLength) {
1028 struct kernel_lb_addr loc = {
1029 .logicalBlockNum = le32_to_cpu(
1030 phd->freedSpaceTable.extPosition),
1031 .partitionReferenceNum = p_index,
1034 map->s_fspace.s_table = udf_iget(sb, &loc);
1035 if (!map->s_fspace.s_table) {
1036 udf_debug("cannot load freedSpaceTable (part %d)\n",
1037 p_index);
1038 return 1;
1041 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043 p_index, map->s_fspace.s_table->i_ino);
1046 if (phd->freedSpaceBitmap.extLength) {
1047 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048 if (!bitmap)
1049 return 1;
1050 map->s_fspace.s_bitmap = bitmap;
1051 bitmap->s_extLength = le32_to_cpu(
1052 phd->freedSpaceBitmap.extLength);
1053 bitmap->s_extPosition = le32_to_cpu(
1054 phd->freedSpaceBitmap.extPosition);
1055 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057 p_index, bitmap->s_extPosition);
1059 return 0;
1062 static void udf_find_vat_block(struct super_block *sb, int p_index,
1063 int type1_index, sector_t start_block)
1065 struct udf_sb_info *sbi = UDF_SB(sb);
1066 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067 sector_t vat_block;
1068 struct kernel_lb_addr ino;
1071 * VAT file entry is in the last recorded block. Some broken disks have
1072 * it a few blocks before so try a bit harder...
1074 ino.partitionReferenceNum = type1_index;
1075 for (vat_block = start_block;
1076 vat_block >= map->s_partition_root &&
1077 vat_block >= start_block - 3 &&
1078 !sbi->s_vat_inode; vat_block--) {
1079 ino.logicalBlockNum = vat_block - map->s_partition_root;
1080 sbi->s_vat_inode = udf_iget(sb, &ino);
1084 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1086 struct udf_sb_info *sbi = UDF_SB(sb);
1087 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088 struct buffer_head *bh = NULL;
1089 struct udf_inode_info *vati;
1090 uint32_t pos;
1091 struct virtualAllocationTable20 *vat20;
1092 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1094 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095 if (!sbi->s_vat_inode &&
1096 sbi->s_last_block != blocks - 1) {
1097 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098 (unsigned long)sbi->s_last_block,
1099 (unsigned long)blocks - 1);
1100 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1102 if (!sbi->s_vat_inode)
1103 return 1;
1105 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106 map->s_type_specific.s_virtual.s_start_offset = 0;
1107 map->s_type_specific.s_virtual.s_num_entries =
1108 (sbi->s_vat_inode->i_size - 36) >> 2;
1109 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110 vati = UDF_I(sbi->s_vat_inode);
1111 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112 pos = udf_block_map(sbi->s_vat_inode, 0);
1113 bh = sb_bread(sb, pos);
1114 if (!bh)
1115 return 1;
1116 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117 } else {
1118 vat20 = (struct virtualAllocationTable20 *)
1119 vati->i_ext.i_data;
1122 map->s_type_specific.s_virtual.s_start_offset =
1123 le16_to_cpu(vat20->lengthHeader);
1124 map->s_type_specific.s_virtual.s_num_entries =
1125 (sbi->s_vat_inode->i_size -
1126 map->s_type_specific.s_virtual.
1127 s_start_offset) >> 2;
1128 brelse(bh);
1130 return 0;
1133 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1135 struct buffer_head *bh;
1136 struct partitionDesc *p;
1137 struct udf_part_map *map;
1138 struct udf_sb_info *sbi = UDF_SB(sb);
1139 int i, type1_idx;
1140 uint16_t partitionNumber;
1141 uint16_t ident;
1142 int ret = 0;
1144 bh = udf_read_tagged(sb, block, block, &ident);
1145 if (!bh)
1146 return 1;
1147 if (ident != TAG_IDENT_PD)
1148 goto out_bh;
1150 p = (struct partitionDesc *)bh->b_data;
1151 partitionNumber = le16_to_cpu(p->partitionNumber);
1153 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1154 for (i = 0; i < sbi->s_partitions; i++) {
1155 map = &sbi->s_partmaps[i];
1156 udf_debug("Searching map: (%d == %d)\n",
1157 map->s_partition_num, partitionNumber);
1158 if (map->s_partition_num == partitionNumber &&
1159 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160 map->s_partition_type == UDF_SPARABLE_MAP15))
1161 break;
1164 if (i >= sbi->s_partitions) {
1165 udf_debug("Partition (%d) not found in partition map\n",
1166 partitionNumber);
1167 goto out_bh;
1170 ret = udf_fill_partdesc_info(sb, p, i);
1173 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174 * PHYSICAL partitions are already set up
1176 type1_idx = i;
1177 for (i = 0; i < sbi->s_partitions; i++) {
1178 map = &sbi->s_partmaps[i];
1180 if (map->s_partition_num == partitionNumber &&
1181 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183 map->s_partition_type == UDF_METADATA_MAP25))
1184 break;
1187 if (i >= sbi->s_partitions)
1188 goto out_bh;
1190 ret = udf_fill_partdesc_info(sb, p, i);
1191 if (ret)
1192 goto out_bh;
1194 if (map->s_partition_type == UDF_METADATA_MAP25) {
1195 ret = udf_load_metadata_files(sb, i);
1196 if (ret) {
1197 udf_err(sb, "error loading MetaData partition map %d\n",
1199 goto out_bh;
1201 } else {
1202 ret = udf_load_vat(sb, i, type1_idx);
1203 if (ret)
1204 goto out_bh;
1206 * Mark filesystem read-only if we have a partition with
1207 * virtual map since we don't handle writing to it (we
1208 * overwrite blocks instead of relocating them).
1210 sb->s_flags |= MS_RDONLY;
1211 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1213 out_bh:
1214 /* In case loading failed, we handle cleanup in udf_fill_super */
1215 brelse(bh);
1216 return ret;
1219 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1220 struct kernel_lb_addr *fileset)
1222 struct logicalVolDesc *lvd;
1223 int i, j, offset;
1224 uint8_t type;
1225 struct udf_sb_info *sbi = UDF_SB(sb);
1226 struct genericPartitionMap *gpm;
1227 uint16_t ident;
1228 struct buffer_head *bh;
1229 int ret = 0;
1231 bh = udf_read_tagged(sb, block, block, &ident);
1232 if (!bh)
1233 return 1;
1234 BUG_ON(ident != TAG_IDENT_LVD);
1235 lvd = (struct logicalVolDesc *)bh->b_data;
1237 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1238 if (i != 0) {
1239 ret = i;
1240 goto out_bh;
1243 for (i = 0, offset = 0;
1244 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1245 i++, offset += gpm->partitionMapLength) {
1246 struct udf_part_map *map = &sbi->s_partmaps[i];
1247 gpm = (struct genericPartitionMap *)
1248 &(lvd->partitionMaps[offset]);
1249 type = gpm->partitionMapType;
1250 if (type == 1) {
1251 struct genericPartitionMap1 *gpm1 =
1252 (struct genericPartitionMap1 *)gpm;
1253 map->s_partition_type = UDF_TYPE1_MAP15;
1254 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1255 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1256 map->s_partition_func = NULL;
1257 } else if (type == 2) {
1258 struct udfPartitionMap2 *upm2 =
1259 (struct udfPartitionMap2 *)gpm;
1260 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1261 strlen(UDF_ID_VIRTUAL))) {
1262 u16 suf =
1263 le16_to_cpu(((__le16 *)upm2->partIdent.
1264 identSuffix)[0]);
1265 if (suf < 0x0200) {
1266 map->s_partition_type =
1267 UDF_VIRTUAL_MAP15;
1268 map->s_partition_func =
1269 udf_get_pblock_virt15;
1270 } else {
1271 map->s_partition_type =
1272 UDF_VIRTUAL_MAP20;
1273 map->s_partition_func =
1274 udf_get_pblock_virt20;
1276 } else if (!strncmp(upm2->partIdent.ident,
1277 UDF_ID_SPARABLE,
1278 strlen(UDF_ID_SPARABLE))) {
1279 uint32_t loc;
1280 struct sparingTable *st;
1281 struct sparablePartitionMap *spm =
1282 (struct sparablePartitionMap *)gpm;
1284 map->s_partition_type = UDF_SPARABLE_MAP15;
1285 map->s_type_specific.s_sparing.s_packet_len =
1286 le16_to_cpu(spm->packetLength);
1287 for (j = 0; j < spm->numSparingTables; j++) {
1288 struct buffer_head *bh2;
1290 loc = le32_to_cpu(
1291 spm->locSparingTable[j]);
1292 bh2 = udf_read_tagged(sb, loc, loc,
1293 &ident);
1294 map->s_type_specific.s_sparing.
1295 s_spar_map[j] = bh2;
1297 if (bh2 == NULL)
1298 continue;
1300 st = (struct sparingTable *)bh2->b_data;
1301 if (ident != 0 || strncmp(
1302 st->sparingIdent.ident,
1303 UDF_ID_SPARING,
1304 strlen(UDF_ID_SPARING))) {
1305 brelse(bh2);
1306 map->s_type_specific.s_sparing.
1307 s_spar_map[j] = NULL;
1310 map->s_partition_func = udf_get_pblock_spar15;
1311 } else if (!strncmp(upm2->partIdent.ident,
1312 UDF_ID_METADATA,
1313 strlen(UDF_ID_METADATA))) {
1314 struct udf_meta_data *mdata =
1315 &map->s_type_specific.s_metadata;
1316 struct metadataPartitionMap *mdm =
1317 (struct metadataPartitionMap *)
1318 &(lvd->partitionMaps[offset]);
1319 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1320 i, type, UDF_ID_METADATA);
1322 map->s_partition_type = UDF_METADATA_MAP25;
1323 map->s_partition_func = udf_get_pblock_meta25;
1325 mdata->s_meta_file_loc =
1326 le32_to_cpu(mdm->metadataFileLoc);
1327 mdata->s_mirror_file_loc =
1328 le32_to_cpu(mdm->metadataMirrorFileLoc);
1329 mdata->s_bitmap_file_loc =
1330 le32_to_cpu(mdm->metadataBitmapFileLoc);
1331 mdata->s_alloc_unit_size =
1332 le32_to_cpu(mdm->allocUnitSize);
1333 mdata->s_align_unit_size =
1334 le16_to_cpu(mdm->alignUnitSize);
1335 if (mdm->flags & 0x01)
1336 mdata->s_flags |= MF_DUPLICATE_MD;
1338 udf_debug("Metadata Ident suffix=0x%x\n",
1339 le16_to_cpu(*(__le16 *)
1340 mdm->partIdent.identSuffix));
1341 udf_debug("Metadata part num=%d\n",
1342 le16_to_cpu(mdm->partitionNum));
1343 udf_debug("Metadata part alloc unit size=%d\n",
1344 le32_to_cpu(mdm->allocUnitSize));
1345 udf_debug("Metadata file loc=%d\n",
1346 le32_to_cpu(mdm->metadataFileLoc));
1347 udf_debug("Mirror file loc=%d\n",
1348 le32_to_cpu(mdm->metadataMirrorFileLoc));
1349 udf_debug("Bitmap file loc=%d\n",
1350 le32_to_cpu(mdm->metadataBitmapFileLoc));
1351 udf_debug("Flags: %d %d\n",
1352 mdata->s_flags, mdm->flags);
1353 } else {
1354 udf_debug("Unknown ident: %s\n",
1355 upm2->partIdent.ident);
1356 continue;
1358 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1359 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1361 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1362 i, map->s_partition_num, type, map->s_volumeseqnum);
1365 if (fileset) {
1366 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1368 *fileset = lelb_to_cpu(la->extLocation);
1369 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1370 fileset->logicalBlockNum,
1371 fileset->partitionReferenceNum);
1373 if (lvd->integritySeqExt.extLength)
1374 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1376 out_bh:
1377 brelse(bh);
1378 return ret;
1382 * udf_load_logicalvolint
1385 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1387 struct buffer_head *bh = NULL;
1388 uint16_t ident;
1389 struct udf_sb_info *sbi = UDF_SB(sb);
1390 struct logicalVolIntegrityDesc *lvid;
1392 while (loc.extLength > 0 &&
1393 (bh = udf_read_tagged(sb, loc.extLocation,
1394 loc.extLocation, &ident)) &&
1395 ident == TAG_IDENT_LVID) {
1396 sbi->s_lvid_bh = bh;
1397 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1399 if (lvid->nextIntegrityExt.extLength)
1400 udf_load_logicalvolint(sb,
1401 leea_to_cpu(lvid->nextIntegrityExt));
1403 if (sbi->s_lvid_bh != bh)
1404 brelse(bh);
1405 loc.extLength -= sb->s_blocksize;
1406 loc.extLocation++;
1408 if (sbi->s_lvid_bh != bh)
1409 brelse(bh);
1413 * udf_process_sequence
1415 * PURPOSE
1416 * Process a main/reserve volume descriptor sequence.
1418 * PRE-CONDITIONS
1419 * sb Pointer to _locked_ superblock.
1420 * block First block of first extent of the sequence.
1421 * lastblock Lastblock of first extent of the sequence.
1423 * HISTORY
1424 * July 1, 1997 - Andrew E. Mileski
1425 * Written, tested, and released.
1427 static noinline int udf_process_sequence(struct super_block *sb, long block,
1428 long lastblock, struct kernel_lb_addr *fileset)
1430 struct buffer_head *bh = NULL;
1431 struct udf_vds_record vds[VDS_POS_LENGTH];
1432 struct udf_vds_record *curr;
1433 struct generic_desc *gd;
1434 struct volDescPtr *vdp;
1435 int done = 0;
1436 uint32_t vdsn;
1437 uint16_t ident;
1438 long next_s = 0, next_e = 0;
1440 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1443 * Read the main descriptor sequence and find which descriptors
1444 * are in it.
1446 for (; (!done && block <= lastblock); block++) {
1448 bh = udf_read_tagged(sb, block, block, &ident);
1449 if (!bh) {
1450 udf_err(sb,
1451 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1452 (unsigned long long)block);
1453 return 1;
1456 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1457 gd = (struct generic_desc *)bh->b_data;
1458 vdsn = le32_to_cpu(gd->volDescSeqNum);
1459 switch (ident) {
1460 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1461 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1462 if (vdsn >= curr->volDescSeqNum) {
1463 curr->volDescSeqNum = vdsn;
1464 curr->block = block;
1466 break;
1467 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1468 curr = &vds[VDS_POS_VOL_DESC_PTR];
1469 if (vdsn >= curr->volDescSeqNum) {
1470 curr->volDescSeqNum = vdsn;
1471 curr->block = block;
1473 vdp = (struct volDescPtr *)bh->b_data;
1474 next_s = le32_to_cpu(
1475 vdp->nextVolDescSeqExt.extLocation);
1476 next_e = le32_to_cpu(
1477 vdp->nextVolDescSeqExt.extLength);
1478 next_e = next_e >> sb->s_blocksize_bits;
1479 next_e += next_s;
1481 break;
1482 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1483 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1484 if (vdsn >= curr->volDescSeqNum) {
1485 curr->volDescSeqNum = vdsn;
1486 curr->block = block;
1488 break;
1489 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1490 curr = &vds[VDS_POS_PARTITION_DESC];
1491 if (!curr->block)
1492 curr->block = block;
1493 break;
1494 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1495 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1496 if (vdsn >= curr->volDescSeqNum) {
1497 curr->volDescSeqNum = vdsn;
1498 curr->block = block;
1500 break;
1501 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1502 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1503 if (vdsn >= curr->volDescSeqNum) {
1504 curr->volDescSeqNum = vdsn;
1505 curr->block = block;
1507 break;
1508 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1509 vds[VDS_POS_TERMINATING_DESC].block = block;
1510 if (next_e) {
1511 block = next_s;
1512 lastblock = next_e;
1513 next_s = next_e = 0;
1514 } else
1515 done = 1;
1516 break;
1518 brelse(bh);
1521 * Now read interesting descriptors again and process them
1522 * in a suitable order
1524 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1525 udf_err(sb, "Primary Volume Descriptor not found!\n");
1526 return 1;
1528 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1529 return 1;
1531 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1532 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1533 return 1;
1535 if (vds[VDS_POS_PARTITION_DESC].block) {
1537 * We rescan the whole descriptor sequence to find
1538 * partition descriptor blocks and process them.
1540 for (block = vds[VDS_POS_PARTITION_DESC].block;
1541 block < vds[VDS_POS_TERMINATING_DESC].block;
1542 block++)
1543 if (udf_load_partdesc(sb, block))
1544 return 1;
1547 return 0;
1550 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1551 struct kernel_lb_addr *fileset)
1553 struct anchorVolDescPtr *anchor;
1554 long main_s, main_e, reserve_s, reserve_e;
1556 anchor = (struct anchorVolDescPtr *)bh->b_data;
1558 /* Locate the main sequence */
1559 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1560 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1561 main_e = main_e >> sb->s_blocksize_bits;
1562 main_e += main_s;
1564 /* Locate the reserve sequence */
1565 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1566 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1567 reserve_e = reserve_e >> sb->s_blocksize_bits;
1568 reserve_e += reserve_s;
1570 /* Process the main & reserve sequences */
1571 /* responsible for finding the PartitionDesc(s) */
1572 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1573 return 1;
1574 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1578 * Check whether there is an anchor block in the given block and
1579 * load Volume Descriptor Sequence if so.
1581 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1582 struct kernel_lb_addr *fileset)
1584 struct buffer_head *bh;
1585 uint16_t ident;
1586 int ret;
1588 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1589 udf_fixed_to_variable(block) >=
1590 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1591 return 0;
1593 bh = udf_read_tagged(sb, block, block, &ident);
1594 if (!bh)
1595 return 0;
1596 if (ident != TAG_IDENT_AVDP) {
1597 brelse(bh);
1598 return 0;
1600 ret = udf_load_sequence(sb, bh, fileset);
1601 brelse(bh);
1602 return ret;
1605 /* Search for an anchor volume descriptor pointer */
1606 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1607 struct kernel_lb_addr *fileset)
1609 sector_t last[6];
1610 int i;
1611 struct udf_sb_info *sbi = UDF_SB(sb);
1612 int last_count = 0;
1614 /* First try user provided anchor */
1615 if (sbi->s_anchor) {
1616 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1617 return lastblock;
1620 * according to spec, anchor is in either:
1621 * block 256
1622 * lastblock-256
1623 * lastblock
1624 * however, if the disc isn't closed, it could be 512.
1626 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1627 return lastblock;
1629 * The trouble is which block is the last one. Drives often misreport
1630 * this so we try various possibilities.
1632 last[last_count++] = lastblock;
1633 if (lastblock >= 1)
1634 last[last_count++] = lastblock - 1;
1635 last[last_count++] = lastblock + 1;
1636 if (lastblock >= 2)
1637 last[last_count++] = lastblock - 2;
1638 if (lastblock >= 150)
1639 last[last_count++] = lastblock - 150;
1640 if (lastblock >= 152)
1641 last[last_count++] = lastblock - 152;
1643 for (i = 0; i < last_count; i++) {
1644 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1645 sb->s_blocksize_bits)
1646 continue;
1647 if (udf_check_anchor_block(sb, last[i], fileset))
1648 return last[i];
1649 if (last[i] < 256)
1650 continue;
1651 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1652 return last[i];
1655 /* Finally try block 512 in case media is open */
1656 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1657 return last[0];
1658 return 0;
1662 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1663 * area specified by it. The function expects sbi->s_lastblock to be the last
1664 * block on the media.
1666 * Return 1 if ok, 0 if not found.
1669 static int udf_find_anchor(struct super_block *sb,
1670 struct kernel_lb_addr *fileset)
1672 sector_t lastblock;
1673 struct udf_sb_info *sbi = UDF_SB(sb);
1675 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1676 if (lastblock)
1677 goto out;
1679 /* No anchor found? Try VARCONV conversion of block numbers */
1680 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1681 /* Firstly, we try to not convert number of the last block */
1682 lastblock = udf_scan_anchors(sb,
1683 udf_variable_to_fixed(sbi->s_last_block),
1684 fileset);
1685 if (lastblock)
1686 goto out;
1688 /* Secondly, we try with converted number of the last block */
1689 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1690 if (!lastblock) {
1691 /* VARCONV didn't help. Clear it. */
1692 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1693 return 0;
1695 out:
1696 sbi->s_last_block = lastblock;
1697 return 1;
1701 * Check Volume Structure Descriptor, find Anchor block and load Volume
1702 * Descriptor Sequence
1704 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1705 int silent, struct kernel_lb_addr *fileset)
1707 struct udf_sb_info *sbi = UDF_SB(sb);
1708 loff_t nsr_off;
1710 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1711 if (!silent)
1712 udf_warn(sb, "Bad block size\n");
1713 return 0;
1715 sbi->s_last_block = uopt->lastblock;
1716 if (!uopt->novrs) {
1717 /* Check that it is NSR02 compliant */
1718 nsr_off = udf_check_vsd(sb);
1719 if (!nsr_off) {
1720 if (!silent)
1721 udf_warn(sb, "No VRS found\n");
1722 return 0;
1724 if (nsr_off == -1)
1725 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1726 if (!sbi->s_last_block)
1727 sbi->s_last_block = udf_get_last_block(sb);
1728 } else {
1729 udf_debug("Validity check skipped because of novrs option\n");
1732 /* Look for anchor block and load Volume Descriptor Sequence */
1733 sbi->s_anchor = uopt->anchor;
1734 if (!udf_find_anchor(sb, fileset)) {
1735 if (!silent)
1736 udf_warn(sb, "No anchor found\n");
1737 return 0;
1739 return 1;
1742 static void udf_open_lvid(struct super_block *sb)
1744 struct udf_sb_info *sbi = UDF_SB(sb);
1745 struct buffer_head *bh = sbi->s_lvid_bh;
1746 struct logicalVolIntegrityDesc *lvid;
1747 struct logicalVolIntegrityDescImpUse *lvidiu;
1749 if (!bh)
1750 return;
1752 mutex_lock(&sbi->s_alloc_mutex);
1753 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1754 lvidiu = udf_sb_lvidiu(sbi);
1756 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1757 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1758 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1759 CURRENT_TIME);
1760 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1762 lvid->descTag.descCRC = cpu_to_le16(
1763 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1764 le16_to_cpu(lvid->descTag.descCRCLength)));
1766 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1767 mark_buffer_dirty(bh);
1768 sbi->s_lvid_dirty = 0;
1769 mutex_unlock(&sbi->s_alloc_mutex);
1772 static void udf_close_lvid(struct super_block *sb)
1774 struct udf_sb_info *sbi = UDF_SB(sb);
1775 struct buffer_head *bh = sbi->s_lvid_bh;
1776 struct logicalVolIntegrityDesc *lvid;
1777 struct logicalVolIntegrityDescImpUse *lvidiu;
1779 if (!bh)
1780 return;
1782 mutex_lock(&sbi->s_alloc_mutex);
1783 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1784 lvidiu = udf_sb_lvidiu(sbi);
1785 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1786 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1787 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1788 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1789 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1790 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1791 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1792 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1793 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1794 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1796 lvid->descTag.descCRC = cpu_to_le16(
1797 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1798 le16_to_cpu(lvid->descTag.descCRCLength)));
1800 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1802 * We set buffer uptodate unconditionally here to avoid spurious
1803 * warnings from mark_buffer_dirty() when previous EIO has marked
1804 * the buffer as !uptodate
1806 set_buffer_uptodate(bh);
1807 mark_buffer_dirty(bh);
1808 sbi->s_lvid_dirty = 0;
1809 mutex_unlock(&sbi->s_alloc_mutex);
1812 u64 lvid_get_unique_id(struct super_block *sb)
1814 struct buffer_head *bh;
1815 struct udf_sb_info *sbi = UDF_SB(sb);
1816 struct logicalVolIntegrityDesc *lvid;
1817 struct logicalVolHeaderDesc *lvhd;
1818 u64 uniqueID;
1819 u64 ret;
1821 bh = sbi->s_lvid_bh;
1822 if (!bh)
1823 return 0;
1825 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1826 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1828 mutex_lock(&sbi->s_alloc_mutex);
1829 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1830 if (!(++uniqueID & 0xFFFFFFFF))
1831 uniqueID += 16;
1832 lvhd->uniqueID = cpu_to_le64(uniqueID);
1833 mutex_unlock(&sbi->s_alloc_mutex);
1834 mark_buffer_dirty(bh);
1836 return ret;
1839 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1841 int i;
1842 int nr_groups = bitmap->s_nr_groups;
1843 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1844 nr_groups);
1846 for (i = 0; i < nr_groups; i++)
1847 if (bitmap->s_block_bitmap[i])
1848 brelse(bitmap->s_block_bitmap[i]);
1850 if (size <= PAGE_SIZE)
1851 kfree(bitmap);
1852 else
1853 vfree(bitmap);
1856 static void udf_free_partition(struct udf_part_map *map)
1858 int i;
1859 struct udf_meta_data *mdata;
1861 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1862 iput(map->s_uspace.s_table);
1863 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1864 iput(map->s_fspace.s_table);
1865 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1866 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1867 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1868 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1869 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1870 for (i = 0; i < 4; i++)
1871 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1872 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1873 mdata = &map->s_type_specific.s_metadata;
1874 iput(mdata->s_metadata_fe);
1875 mdata->s_metadata_fe = NULL;
1877 iput(mdata->s_mirror_fe);
1878 mdata->s_mirror_fe = NULL;
1880 iput(mdata->s_bitmap_fe);
1881 mdata->s_bitmap_fe = NULL;
1885 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1887 int i;
1888 int ret;
1889 struct inode *inode = NULL;
1890 struct udf_options uopt;
1891 struct kernel_lb_addr rootdir, fileset;
1892 struct udf_sb_info *sbi;
1894 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1895 uopt.uid = -1;
1896 uopt.gid = -1;
1897 uopt.umask = 0;
1898 uopt.fmode = UDF_INVALID_MODE;
1899 uopt.dmode = UDF_INVALID_MODE;
1901 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1902 if (!sbi)
1903 return -ENOMEM;
1905 sb->s_fs_info = sbi;
1907 mutex_init(&sbi->s_alloc_mutex);
1909 if (!udf_parse_options((char *)options, &uopt, false))
1910 goto error_out;
1912 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1913 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1914 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1915 goto error_out;
1917 #ifdef CONFIG_UDF_NLS
1918 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1919 uopt.nls_map = load_nls_default();
1920 if (!uopt.nls_map)
1921 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1922 else
1923 udf_debug("Using default NLS map\n");
1925 #endif
1926 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1927 uopt.flags |= (1 << UDF_FLAG_UTF8);
1929 fileset.logicalBlockNum = 0xFFFFFFFF;
1930 fileset.partitionReferenceNum = 0xFFFF;
1932 sbi->s_flags = uopt.flags;
1933 sbi->s_uid = uopt.uid;
1934 sbi->s_gid = uopt.gid;
1935 sbi->s_umask = uopt.umask;
1936 sbi->s_fmode = uopt.fmode;
1937 sbi->s_dmode = uopt.dmode;
1938 sbi->s_nls_map = uopt.nls_map;
1939 rwlock_init(&sbi->s_cred_lock);
1941 if (uopt.session == 0xFFFFFFFF)
1942 sbi->s_session = udf_get_last_session(sb);
1943 else
1944 sbi->s_session = uopt.session;
1946 udf_debug("Multi-session=%d\n", sbi->s_session);
1948 /* Fill in the rest of the superblock */
1949 sb->s_op = &udf_sb_ops;
1950 sb->s_export_op = &udf_export_ops;
1952 sb->s_dirt = 0;
1953 sb->s_magic = UDF_SUPER_MAGIC;
1954 sb->s_time_gran = 1000;
1956 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1957 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1958 } else {
1959 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1960 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1961 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1962 if (!silent)
1963 pr_notice("Rescanning with blocksize %d\n",
1964 UDF_DEFAULT_BLOCKSIZE);
1965 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1966 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1969 if (!ret) {
1970 udf_warn(sb, "No partition found (1)\n");
1971 goto error_out;
1974 udf_debug("Lastblock=%d\n", sbi->s_last_block);
1976 if (sbi->s_lvid_bh) {
1977 struct logicalVolIntegrityDescImpUse *lvidiu =
1978 udf_sb_lvidiu(sbi);
1979 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1980 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1981 /* uint16_t maxUDFWriteRev =
1982 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1984 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1985 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
1986 le16_to_cpu(lvidiu->minUDFReadRev),
1987 UDF_MAX_READ_VERSION);
1988 goto error_out;
1989 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1990 sb->s_flags |= MS_RDONLY;
1992 sbi->s_udfrev = minUDFWriteRev;
1994 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1995 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1996 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1997 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2000 if (!sbi->s_partitions) {
2001 udf_warn(sb, "No partition found (2)\n");
2002 goto error_out;
2005 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2006 UDF_PART_FLAG_READ_ONLY) {
2007 pr_notice("Partition marked readonly; forcing readonly mount\n");
2008 sb->s_flags |= MS_RDONLY;
2011 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2012 udf_warn(sb, "No fileset found\n");
2013 goto error_out;
2016 if (!silent) {
2017 struct timestamp ts;
2018 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2019 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2020 sbi->s_volume_ident,
2021 le16_to_cpu(ts.year), ts.month, ts.day,
2022 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2024 if (!(sb->s_flags & MS_RDONLY))
2025 udf_open_lvid(sb);
2027 /* Assign the root inode */
2028 /* assign inodes by physical block number */
2029 /* perhaps it's not extensible enough, but for now ... */
2030 inode = udf_iget(sb, &rootdir);
2031 if (!inode) {
2032 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2033 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2034 goto error_out;
2037 /* Allocate a dentry for the root inode */
2038 sb->s_root = d_alloc_root(inode);
2039 if (!sb->s_root) {
2040 udf_err(sb, "Couldn't allocate root dentry\n");
2041 iput(inode);
2042 goto error_out;
2044 sb->s_maxbytes = MAX_LFS_FILESIZE;
2045 return 0;
2047 error_out:
2048 if (sbi->s_vat_inode)
2049 iput(sbi->s_vat_inode);
2050 if (sbi->s_partitions)
2051 for (i = 0; i < sbi->s_partitions; i++)
2052 udf_free_partition(&sbi->s_partmaps[i]);
2053 #ifdef CONFIG_UDF_NLS
2054 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2055 unload_nls(sbi->s_nls_map);
2056 #endif
2057 if (!(sb->s_flags & MS_RDONLY))
2058 udf_close_lvid(sb);
2059 brelse(sbi->s_lvid_bh);
2061 kfree(sbi->s_partmaps);
2062 kfree(sbi);
2063 sb->s_fs_info = NULL;
2065 return -EINVAL;
2068 void _udf_err(struct super_block *sb, const char *function,
2069 const char *fmt, ...)
2071 struct va_format vaf;
2072 va_list args;
2074 /* mark sb error */
2075 if (!(sb->s_flags & MS_RDONLY))
2076 sb->s_dirt = 1;
2078 va_start(args, fmt);
2080 vaf.fmt = fmt;
2081 vaf.va = &args;
2083 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2085 va_end(args);
2088 void _udf_warn(struct super_block *sb, const char *function,
2089 const char *fmt, ...)
2091 struct va_format vaf;
2092 va_list args;
2094 va_start(args, fmt);
2096 vaf.fmt = fmt;
2097 vaf.va = &args;
2099 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2101 va_end(args);
2104 static void udf_put_super(struct super_block *sb)
2106 int i;
2107 struct udf_sb_info *sbi;
2109 sbi = UDF_SB(sb);
2111 if (sbi->s_vat_inode)
2112 iput(sbi->s_vat_inode);
2113 if (sbi->s_partitions)
2114 for (i = 0; i < sbi->s_partitions; i++)
2115 udf_free_partition(&sbi->s_partmaps[i]);
2116 #ifdef CONFIG_UDF_NLS
2117 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2118 unload_nls(sbi->s_nls_map);
2119 #endif
2120 if (!(sb->s_flags & MS_RDONLY))
2121 udf_close_lvid(sb);
2122 brelse(sbi->s_lvid_bh);
2123 kfree(sbi->s_partmaps);
2124 kfree(sb->s_fs_info);
2125 sb->s_fs_info = NULL;
2128 static int udf_sync_fs(struct super_block *sb, int wait)
2130 struct udf_sb_info *sbi = UDF_SB(sb);
2132 mutex_lock(&sbi->s_alloc_mutex);
2133 if (sbi->s_lvid_dirty) {
2135 * Blockdevice will be synced later so we don't have to submit
2136 * the buffer for IO
2138 mark_buffer_dirty(sbi->s_lvid_bh);
2139 sb->s_dirt = 0;
2140 sbi->s_lvid_dirty = 0;
2142 mutex_unlock(&sbi->s_alloc_mutex);
2144 return 0;
2147 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2149 struct super_block *sb = dentry->d_sb;
2150 struct udf_sb_info *sbi = UDF_SB(sb);
2151 struct logicalVolIntegrityDescImpUse *lvidiu;
2152 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2154 if (sbi->s_lvid_bh != NULL)
2155 lvidiu = udf_sb_lvidiu(sbi);
2156 else
2157 lvidiu = NULL;
2159 buf->f_type = UDF_SUPER_MAGIC;
2160 buf->f_bsize = sb->s_blocksize;
2161 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2162 buf->f_bfree = udf_count_free(sb);
2163 buf->f_bavail = buf->f_bfree;
2164 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2165 le32_to_cpu(lvidiu->numDirs)) : 0)
2166 + buf->f_bfree;
2167 buf->f_ffree = buf->f_bfree;
2168 buf->f_namelen = UDF_NAME_LEN - 2;
2169 buf->f_fsid.val[0] = (u32)id;
2170 buf->f_fsid.val[1] = (u32)(id >> 32);
2172 return 0;
2175 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2176 struct udf_bitmap *bitmap)
2178 struct buffer_head *bh = NULL;
2179 unsigned int accum = 0;
2180 int index;
2181 int block = 0, newblock;
2182 struct kernel_lb_addr loc;
2183 uint32_t bytes;
2184 uint8_t *ptr;
2185 uint16_t ident;
2186 struct spaceBitmapDesc *bm;
2188 loc.logicalBlockNum = bitmap->s_extPosition;
2189 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2190 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2192 if (!bh) {
2193 udf_err(sb, "udf_count_free failed\n");
2194 goto out;
2195 } else if (ident != TAG_IDENT_SBD) {
2196 brelse(bh);
2197 udf_err(sb, "udf_count_free failed\n");
2198 goto out;
2201 bm = (struct spaceBitmapDesc *)bh->b_data;
2202 bytes = le32_to_cpu(bm->numOfBytes);
2203 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2204 ptr = (uint8_t *)bh->b_data;
2206 while (bytes > 0) {
2207 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2208 accum += bitmap_weight((const unsigned long *)(ptr + index),
2209 cur_bytes * 8);
2210 bytes -= cur_bytes;
2211 if (bytes) {
2212 brelse(bh);
2213 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2214 bh = udf_tread(sb, newblock);
2215 if (!bh) {
2216 udf_debug("read failed\n");
2217 goto out;
2219 index = 0;
2220 ptr = (uint8_t *)bh->b_data;
2223 brelse(bh);
2224 out:
2225 return accum;
2228 static unsigned int udf_count_free_table(struct super_block *sb,
2229 struct inode *table)
2231 unsigned int accum = 0;
2232 uint32_t elen;
2233 struct kernel_lb_addr eloc;
2234 int8_t etype;
2235 struct extent_position epos;
2237 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2238 epos.block = UDF_I(table)->i_location;
2239 epos.offset = sizeof(struct unallocSpaceEntry);
2240 epos.bh = NULL;
2242 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2243 accum += (elen >> table->i_sb->s_blocksize_bits);
2245 brelse(epos.bh);
2246 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2248 return accum;
2251 static unsigned int udf_count_free(struct super_block *sb)
2253 unsigned int accum = 0;
2254 struct udf_sb_info *sbi;
2255 struct udf_part_map *map;
2257 sbi = UDF_SB(sb);
2258 if (sbi->s_lvid_bh) {
2259 struct logicalVolIntegrityDesc *lvid =
2260 (struct logicalVolIntegrityDesc *)
2261 sbi->s_lvid_bh->b_data;
2262 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2263 accum = le32_to_cpu(
2264 lvid->freeSpaceTable[sbi->s_partition]);
2265 if (accum == 0xFFFFFFFF)
2266 accum = 0;
2270 if (accum)
2271 return accum;
2273 map = &sbi->s_partmaps[sbi->s_partition];
2274 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2275 accum += udf_count_free_bitmap(sb,
2276 map->s_uspace.s_bitmap);
2278 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2279 accum += udf_count_free_bitmap(sb,
2280 map->s_fspace.s_bitmap);
2282 if (accum)
2283 return accum;
2285 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2286 accum += udf_count_free_table(sb,
2287 map->s_uspace.s_table);
2289 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2290 accum += udf_count_free_table(sb,
2291 map->s_fspace.s_table);
2294 return accum;