2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* When there are this many requests queue to be written by
50 * the raid1 thread, we become 'congested' to provide back-pressure
53 static int max_queued_requests
= 1024;
55 static void allow_barrier(struct r1conf
*conf
);
56 static void lower_barrier(struct r1conf
*conf
);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
60 struct pool_info
*pi
= data
;
61 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size
, gfp_flags
);
67 static void r1bio_pool_free(void *r1_bio
, void *data
)
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
80 struct pool_info
*pi
= data
;
86 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j
= pi
->raid_disks
; j
-- ; ) {
94 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
97 r1_bio
->bios
[j
] = bio
;
100 * Allocate RESYNC_PAGES data pages and attach them to
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
110 bio
= r1_bio
->bios
[j
];
111 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
112 page
= alloc_page(gfp_flags
);
116 bio
->bi_io_vec
[i
].bv_page
= page
;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
122 for (i
=0; i
<RESYNC_PAGES
; i
++)
123 for (j
=1; j
<pi
->raid_disks
; j
++)
124 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
125 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
128 r1_bio
->master_bio
= NULL
;
133 for (j
=0 ; j
< pi
->raid_disks
; j
++)
134 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
135 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
138 while ( ++j
< pi
->raid_disks
)
139 bio_put(r1_bio
->bios
[j
]);
140 r1bio_pool_free(r1_bio
, data
);
144 static void r1buf_pool_free(void *__r1_bio
, void *data
)
146 struct pool_info
*pi
= data
;
148 struct r1bio
*r1bio
= __r1_bio
;
150 for (i
= 0; i
< RESYNC_PAGES
; i
++)
151 for (j
= pi
->raid_disks
; j
-- ;) {
153 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
154 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
155 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
157 for (i
=0 ; i
< pi
->raid_disks
; i
++)
158 bio_put(r1bio
->bios
[i
]);
160 r1bio_pool_free(r1bio
, data
);
163 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
167 for (i
= 0; i
< conf
->raid_disks
; i
++) {
168 struct bio
**bio
= r1_bio
->bios
+ i
;
169 if (!BIO_SPECIAL(*bio
))
175 static void free_r1bio(struct r1bio
*r1_bio
)
177 struct r1conf
*conf
= r1_bio
->mddev
->private;
179 put_all_bios(conf
, r1_bio
);
180 mempool_free(r1_bio
, conf
->r1bio_pool
);
183 static void put_buf(struct r1bio
*r1_bio
)
185 struct r1conf
*conf
= r1_bio
->mddev
->private;
188 for (i
=0; i
<conf
->raid_disks
; i
++) {
189 struct bio
*bio
= r1_bio
->bios
[i
];
191 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
194 mempool_free(r1_bio
, conf
->r1buf_pool
);
199 static void reschedule_retry(struct r1bio
*r1_bio
)
202 struct mddev
*mddev
= r1_bio
->mddev
;
203 struct r1conf
*conf
= mddev
->private;
205 spin_lock_irqsave(&conf
->device_lock
, flags
);
206 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
208 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
210 wake_up(&conf
->wait_barrier
);
211 md_wakeup_thread(mddev
->thread
);
215 * raid_end_bio_io() is called when we have finished servicing a mirrored
216 * operation and are ready to return a success/failure code to the buffer
219 static void call_bio_endio(struct r1bio
*r1_bio
)
221 struct bio
*bio
= r1_bio
->master_bio
;
223 struct r1conf
*conf
= r1_bio
->mddev
->private;
225 if (bio
->bi_phys_segments
) {
227 spin_lock_irqsave(&conf
->device_lock
, flags
);
228 bio
->bi_phys_segments
--;
229 done
= (bio
->bi_phys_segments
== 0);
230 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
234 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
235 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
239 * Wake up any possible resync thread that waits for the device
246 static void raid_end_bio_io(struct r1bio
*r1_bio
)
248 struct bio
*bio
= r1_bio
->master_bio
;
250 /* if nobody has done the final endio yet, do it now */
251 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
254 (unsigned long long) bio
->bi_sector
,
255 (unsigned long long) bio
->bi_sector
+
256 (bio
->bi_size
>> 9) - 1);
258 call_bio_endio(r1_bio
);
264 * Update disk head position estimator based on IRQ completion info.
266 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
268 struct r1conf
*conf
= r1_bio
->mddev
->private;
270 conf
->mirrors
[disk
].head_position
=
271 r1_bio
->sector
+ (r1_bio
->sectors
);
275 * Find the disk number which triggered given bio
277 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
280 int raid_disks
= r1_bio
->mddev
->raid_disks
;
282 for (mirror
= 0; mirror
< raid_disks
; mirror
++)
283 if (r1_bio
->bios
[mirror
] == bio
)
286 BUG_ON(mirror
== raid_disks
);
287 update_head_pos(mirror
, r1_bio
);
292 static void raid1_end_read_request(struct bio
*bio
, int error
)
294 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
295 struct r1bio
*r1_bio
= bio
->bi_private
;
297 struct r1conf
*conf
= r1_bio
->mddev
->private;
299 mirror
= r1_bio
->read_disk
;
301 * this branch is our 'one mirror IO has finished' event handler:
303 update_head_pos(mirror
, r1_bio
);
306 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
308 /* If all other devices have failed, we want to return
309 * the error upwards rather than fail the last device.
310 * Here we redefine "uptodate" to mean "Don't want to retry"
313 spin_lock_irqsave(&conf
->device_lock
, flags
);
314 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
315 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
316 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
318 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
322 raid_end_bio_io(r1_bio
);
327 char b
[BDEVNAME_SIZE
];
329 KERN_ERR
"md/raid1:%s: %s: "
330 "rescheduling sector %llu\n",
332 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
334 (unsigned long long)r1_bio
->sector
);
335 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
336 reschedule_retry(r1_bio
);
339 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
342 static void close_write(struct r1bio
*r1_bio
)
344 /* it really is the end of this request */
345 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
346 /* free extra copy of the data pages */
347 int i
= r1_bio
->behind_page_count
;
349 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
350 kfree(r1_bio
->behind_bvecs
);
351 r1_bio
->behind_bvecs
= NULL
;
353 /* clear the bitmap if all writes complete successfully */
354 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
356 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
357 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
358 md_write_end(r1_bio
->mddev
);
361 static void r1_bio_write_done(struct r1bio
*r1_bio
)
363 if (!atomic_dec_and_test(&r1_bio
->remaining
))
366 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
367 reschedule_retry(r1_bio
);
370 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
371 reschedule_retry(r1_bio
);
373 raid_end_bio_io(r1_bio
);
377 static void raid1_end_write_request(struct bio
*bio
, int error
)
379 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
380 struct r1bio
*r1_bio
= bio
->bi_private
;
381 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
382 struct r1conf
*conf
= r1_bio
->mddev
->private;
383 struct bio
*to_put
= NULL
;
385 mirror
= find_bio_disk(r1_bio
, bio
);
388 * 'one mirror IO has finished' event handler:
391 set_bit(WriteErrorSeen
,
392 &conf
->mirrors
[mirror
].rdev
->flags
);
393 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
396 * Set R1BIO_Uptodate in our master bio, so that we
397 * will return a good error code for to the higher
398 * levels even if IO on some other mirrored buffer
401 * The 'master' represents the composite IO operation
402 * to user-side. So if something waits for IO, then it
403 * will wait for the 'master' bio.
408 r1_bio
->bios
[mirror
] = NULL
;
410 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
412 /* Maybe we can clear some bad blocks. */
413 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
414 r1_bio
->sector
, r1_bio
->sectors
,
415 &first_bad
, &bad_sectors
)) {
416 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
417 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
422 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
423 atomic_dec(&r1_bio
->behind_remaining
);
426 * In behind mode, we ACK the master bio once the I/O
427 * has safely reached all non-writemostly
428 * disks. Setting the Returned bit ensures that this
429 * gets done only once -- we don't ever want to return
430 * -EIO here, instead we'll wait
432 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
433 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
434 /* Maybe we can return now */
435 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
436 struct bio
*mbio
= r1_bio
->master_bio
;
437 pr_debug("raid1: behind end write sectors"
439 (unsigned long long) mbio
->bi_sector
,
440 (unsigned long long) mbio
->bi_sector
+
441 (mbio
->bi_size
>> 9) - 1);
442 call_bio_endio(r1_bio
);
446 if (r1_bio
->bios
[mirror
] == NULL
)
447 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
451 * Let's see if all mirrored write operations have finished
454 r1_bio_write_done(r1_bio
);
462 * This routine returns the disk from which the requested read should
463 * be done. There is a per-array 'next expected sequential IO' sector
464 * number - if this matches on the next IO then we use the last disk.
465 * There is also a per-disk 'last know head position' sector that is
466 * maintained from IRQ contexts, both the normal and the resync IO
467 * completion handlers update this position correctly. If there is no
468 * perfect sequential match then we pick the disk whose head is closest.
470 * If there are 2 mirrors in the same 2 devices, performance degrades
471 * because position is mirror, not device based.
473 * The rdev for the device selected will have nr_pending incremented.
475 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
477 const sector_t this_sector
= r1_bio
->sector
;
479 int best_good_sectors
;
484 struct md_rdev
*rdev
;
489 * Check if we can balance. We can balance on the whole
490 * device if no resync is going on, or below the resync window.
491 * We take the first readable disk when above the resync window.
494 sectors
= r1_bio
->sectors
;
496 best_dist
= MaxSector
;
497 best_good_sectors
= 0;
499 if (conf
->mddev
->recovery_cp
< MaxSector
&&
500 (this_sector
+ sectors
>= conf
->next_resync
)) {
505 start_disk
= conf
->last_used
;
508 for (i
= 0 ; i
< conf
->raid_disks
; i
++) {
513 int disk
= start_disk
+ i
;
514 if (disk
>= conf
->raid_disks
)
515 disk
-= conf
->raid_disks
;
517 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
518 if (r1_bio
->bios
[disk
] == IO_BLOCKED
520 || test_bit(Faulty
, &rdev
->flags
))
522 if (!test_bit(In_sync
, &rdev
->flags
) &&
523 rdev
->recovery_offset
< this_sector
+ sectors
)
525 if (test_bit(WriteMostly
, &rdev
->flags
)) {
526 /* Don't balance among write-mostly, just
527 * use the first as a last resort */
532 /* This is a reasonable device to use. It might
535 if (is_badblock(rdev
, this_sector
, sectors
,
536 &first_bad
, &bad_sectors
)) {
537 if (best_dist
< MaxSector
)
538 /* already have a better device */
540 if (first_bad
<= this_sector
) {
541 /* cannot read here. If this is the 'primary'
542 * device, then we must not read beyond
543 * bad_sectors from another device..
545 bad_sectors
-= (this_sector
- first_bad
);
546 if (choose_first
&& sectors
> bad_sectors
)
547 sectors
= bad_sectors
;
548 if (best_good_sectors
> sectors
)
549 best_good_sectors
= sectors
;
552 sector_t good_sectors
= first_bad
- this_sector
;
553 if (good_sectors
> best_good_sectors
) {
554 best_good_sectors
= good_sectors
;
562 best_good_sectors
= sectors
;
564 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
566 /* Don't change to another disk for sequential reads */
567 || conf
->next_seq_sect
== this_sector
569 /* If device is idle, use it */
570 || atomic_read(&rdev
->nr_pending
) == 0) {
574 if (dist
< best_dist
) {
580 if (best_disk
>= 0) {
581 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
584 atomic_inc(&rdev
->nr_pending
);
585 if (test_bit(Faulty
, &rdev
->flags
)) {
586 /* cannot risk returning a device that failed
587 * before we inc'ed nr_pending
589 rdev_dec_pending(rdev
, conf
->mddev
);
592 sectors
= best_good_sectors
;
593 conf
->next_seq_sect
= this_sector
+ sectors
;
594 conf
->last_used
= best_disk
;
597 *max_sectors
= sectors
;
602 int md_raid1_congested(struct mddev
*mddev
, int bits
)
604 struct r1conf
*conf
= mddev
->private;
607 if ((bits
& (1 << BDI_async_congested
)) &&
608 conf
->pending_count
>= max_queued_requests
)
612 for (i
= 0; i
< mddev
->raid_disks
; i
++) {
613 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
614 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
615 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
619 /* Note the '|| 1' - when read_balance prefers
620 * non-congested targets, it can be removed
622 if ((bits
& (1<<BDI_async_congested
)) || 1)
623 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
625 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
631 EXPORT_SYMBOL_GPL(md_raid1_congested
);
633 static int raid1_congested(void *data
, int bits
)
635 struct mddev
*mddev
= data
;
637 return mddev_congested(mddev
, bits
) ||
638 md_raid1_congested(mddev
, bits
);
641 static void flush_pending_writes(struct r1conf
*conf
)
643 /* Any writes that have been queued but are awaiting
644 * bitmap updates get flushed here.
646 spin_lock_irq(&conf
->device_lock
);
648 if (conf
->pending_bio_list
.head
) {
650 bio
= bio_list_get(&conf
->pending_bio_list
);
651 conf
->pending_count
= 0;
652 spin_unlock_irq(&conf
->device_lock
);
653 /* flush any pending bitmap writes to
654 * disk before proceeding w/ I/O */
655 bitmap_unplug(conf
->mddev
->bitmap
);
656 wake_up(&conf
->wait_barrier
);
658 while (bio
) { /* submit pending writes */
659 struct bio
*next
= bio
->bi_next
;
661 generic_make_request(bio
);
665 spin_unlock_irq(&conf
->device_lock
);
669 * Sometimes we need to suspend IO while we do something else,
670 * either some resync/recovery, or reconfigure the array.
671 * To do this we raise a 'barrier'.
672 * The 'barrier' is a counter that can be raised multiple times
673 * to count how many activities are happening which preclude
675 * We can only raise the barrier if there is no pending IO.
676 * i.e. if nr_pending == 0.
677 * We choose only to raise the barrier if no-one is waiting for the
678 * barrier to go down. This means that as soon as an IO request
679 * is ready, no other operations which require a barrier will start
680 * until the IO request has had a chance.
682 * So: regular IO calls 'wait_barrier'. When that returns there
683 * is no backgroup IO happening, It must arrange to call
684 * allow_barrier when it has finished its IO.
685 * backgroup IO calls must call raise_barrier. Once that returns
686 * there is no normal IO happeing. It must arrange to call
687 * lower_barrier when the particular background IO completes.
689 #define RESYNC_DEPTH 32
691 static void raise_barrier(struct r1conf
*conf
)
693 spin_lock_irq(&conf
->resync_lock
);
695 /* Wait until no block IO is waiting */
696 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
697 conf
->resync_lock
, );
699 /* block any new IO from starting */
702 /* Now wait for all pending IO to complete */
703 wait_event_lock_irq(conf
->wait_barrier
,
704 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
705 conf
->resync_lock
, );
707 spin_unlock_irq(&conf
->resync_lock
);
710 static void lower_barrier(struct r1conf
*conf
)
713 BUG_ON(conf
->barrier
<= 0);
714 spin_lock_irqsave(&conf
->resync_lock
, flags
);
716 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
717 wake_up(&conf
->wait_barrier
);
720 static void wait_barrier(struct r1conf
*conf
)
722 spin_lock_irq(&conf
->resync_lock
);
725 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
731 spin_unlock_irq(&conf
->resync_lock
);
734 static void allow_barrier(struct r1conf
*conf
)
737 spin_lock_irqsave(&conf
->resync_lock
, flags
);
739 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
740 wake_up(&conf
->wait_barrier
);
743 static void freeze_array(struct r1conf
*conf
)
745 /* stop syncio and normal IO and wait for everything to
747 * We increment barrier and nr_waiting, and then
748 * wait until nr_pending match nr_queued+1
749 * This is called in the context of one normal IO request
750 * that has failed. Thus any sync request that might be pending
751 * will be blocked by nr_pending, and we need to wait for
752 * pending IO requests to complete or be queued for re-try.
753 * Thus the number queued (nr_queued) plus this request (1)
754 * must match the number of pending IOs (nr_pending) before
757 spin_lock_irq(&conf
->resync_lock
);
760 wait_event_lock_irq(conf
->wait_barrier
,
761 conf
->nr_pending
== conf
->nr_queued
+1,
763 flush_pending_writes(conf
));
764 spin_unlock_irq(&conf
->resync_lock
);
766 static void unfreeze_array(struct r1conf
*conf
)
768 /* reverse the effect of the freeze */
769 spin_lock_irq(&conf
->resync_lock
);
772 wake_up(&conf
->wait_barrier
);
773 spin_unlock_irq(&conf
->resync_lock
);
777 /* duplicate the data pages for behind I/O
779 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
782 struct bio_vec
*bvec
;
783 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
785 if (unlikely(!bvecs
))
788 bio_for_each_segment(bvec
, bio
, i
) {
790 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
791 if (unlikely(!bvecs
[i
].bv_page
))
793 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
794 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
795 kunmap(bvecs
[i
].bv_page
);
796 kunmap(bvec
->bv_page
);
798 r1_bio
->behind_bvecs
= bvecs
;
799 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
800 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
804 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
805 if (bvecs
[i
].bv_page
)
806 put_page(bvecs
[i
].bv_page
);
808 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
811 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
813 struct r1conf
*conf
= mddev
->private;
814 struct mirror_info
*mirror
;
815 struct r1bio
*r1_bio
;
816 struct bio
*read_bio
;
818 struct bitmap
*bitmap
;
820 const int rw
= bio_data_dir(bio
);
821 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
822 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
823 struct md_rdev
*blocked_rdev
;
830 * Register the new request and wait if the reconstruction
831 * thread has put up a bar for new requests.
832 * Continue immediately if no resync is active currently.
835 md_write_start(mddev
, bio
); /* wait on superblock update early */
837 if (bio_data_dir(bio
) == WRITE
&&
838 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
839 bio
->bi_sector
< mddev
->suspend_hi
) {
840 /* As the suspend_* range is controlled by
841 * userspace, we want an interruptible
846 flush_signals(current
);
847 prepare_to_wait(&conf
->wait_barrier
,
848 &w
, TASK_INTERRUPTIBLE
);
849 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
850 bio
->bi_sector
>= mddev
->suspend_hi
)
854 finish_wait(&conf
->wait_barrier
, &w
);
859 bitmap
= mddev
->bitmap
;
862 * make_request() can abort the operation when READA is being
863 * used and no empty request is available.
866 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
868 r1_bio
->master_bio
= bio
;
869 r1_bio
->sectors
= bio
->bi_size
>> 9;
871 r1_bio
->mddev
= mddev
;
872 r1_bio
->sector
= bio
->bi_sector
;
874 /* We might need to issue multiple reads to different
875 * devices if there are bad blocks around, so we keep
876 * track of the number of reads in bio->bi_phys_segments.
877 * If this is 0, there is only one r1_bio and no locking
878 * will be needed when requests complete. If it is
879 * non-zero, then it is the number of not-completed requests.
881 bio
->bi_phys_segments
= 0;
882 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
886 * read balancing logic:
891 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
894 /* couldn't find anywhere to read from */
895 raid_end_bio_io(r1_bio
);
898 mirror
= conf
->mirrors
+ rdisk
;
900 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
902 /* Reading from a write-mostly device must
903 * take care not to over-take any writes
906 wait_event(bitmap
->behind_wait
,
907 atomic_read(&bitmap
->behind_writes
) == 0);
909 r1_bio
->read_disk
= rdisk
;
911 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
912 md_trim_bio(read_bio
, r1_bio
->sector
- bio
->bi_sector
,
915 r1_bio
->bios
[rdisk
] = read_bio
;
917 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
918 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
919 read_bio
->bi_end_io
= raid1_end_read_request
;
920 read_bio
->bi_rw
= READ
| do_sync
;
921 read_bio
->bi_private
= r1_bio
;
923 if (max_sectors
< r1_bio
->sectors
) {
924 /* could not read all from this device, so we will
925 * need another r1_bio.
928 sectors_handled
= (r1_bio
->sector
+ max_sectors
930 r1_bio
->sectors
= max_sectors
;
931 spin_lock_irq(&conf
->device_lock
);
932 if (bio
->bi_phys_segments
== 0)
933 bio
->bi_phys_segments
= 2;
935 bio
->bi_phys_segments
++;
936 spin_unlock_irq(&conf
->device_lock
);
937 /* Cannot call generic_make_request directly
938 * as that will be queued in __make_request
939 * and subsequent mempool_alloc might block waiting
940 * for it. So hand bio over to raid1d.
942 reschedule_retry(r1_bio
);
944 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
946 r1_bio
->master_bio
= bio
;
947 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
949 r1_bio
->mddev
= mddev
;
950 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
953 generic_make_request(read_bio
);
960 if (conf
->pending_count
>= max_queued_requests
) {
961 md_wakeup_thread(mddev
->thread
);
962 wait_event(conf
->wait_barrier
,
963 conf
->pending_count
< max_queued_requests
);
965 /* first select target devices under rcu_lock and
966 * inc refcount on their rdev. Record them by setting
968 * If there are known/acknowledged bad blocks on any device on
969 * which we have seen a write error, we want to avoid writing those
971 * This potentially requires several writes to write around
972 * the bad blocks. Each set of writes gets it's own r1bio
973 * with a set of bios attached.
975 plugged
= mddev_check_plugged(mddev
);
977 disks
= conf
->raid_disks
;
981 max_sectors
= r1_bio
->sectors
;
982 for (i
= 0; i
< disks
; i
++) {
983 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
984 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
985 atomic_inc(&rdev
->nr_pending
);
989 r1_bio
->bios
[i
] = NULL
;
990 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
991 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
995 atomic_inc(&rdev
->nr_pending
);
996 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1001 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1003 &first_bad
, &bad_sectors
);
1005 /* mustn't write here until the bad block is
1007 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1008 blocked_rdev
= rdev
;
1011 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1012 /* Cannot write here at all */
1013 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1014 if (bad_sectors
< max_sectors
)
1015 /* mustn't write more than bad_sectors
1016 * to other devices yet
1018 max_sectors
= bad_sectors
;
1019 rdev_dec_pending(rdev
, mddev
);
1020 /* We don't set R1BIO_Degraded as that
1021 * only applies if the disk is
1022 * missing, so it might be re-added,
1023 * and we want to know to recover this
1025 * In this case the device is here,
1026 * and the fact that this chunk is not
1027 * in-sync is recorded in the bad
1033 int good_sectors
= first_bad
- r1_bio
->sector
;
1034 if (good_sectors
< max_sectors
)
1035 max_sectors
= good_sectors
;
1038 r1_bio
->bios
[i
] = bio
;
1042 if (unlikely(blocked_rdev
)) {
1043 /* Wait for this device to become unblocked */
1046 for (j
= 0; j
< i
; j
++)
1047 if (r1_bio
->bios
[j
])
1048 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1050 allow_barrier(conf
);
1051 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1056 if (max_sectors
< r1_bio
->sectors
) {
1057 /* We are splitting this write into multiple parts, so
1058 * we need to prepare for allocating another r1_bio.
1060 r1_bio
->sectors
= max_sectors
;
1061 spin_lock_irq(&conf
->device_lock
);
1062 if (bio
->bi_phys_segments
== 0)
1063 bio
->bi_phys_segments
= 2;
1065 bio
->bi_phys_segments
++;
1066 spin_unlock_irq(&conf
->device_lock
);
1068 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1070 atomic_set(&r1_bio
->remaining
, 1);
1071 atomic_set(&r1_bio
->behind_remaining
, 0);
1074 for (i
= 0; i
< disks
; i
++) {
1076 if (!r1_bio
->bios
[i
])
1079 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1080 md_trim_bio(mbio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1084 * Not if there are too many, or cannot
1085 * allocate memory, or a reader on WriteMostly
1086 * is waiting for behind writes to flush */
1088 (atomic_read(&bitmap
->behind_writes
)
1089 < mddev
->bitmap_info
.max_write_behind
) &&
1090 !waitqueue_active(&bitmap
->behind_wait
))
1091 alloc_behind_pages(mbio
, r1_bio
);
1093 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1095 test_bit(R1BIO_BehindIO
,
1099 if (r1_bio
->behind_bvecs
) {
1100 struct bio_vec
*bvec
;
1103 /* Yes, I really want the '__' version so that
1104 * we clear any unused pointer in the io_vec, rather
1105 * than leave them unchanged. This is important
1106 * because when we come to free the pages, we won't
1107 * know the original bi_idx, so we just free
1110 __bio_for_each_segment(bvec
, mbio
, j
, 0)
1111 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1112 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1113 atomic_inc(&r1_bio
->behind_remaining
);
1116 r1_bio
->bios
[i
] = mbio
;
1118 mbio
->bi_sector
= (r1_bio
->sector
+
1119 conf
->mirrors
[i
].rdev
->data_offset
);
1120 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1121 mbio
->bi_end_io
= raid1_end_write_request
;
1122 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
1123 mbio
->bi_private
= r1_bio
;
1125 atomic_inc(&r1_bio
->remaining
);
1126 spin_lock_irqsave(&conf
->device_lock
, flags
);
1127 bio_list_add(&conf
->pending_bio_list
, mbio
);
1128 conf
->pending_count
++;
1129 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1131 /* Mustn't call r1_bio_write_done before this next test,
1132 * as it could result in the bio being freed.
1134 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1135 r1_bio_write_done(r1_bio
);
1136 /* We need another r1_bio. It has already been counted
1137 * in bio->bi_phys_segments
1139 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1140 r1_bio
->master_bio
= bio
;
1141 r1_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1143 r1_bio
->mddev
= mddev
;
1144 r1_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1148 r1_bio_write_done(r1_bio
);
1150 /* In case raid1d snuck in to freeze_array */
1151 wake_up(&conf
->wait_barrier
);
1153 if (do_sync
|| !bitmap
|| !plugged
)
1154 md_wakeup_thread(mddev
->thread
);
1157 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1159 struct r1conf
*conf
= mddev
->private;
1162 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1163 conf
->raid_disks
- mddev
->degraded
);
1165 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1166 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1167 seq_printf(seq
, "%s",
1168 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1171 seq_printf(seq
, "]");
1175 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1177 char b
[BDEVNAME_SIZE
];
1178 struct r1conf
*conf
= mddev
->private;
1181 * If it is not operational, then we have already marked it as dead
1182 * else if it is the last working disks, ignore the error, let the
1183 * next level up know.
1184 * else mark the drive as failed
1186 if (test_bit(In_sync
, &rdev
->flags
)
1187 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1189 * Don't fail the drive, act as though we were just a
1190 * normal single drive.
1191 * However don't try a recovery from this drive as
1192 * it is very likely to fail.
1194 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1197 set_bit(Blocked
, &rdev
->flags
);
1198 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1199 unsigned long flags
;
1200 spin_lock_irqsave(&conf
->device_lock
, flags
);
1202 set_bit(Faulty
, &rdev
->flags
);
1203 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1205 * if recovery is running, make sure it aborts.
1207 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1209 set_bit(Faulty
, &rdev
->flags
);
1210 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1212 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1213 "md/raid1:%s: Operation continuing on %d devices.\n",
1214 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1215 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1218 static void print_conf(struct r1conf
*conf
)
1222 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1224 printk(KERN_DEBUG
"(!conf)\n");
1227 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1231 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1232 char b
[BDEVNAME_SIZE
];
1233 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1235 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1236 i
, !test_bit(In_sync
, &rdev
->flags
),
1237 !test_bit(Faulty
, &rdev
->flags
),
1238 bdevname(rdev
->bdev
,b
));
1243 static void close_sync(struct r1conf
*conf
)
1246 allow_barrier(conf
);
1248 mempool_destroy(conf
->r1buf_pool
);
1249 conf
->r1buf_pool
= NULL
;
1252 static int raid1_spare_active(struct mddev
*mddev
)
1255 struct r1conf
*conf
= mddev
->private;
1257 unsigned long flags
;
1260 * Find all failed disks within the RAID1 configuration
1261 * and mark them readable.
1262 * Called under mddev lock, so rcu protection not needed.
1264 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1265 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1267 && !test_bit(Faulty
, &rdev
->flags
)
1268 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1270 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1273 spin_lock_irqsave(&conf
->device_lock
, flags
);
1274 mddev
->degraded
-= count
;
1275 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1282 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1284 struct r1conf
*conf
= mddev
->private;
1287 struct mirror_info
*p
;
1289 int last
= mddev
->raid_disks
- 1;
1291 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1294 if (rdev
->raid_disk
>= 0)
1295 first
= last
= rdev
->raid_disk
;
1297 for (mirror
= first
; mirror
<= last
; mirror
++)
1298 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1300 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1301 rdev
->data_offset
<< 9);
1302 /* as we don't honour merge_bvec_fn, we must
1303 * never risk violating it, so limit
1304 * ->max_segments to one lying with a single
1305 * page, as a one page request is never in
1308 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1309 blk_queue_max_segments(mddev
->queue
, 1);
1310 blk_queue_segment_boundary(mddev
->queue
,
1311 PAGE_CACHE_SIZE
- 1);
1314 p
->head_position
= 0;
1315 rdev
->raid_disk
= mirror
;
1317 /* As all devices are equivalent, we don't need a full recovery
1318 * if this was recently any drive of the array
1320 if (rdev
->saved_raid_disk
< 0)
1322 rcu_assign_pointer(p
->rdev
, rdev
);
1325 md_integrity_add_rdev(rdev
, mddev
);
1330 static int raid1_remove_disk(struct mddev
*mddev
, int number
)
1332 struct r1conf
*conf
= mddev
->private;
1334 struct md_rdev
*rdev
;
1335 struct mirror_info
*p
= conf
->mirrors
+ number
;
1340 if (test_bit(In_sync
, &rdev
->flags
) ||
1341 atomic_read(&rdev
->nr_pending
)) {
1345 /* Only remove non-faulty devices if recovery
1348 if (!test_bit(Faulty
, &rdev
->flags
) &&
1349 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1350 mddev
->degraded
< conf
->raid_disks
) {
1356 if (atomic_read(&rdev
->nr_pending
)) {
1357 /* lost the race, try later */
1362 err
= md_integrity_register(mddev
);
1371 static void end_sync_read(struct bio
*bio
, int error
)
1373 struct r1bio
*r1_bio
= bio
->bi_private
;
1375 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1378 * we have read a block, now it needs to be re-written,
1379 * or re-read if the read failed.
1380 * We don't do much here, just schedule handling by raid1d
1382 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1383 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1385 if (atomic_dec_and_test(&r1_bio
->remaining
))
1386 reschedule_retry(r1_bio
);
1389 static void end_sync_write(struct bio
*bio
, int error
)
1391 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1392 struct r1bio
*r1_bio
= bio
->bi_private
;
1393 struct mddev
*mddev
= r1_bio
->mddev
;
1394 struct r1conf
*conf
= mddev
->private;
1399 mirror
= find_bio_disk(r1_bio
, bio
);
1402 sector_t sync_blocks
= 0;
1403 sector_t s
= r1_bio
->sector
;
1404 long sectors_to_go
= r1_bio
->sectors
;
1405 /* make sure these bits doesn't get cleared. */
1407 bitmap_end_sync(mddev
->bitmap
, s
,
1410 sectors_to_go
-= sync_blocks
;
1411 } while (sectors_to_go
> 0);
1412 set_bit(WriteErrorSeen
,
1413 &conf
->mirrors
[mirror
].rdev
->flags
);
1414 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1415 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1418 &first_bad
, &bad_sectors
) &&
1419 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1422 &first_bad
, &bad_sectors
)
1424 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1426 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1427 int s
= r1_bio
->sectors
;
1428 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1429 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1430 reschedule_retry(r1_bio
);
1433 md_done_sync(mddev
, s
, uptodate
);
1438 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1439 int sectors
, struct page
*page
, int rw
)
1441 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1445 set_bit(WriteErrorSeen
, &rdev
->flags
);
1446 /* need to record an error - either for the block or the device */
1447 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1448 md_error(rdev
->mddev
, rdev
);
1452 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1454 /* Try some synchronous reads of other devices to get
1455 * good data, much like with normal read errors. Only
1456 * read into the pages we already have so we don't
1457 * need to re-issue the read request.
1458 * We don't need to freeze the array, because being in an
1459 * active sync request, there is no normal IO, and
1460 * no overlapping syncs.
1461 * We don't need to check is_badblock() again as we
1462 * made sure that anything with a bad block in range
1463 * will have bi_end_io clear.
1465 struct mddev
*mddev
= r1_bio
->mddev
;
1466 struct r1conf
*conf
= mddev
->private;
1467 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1468 sector_t sect
= r1_bio
->sector
;
1469 int sectors
= r1_bio
->sectors
;
1474 int d
= r1_bio
->read_disk
;
1476 struct md_rdev
*rdev
;
1479 if (s
> (PAGE_SIZE
>>9))
1482 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1483 /* No rcu protection needed here devices
1484 * can only be removed when no resync is
1485 * active, and resync is currently active
1487 rdev
= conf
->mirrors
[d
].rdev
;
1488 if (sync_page_io(rdev
, sect
, s
<<9,
1489 bio
->bi_io_vec
[idx
].bv_page
,
1496 if (d
== conf
->raid_disks
)
1498 } while (!success
&& d
!= r1_bio
->read_disk
);
1501 char b
[BDEVNAME_SIZE
];
1503 /* Cannot read from anywhere, this block is lost.
1504 * Record a bad block on each device. If that doesn't
1505 * work just disable and interrupt the recovery.
1506 * Don't fail devices as that won't really help.
1508 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1509 " for block %llu\n",
1511 bdevname(bio
->bi_bdev
, b
),
1512 (unsigned long long)r1_bio
->sector
);
1513 for (d
= 0; d
< conf
->raid_disks
; d
++) {
1514 rdev
= conf
->mirrors
[d
].rdev
;
1515 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1517 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1521 conf
->recovery_disabled
=
1522 mddev
->recovery_disabled
;
1523 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1524 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1536 /* write it back and re-read */
1537 while (d
!= r1_bio
->read_disk
) {
1539 d
= conf
->raid_disks
;
1541 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1543 rdev
= conf
->mirrors
[d
].rdev
;
1544 if (r1_sync_page_io(rdev
, sect
, s
,
1545 bio
->bi_io_vec
[idx
].bv_page
,
1547 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1548 rdev_dec_pending(rdev
, mddev
);
1552 while (d
!= r1_bio
->read_disk
) {
1554 d
= conf
->raid_disks
;
1556 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1558 rdev
= conf
->mirrors
[d
].rdev
;
1559 if (r1_sync_page_io(rdev
, sect
, s
,
1560 bio
->bi_io_vec
[idx
].bv_page
,
1562 atomic_add(s
, &rdev
->corrected_errors
);
1568 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1569 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1573 static int process_checks(struct r1bio
*r1_bio
)
1575 /* We have read all readable devices. If we haven't
1576 * got the block, then there is no hope left.
1577 * If we have, then we want to do a comparison
1578 * and skip the write if everything is the same.
1579 * If any blocks failed to read, then we need to
1580 * attempt an over-write
1582 struct mddev
*mddev
= r1_bio
->mddev
;
1583 struct r1conf
*conf
= mddev
->private;
1587 for (primary
= 0; primary
< conf
->raid_disks
; primary
++)
1588 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1589 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1590 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1591 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1594 r1_bio
->read_disk
= primary
;
1595 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1597 int vcnt
= r1_bio
->sectors
>> (PAGE_SHIFT
- 9);
1598 struct bio
*pbio
= r1_bio
->bios
[primary
];
1599 struct bio
*sbio
= r1_bio
->bios
[i
];
1602 if (r1_bio
->bios
[i
]->bi_end_io
!= end_sync_read
)
1605 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1606 for (j
= vcnt
; j
-- ; ) {
1608 p
= pbio
->bi_io_vec
[j
].bv_page
;
1609 s
= sbio
->bi_io_vec
[j
].bv_page
;
1610 if (memcmp(page_address(p
),
1618 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1619 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1620 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1621 /* No need to write to this device. */
1622 sbio
->bi_end_io
= NULL
;
1623 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1626 /* fixup the bio for reuse */
1627 sbio
->bi_vcnt
= vcnt
;
1628 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1630 sbio
->bi_phys_segments
= 0;
1631 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1632 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1633 sbio
->bi_next
= NULL
;
1634 sbio
->bi_sector
= r1_bio
->sector
+
1635 conf
->mirrors
[i
].rdev
->data_offset
;
1636 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1637 size
= sbio
->bi_size
;
1638 for (j
= 0; j
< vcnt
; j
++) {
1640 bi
= &sbio
->bi_io_vec
[j
];
1642 if (size
> PAGE_SIZE
)
1643 bi
->bv_len
= PAGE_SIZE
;
1647 memcpy(page_address(bi
->bv_page
),
1648 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1655 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1657 struct r1conf
*conf
= mddev
->private;
1659 int disks
= conf
->raid_disks
;
1660 struct bio
*bio
, *wbio
;
1662 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1664 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1665 /* ouch - failed to read all of that. */
1666 if (!fix_sync_read_error(r1_bio
))
1669 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1670 if (process_checks(r1_bio
) < 0)
1675 atomic_set(&r1_bio
->remaining
, 1);
1676 for (i
= 0; i
< disks
; i
++) {
1677 wbio
= r1_bio
->bios
[i
];
1678 if (wbio
->bi_end_io
== NULL
||
1679 (wbio
->bi_end_io
== end_sync_read
&&
1680 (i
== r1_bio
->read_disk
||
1681 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1684 wbio
->bi_rw
= WRITE
;
1685 wbio
->bi_end_io
= end_sync_write
;
1686 atomic_inc(&r1_bio
->remaining
);
1687 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1689 generic_make_request(wbio
);
1692 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1693 /* if we're here, all write(s) have completed, so clean up */
1694 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1700 * This is a kernel thread which:
1702 * 1. Retries failed read operations on working mirrors.
1703 * 2. Updates the raid superblock when problems encounter.
1704 * 3. Performs writes following reads for array synchronising.
1707 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
1708 sector_t sect
, int sectors
)
1710 struct mddev
*mddev
= conf
->mddev
;
1716 struct md_rdev
*rdev
;
1718 if (s
> (PAGE_SIZE
>>9))
1722 /* Note: no rcu protection needed here
1723 * as this is synchronous in the raid1d thread
1724 * which is the thread that might remove
1725 * a device. If raid1d ever becomes multi-threaded....
1730 rdev
= conf
->mirrors
[d
].rdev
;
1732 test_bit(In_sync
, &rdev
->flags
) &&
1733 is_badblock(rdev
, sect
, s
,
1734 &first_bad
, &bad_sectors
) == 0 &&
1735 sync_page_io(rdev
, sect
, s
<<9,
1736 conf
->tmppage
, READ
, false))
1740 if (d
== conf
->raid_disks
)
1743 } while (!success
&& d
!= read_disk
);
1746 /* Cannot read from anywhere - mark it bad */
1747 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
1748 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1749 md_error(mddev
, rdev
);
1752 /* write it back and re-read */
1754 while (d
!= read_disk
) {
1756 d
= conf
->raid_disks
;
1758 rdev
= conf
->mirrors
[d
].rdev
;
1760 test_bit(In_sync
, &rdev
->flags
))
1761 r1_sync_page_io(rdev
, sect
, s
,
1762 conf
->tmppage
, WRITE
);
1765 while (d
!= read_disk
) {
1766 char b
[BDEVNAME_SIZE
];
1768 d
= conf
->raid_disks
;
1770 rdev
= conf
->mirrors
[d
].rdev
;
1772 test_bit(In_sync
, &rdev
->flags
)) {
1773 if (r1_sync_page_io(rdev
, sect
, s
,
1774 conf
->tmppage
, READ
)) {
1775 atomic_add(s
, &rdev
->corrected_errors
);
1777 "md/raid1:%s: read error corrected "
1778 "(%d sectors at %llu on %s)\n",
1780 (unsigned long long)(sect
+
1782 bdevname(rdev
->bdev
, b
));
1791 static void bi_complete(struct bio
*bio
, int error
)
1793 complete((struct completion
*)bio
->bi_private
);
1796 static int submit_bio_wait(int rw
, struct bio
*bio
)
1798 struct completion event
;
1801 init_completion(&event
);
1802 bio
->bi_private
= &event
;
1803 bio
->bi_end_io
= bi_complete
;
1804 submit_bio(rw
, bio
);
1805 wait_for_completion(&event
);
1807 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1810 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
1812 struct mddev
*mddev
= r1_bio
->mddev
;
1813 struct r1conf
*conf
= mddev
->private;
1814 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1816 struct bio_vec
*vec
;
1818 /* bio has the data to be written to device 'i' where
1819 * we just recently had a write error.
1820 * We repeatedly clone the bio and trim down to one block,
1821 * then try the write. Where the write fails we record
1823 * It is conceivable that the bio doesn't exactly align with
1824 * blocks. We must handle this somehow.
1826 * We currently own a reference on the rdev.
1832 int sect_to_write
= r1_bio
->sectors
;
1835 if (rdev
->badblocks
.shift
< 0)
1838 block_sectors
= 1 << rdev
->badblocks
.shift
;
1839 sector
= r1_bio
->sector
;
1840 sectors
= ((sector
+ block_sectors
)
1841 & ~(sector_t
)(block_sectors
- 1))
1844 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
1845 vcnt
= r1_bio
->behind_page_count
;
1846 vec
= r1_bio
->behind_bvecs
;
1848 while (vec
[idx
].bv_page
== NULL
)
1851 vcnt
= r1_bio
->master_bio
->bi_vcnt
;
1852 vec
= r1_bio
->master_bio
->bi_io_vec
;
1853 idx
= r1_bio
->master_bio
->bi_idx
;
1855 while (sect_to_write
) {
1857 if (sectors
> sect_to_write
)
1858 sectors
= sect_to_write
;
1859 /* Write at 'sector' for 'sectors'*/
1861 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
1862 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
1863 wbio
->bi_sector
= r1_bio
->sector
;
1864 wbio
->bi_rw
= WRITE
;
1865 wbio
->bi_vcnt
= vcnt
;
1866 wbio
->bi_size
= r1_bio
->sectors
<< 9;
1869 md_trim_bio(wbio
, sector
- r1_bio
->sector
, sectors
);
1870 wbio
->bi_sector
+= rdev
->data_offset
;
1871 wbio
->bi_bdev
= rdev
->bdev
;
1872 if (submit_bio_wait(WRITE
, wbio
) == 0)
1874 ok
= rdev_set_badblocks(rdev
, sector
,
1879 sect_to_write
-= sectors
;
1881 sectors
= block_sectors
;
1886 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
1889 int s
= r1_bio
->sectors
;
1890 for (m
= 0; m
< conf
->raid_disks
; m
++) {
1891 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
1892 struct bio
*bio
= r1_bio
->bios
[m
];
1893 if (bio
->bi_end_io
== NULL
)
1895 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
1896 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
1897 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
);
1899 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
) &&
1900 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
1901 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
1902 md_error(conf
->mddev
, rdev
);
1906 md_done_sync(conf
->mddev
, s
, 1);
1909 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
1912 for (m
= 0; m
< conf
->raid_disks
; m
++)
1913 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
1914 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
1915 rdev_clear_badblocks(rdev
,
1918 rdev_dec_pending(rdev
, conf
->mddev
);
1919 } else if (r1_bio
->bios
[m
] != NULL
) {
1920 /* This drive got a write error. We need to
1921 * narrow down and record precise write
1924 if (!narrow_write_error(r1_bio
, m
)) {
1925 md_error(conf
->mddev
,
1926 conf
->mirrors
[m
].rdev
);
1927 /* an I/O failed, we can't clear the bitmap */
1928 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1930 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
1933 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1934 close_write(r1_bio
);
1935 raid_end_bio_io(r1_bio
);
1938 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
1942 struct mddev
*mddev
= conf
->mddev
;
1944 char b
[BDEVNAME_SIZE
];
1945 struct md_rdev
*rdev
;
1947 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
1948 /* we got a read error. Maybe the drive is bad. Maybe just
1949 * the block and we can fix it.
1950 * We freeze all other IO, and try reading the block from
1951 * other devices. When we find one, we re-write
1952 * and check it that fixes the read error.
1953 * This is all done synchronously while the array is
1956 if (mddev
->ro
== 0) {
1958 fix_read_error(conf
, r1_bio
->read_disk
,
1959 r1_bio
->sector
, r1_bio
->sectors
);
1960 unfreeze_array(conf
);
1962 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1964 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1965 bdevname(bio
->bi_bdev
, b
);
1967 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
1969 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
1970 " read error for block %llu\n",
1971 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
1972 raid_end_bio_io(r1_bio
);
1974 const unsigned long do_sync
1975 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
1977 r1_bio
->bios
[r1_bio
->read_disk
] =
1978 mddev
->ro
? IO_BLOCKED
: NULL
;
1981 r1_bio
->read_disk
= disk
;
1982 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
1983 md_trim_bio(bio
, r1_bio
->sector
- bio
->bi_sector
, max_sectors
);
1984 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
1985 rdev
= conf
->mirrors
[disk
].rdev
;
1986 printk_ratelimited(KERN_ERR
1987 "md/raid1:%s: redirecting sector %llu"
1988 " to other mirror: %s\n",
1990 (unsigned long long)r1_bio
->sector
,
1991 bdevname(rdev
->bdev
, b
));
1992 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
1993 bio
->bi_bdev
= rdev
->bdev
;
1994 bio
->bi_end_io
= raid1_end_read_request
;
1995 bio
->bi_rw
= READ
| do_sync
;
1996 bio
->bi_private
= r1_bio
;
1997 if (max_sectors
< r1_bio
->sectors
) {
1998 /* Drat - have to split this up more */
1999 struct bio
*mbio
= r1_bio
->master_bio
;
2000 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2002 r1_bio
->sectors
= max_sectors
;
2003 spin_lock_irq(&conf
->device_lock
);
2004 if (mbio
->bi_phys_segments
== 0)
2005 mbio
->bi_phys_segments
= 2;
2007 mbio
->bi_phys_segments
++;
2008 spin_unlock_irq(&conf
->device_lock
);
2009 generic_make_request(bio
);
2012 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2014 r1_bio
->master_bio
= mbio
;
2015 r1_bio
->sectors
= (mbio
->bi_size
>> 9)
2018 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2019 r1_bio
->mddev
= mddev
;
2020 r1_bio
->sector
= mbio
->bi_sector
+ sectors_handled
;
2024 generic_make_request(bio
);
2028 static void raid1d(struct mddev
*mddev
)
2030 struct r1bio
*r1_bio
;
2031 unsigned long flags
;
2032 struct r1conf
*conf
= mddev
->private;
2033 struct list_head
*head
= &conf
->retry_list
;
2034 struct blk_plug plug
;
2036 md_check_recovery(mddev
);
2038 blk_start_plug(&plug
);
2041 if (atomic_read(&mddev
->plug_cnt
) == 0)
2042 flush_pending_writes(conf
);
2044 spin_lock_irqsave(&conf
->device_lock
, flags
);
2045 if (list_empty(head
)) {
2046 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2049 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2050 list_del(head
->prev
);
2052 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2054 mddev
= r1_bio
->mddev
;
2055 conf
= mddev
->private;
2056 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2057 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2058 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2059 handle_sync_write_finished(conf
, r1_bio
);
2061 sync_request_write(mddev
, r1_bio
);
2062 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2063 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2064 handle_write_finished(conf
, r1_bio
);
2065 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2066 handle_read_error(conf
, r1_bio
);
2068 /* just a partial read to be scheduled from separate
2071 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2074 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2075 md_check_recovery(mddev
);
2077 blk_finish_plug(&plug
);
2081 static int init_resync(struct r1conf
*conf
)
2085 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2086 BUG_ON(conf
->r1buf_pool
);
2087 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2089 if (!conf
->r1buf_pool
)
2091 conf
->next_resync
= 0;
2096 * perform a "sync" on one "block"
2098 * We need to make sure that no normal I/O request - particularly write
2099 * requests - conflict with active sync requests.
2101 * This is achieved by tracking pending requests and a 'barrier' concept
2102 * that can be installed to exclude normal IO requests.
2105 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
2107 struct r1conf
*conf
= mddev
->private;
2108 struct r1bio
*r1_bio
;
2110 sector_t max_sector
, nr_sectors
;
2114 int write_targets
= 0, read_targets
= 0;
2115 sector_t sync_blocks
;
2116 int still_degraded
= 0;
2117 int good_sectors
= RESYNC_SECTORS
;
2118 int min_bad
= 0; /* number of sectors that are bad in all devices */
2120 if (!conf
->r1buf_pool
)
2121 if (init_resync(conf
))
2124 max_sector
= mddev
->dev_sectors
;
2125 if (sector_nr
>= max_sector
) {
2126 /* If we aborted, we need to abort the
2127 * sync on the 'current' bitmap chunk (there will
2128 * only be one in raid1 resync.
2129 * We can find the current addess in mddev->curr_resync
2131 if (mddev
->curr_resync
< max_sector
) /* aborted */
2132 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2134 else /* completed sync */
2137 bitmap_close_sync(mddev
->bitmap
);
2142 if (mddev
->bitmap
== NULL
&&
2143 mddev
->recovery_cp
== MaxSector
&&
2144 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2145 conf
->fullsync
== 0) {
2147 return max_sector
- sector_nr
;
2149 /* before building a request, check if we can skip these blocks..
2150 * This call the bitmap_start_sync doesn't actually record anything
2152 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2153 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2154 /* We can skip this block, and probably several more */
2159 * If there is non-resync activity waiting for a turn,
2160 * and resync is going fast enough,
2161 * then let it though before starting on this new sync request.
2163 if (!go_faster
&& conf
->nr_waiting
)
2164 msleep_interruptible(1000);
2166 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2167 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2168 raise_barrier(conf
);
2170 conf
->next_resync
= sector_nr
;
2174 * If we get a correctably read error during resync or recovery,
2175 * we might want to read from a different device. So we
2176 * flag all drives that could conceivably be read from for READ,
2177 * and any others (which will be non-In_sync devices) for WRITE.
2178 * If a read fails, we try reading from something else for which READ
2182 r1_bio
->mddev
= mddev
;
2183 r1_bio
->sector
= sector_nr
;
2185 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2187 for (i
=0; i
< conf
->raid_disks
; i
++) {
2188 struct md_rdev
*rdev
;
2189 bio
= r1_bio
->bios
[i
];
2191 /* take from bio_init */
2192 bio
->bi_next
= NULL
;
2193 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
2194 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2198 bio
->bi_phys_segments
= 0;
2200 bio
->bi_end_io
= NULL
;
2201 bio
->bi_private
= NULL
;
2203 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2205 test_bit(Faulty
, &rdev
->flags
)) {
2207 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2209 bio
->bi_end_io
= end_sync_write
;
2212 /* may need to read from here */
2213 sector_t first_bad
= MaxSector
;
2216 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2217 &first_bad
, &bad_sectors
)) {
2218 if (first_bad
> sector_nr
)
2219 good_sectors
= first_bad
- sector_nr
;
2221 bad_sectors
-= (sector_nr
- first_bad
);
2223 min_bad
> bad_sectors
)
2224 min_bad
= bad_sectors
;
2227 if (sector_nr
< first_bad
) {
2228 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2236 bio
->bi_end_io
= end_sync_read
;
2240 if (bio
->bi_end_io
) {
2241 atomic_inc(&rdev
->nr_pending
);
2242 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
2243 bio
->bi_bdev
= rdev
->bdev
;
2244 bio
->bi_private
= r1_bio
;
2250 r1_bio
->read_disk
= disk
;
2252 if (read_targets
== 0 && min_bad
> 0) {
2253 /* These sectors are bad on all InSync devices, so we
2254 * need to mark them bad on all write targets
2257 for (i
= 0 ; i
< conf
->raid_disks
; i
++)
2258 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2259 struct md_rdev
*rdev
=
2260 rcu_dereference(conf
->mirrors
[i
].rdev
);
2261 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2265 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2270 /* Cannot record the badblocks, so need to
2272 * If there are multiple read targets, could just
2273 * fail the really bad ones ???
2275 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2276 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2282 if (min_bad
> 0 && min_bad
< good_sectors
) {
2283 /* only resync enough to reach the next bad->good
2285 good_sectors
= min_bad
;
2288 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2289 /* extra read targets are also write targets */
2290 write_targets
+= read_targets
-1;
2292 if (write_targets
== 0 || read_targets
== 0) {
2293 /* There is nowhere to write, so all non-sync
2294 * drives must be failed - so we are finished
2296 sector_t rv
= max_sector
- sector_nr
;
2302 if (max_sector
> mddev
->resync_max
)
2303 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2304 if (max_sector
> sector_nr
+ good_sectors
)
2305 max_sector
= sector_nr
+ good_sectors
;
2310 int len
= PAGE_SIZE
;
2311 if (sector_nr
+ (len
>>9) > max_sector
)
2312 len
= (max_sector
- sector_nr
) << 9;
2315 if (sync_blocks
== 0) {
2316 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2317 &sync_blocks
, still_degraded
) &&
2319 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2321 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
2322 if ((len
>> 9) > sync_blocks
)
2323 len
= sync_blocks
<<9;
2326 for (i
=0 ; i
< conf
->raid_disks
; i
++) {
2327 bio
= r1_bio
->bios
[i
];
2328 if (bio
->bi_end_io
) {
2329 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2330 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2332 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2335 bio
= r1_bio
->bios
[i
];
2336 if (bio
->bi_end_io
==NULL
)
2338 /* remove last page from this bio */
2340 bio
->bi_size
-= len
;
2341 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2347 nr_sectors
+= len
>>9;
2348 sector_nr
+= len
>>9;
2349 sync_blocks
-= (len
>>9);
2350 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2352 r1_bio
->sectors
= nr_sectors
;
2354 /* For a user-requested sync, we read all readable devices and do a
2357 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2358 atomic_set(&r1_bio
->remaining
, read_targets
);
2359 for (i
=0; i
<conf
->raid_disks
; i
++) {
2360 bio
= r1_bio
->bios
[i
];
2361 if (bio
->bi_end_io
== end_sync_read
) {
2362 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2363 generic_make_request(bio
);
2367 atomic_set(&r1_bio
->remaining
, 1);
2368 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2369 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2370 generic_make_request(bio
);
2376 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2381 return mddev
->dev_sectors
;
2384 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2386 struct r1conf
*conf
;
2388 struct mirror_info
*disk
;
2389 struct md_rdev
*rdev
;
2392 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2396 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2401 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2405 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2406 if (!conf
->poolinfo
)
2408 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
;
2409 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2412 if (!conf
->r1bio_pool
)
2415 conf
->poolinfo
->mddev
= mddev
;
2417 spin_lock_init(&conf
->device_lock
);
2418 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2419 int disk_idx
= rdev
->raid_disk
;
2420 if (disk_idx
>= mddev
->raid_disks
2423 disk
= conf
->mirrors
+ disk_idx
;
2427 disk
->head_position
= 0;
2429 conf
->raid_disks
= mddev
->raid_disks
;
2430 conf
->mddev
= mddev
;
2431 INIT_LIST_HEAD(&conf
->retry_list
);
2433 spin_lock_init(&conf
->resync_lock
);
2434 init_waitqueue_head(&conf
->wait_barrier
);
2436 bio_list_init(&conf
->pending_bio_list
);
2437 conf
->pending_count
= 0;
2438 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2440 conf
->last_used
= -1;
2441 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2443 disk
= conf
->mirrors
+ i
;
2446 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2447 disk
->head_position
= 0;
2450 } else if (conf
->last_used
< 0)
2452 * The first working device is used as a
2453 * starting point to read balancing.
2455 conf
->last_used
= i
;
2459 if (conf
->last_used
< 0) {
2460 printk(KERN_ERR
"md/raid1:%s: no operational mirrors\n",
2465 conf
->thread
= md_register_thread(raid1d
, mddev
, NULL
);
2466 if (!conf
->thread
) {
2468 "md/raid1:%s: couldn't allocate thread\n",
2477 if (conf
->r1bio_pool
)
2478 mempool_destroy(conf
->r1bio_pool
);
2479 kfree(conf
->mirrors
);
2480 safe_put_page(conf
->tmppage
);
2481 kfree(conf
->poolinfo
);
2484 return ERR_PTR(err
);
2487 static int run(struct mddev
*mddev
)
2489 struct r1conf
*conf
;
2491 struct md_rdev
*rdev
;
2493 if (mddev
->level
!= 1) {
2494 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2495 mdname(mddev
), mddev
->level
);
2498 if (mddev
->reshape_position
!= MaxSector
) {
2499 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2504 * copy the already verified devices into our private RAID1
2505 * bookkeeping area. [whatever we allocate in run(),
2506 * should be freed in stop()]
2508 if (mddev
->private == NULL
)
2509 conf
= setup_conf(mddev
);
2511 conf
= mddev
->private;
2514 return PTR_ERR(conf
);
2516 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2517 if (!mddev
->gendisk
)
2519 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2520 rdev
->data_offset
<< 9);
2521 /* as we don't honour merge_bvec_fn, we must never risk
2522 * violating it, so limit ->max_segments to 1 lying within
2523 * a single page, as a one page request is never in violation.
2525 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2526 blk_queue_max_segments(mddev
->queue
, 1);
2527 blk_queue_segment_boundary(mddev
->queue
,
2528 PAGE_CACHE_SIZE
- 1);
2532 mddev
->degraded
= 0;
2533 for (i
=0; i
< conf
->raid_disks
; i
++)
2534 if (conf
->mirrors
[i
].rdev
== NULL
||
2535 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2536 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2539 if (conf
->raid_disks
- mddev
->degraded
== 1)
2540 mddev
->recovery_cp
= MaxSector
;
2542 if (mddev
->recovery_cp
!= MaxSector
)
2543 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2544 " -- starting background reconstruction\n",
2547 "md/raid1:%s: active with %d out of %d mirrors\n",
2548 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2552 * Ok, everything is just fine now
2554 mddev
->thread
= conf
->thread
;
2555 conf
->thread
= NULL
;
2556 mddev
->private = conf
;
2558 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2561 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2562 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2564 return md_integrity_register(mddev
);
2567 static int stop(struct mddev
*mddev
)
2569 struct r1conf
*conf
= mddev
->private;
2570 struct bitmap
*bitmap
= mddev
->bitmap
;
2572 /* wait for behind writes to complete */
2573 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2574 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2576 /* need to kick something here to make sure I/O goes? */
2577 wait_event(bitmap
->behind_wait
,
2578 atomic_read(&bitmap
->behind_writes
) == 0);
2581 raise_barrier(conf
);
2582 lower_barrier(conf
);
2584 md_unregister_thread(&mddev
->thread
);
2585 if (conf
->r1bio_pool
)
2586 mempool_destroy(conf
->r1bio_pool
);
2587 kfree(conf
->mirrors
);
2588 kfree(conf
->poolinfo
);
2590 mddev
->private = NULL
;
2594 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2596 /* no resync is happening, and there is enough space
2597 * on all devices, so we can resize.
2598 * We need to make sure resync covers any new space.
2599 * If the array is shrinking we should possibly wait until
2600 * any io in the removed space completes, but it hardly seems
2603 md_set_array_sectors(mddev
, raid1_size(mddev
, sectors
, 0));
2604 if (mddev
->array_sectors
> raid1_size(mddev
, sectors
, 0))
2606 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2607 revalidate_disk(mddev
->gendisk
);
2608 if (sectors
> mddev
->dev_sectors
&&
2609 mddev
->recovery_cp
> mddev
->dev_sectors
) {
2610 mddev
->recovery_cp
= mddev
->dev_sectors
;
2611 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2613 mddev
->dev_sectors
= sectors
;
2614 mddev
->resync_max_sectors
= sectors
;
2618 static int raid1_reshape(struct mddev
*mddev
)
2621 * 1/ resize the r1bio_pool
2622 * 2/ resize conf->mirrors
2624 * We allocate a new r1bio_pool if we can.
2625 * Then raise a device barrier and wait until all IO stops.
2626 * Then resize conf->mirrors and swap in the new r1bio pool.
2628 * At the same time, we "pack" the devices so that all the missing
2629 * devices have the higher raid_disk numbers.
2631 mempool_t
*newpool
, *oldpool
;
2632 struct pool_info
*newpoolinfo
;
2633 struct mirror_info
*newmirrors
;
2634 struct r1conf
*conf
= mddev
->private;
2635 int cnt
, raid_disks
;
2636 unsigned long flags
;
2639 /* Cannot change chunk_size, layout, or level */
2640 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2641 mddev
->layout
!= mddev
->new_layout
||
2642 mddev
->level
!= mddev
->new_level
) {
2643 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2644 mddev
->new_layout
= mddev
->layout
;
2645 mddev
->new_level
= mddev
->level
;
2649 err
= md_allow_write(mddev
);
2653 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2655 if (raid_disks
< conf
->raid_disks
) {
2657 for (d
= 0; d
< conf
->raid_disks
; d
++)
2658 if (conf
->mirrors
[d
].rdev
)
2660 if (cnt
> raid_disks
)
2664 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2667 newpoolinfo
->mddev
= mddev
;
2668 newpoolinfo
->raid_disks
= raid_disks
;
2670 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2671 r1bio_pool_free
, newpoolinfo
);
2676 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
, GFP_KERNEL
);
2679 mempool_destroy(newpool
);
2683 raise_barrier(conf
);
2685 /* ok, everything is stopped */
2686 oldpool
= conf
->r1bio_pool
;
2687 conf
->r1bio_pool
= newpool
;
2689 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2690 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
2691 if (rdev
&& rdev
->raid_disk
!= d2
) {
2692 sysfs_unlink_rdev(mddev
, rdev
);
2693 rdev
->raid_disk
= d2
;
2694 sysfs_unlink_rdev(mddev
, rdev
);
2695 if (sysfs_link_rdev(mddev
, rdev
))
2697 "md/raid1:%s: cannot register rd%d\n",
2698 mdname(mddev
), rdev
->raid_disk
);
2701 newmirrors
[d2
++].rdev
= rdev
;
2703 kfree(conf
->mirrors
);
2704 conf
->mirrors
= newmirrors
;
2705 kfree(conf
->poolinfo
);
2706 conf
->poolinfo
= newpoolinfo
;
2708 spin_lock_irqsave(&conf
->device_lock
, flags
);
2709 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2710 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2711 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2712 mddev
->delta_disks
= 0;
2714 conf
->last_used
= 0; /* just make sure it is in-range */
2715 lower_barrier(conf
);
2717 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2718 md_wakeup_thread(mddev
->thread
);
2720 mempool_destroy(oldpool
);
2724 static void raid1_quiesce(struct mddev
*mddev
, int state
)
2726 struct r1conf
*conf
= mddev
->private;
2729 case 2: /* wake for suspend */
2730 wake_up(&conf
->wait_barrier
);
2733 raise_barrier(conf
);
2736 lower_barrier(conf
);
2741 static void *raid1_takeover(struct mddev
*mddev
)
2743 /* raid1 can take over:
2744 * raid5 with 2 devices, any layout or chunk size
2746 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2747 struct r1conf
*conf
;
2748 mddev
->new_level
= 1;
2749 mddev
->new_layout
= 0;
2750 mddev
->new_chunk_sectors
= 0;
2751 conf
= setup_conf(mddev
);
2756 return ERR_PTR(-EINVAL
);
2759 static struct md_personality raid1_personality
=
2763 .owner
= THIS_MODULE
,
2764 .make_request
= make_request
,
2768 .error_handler
= error
,
2769 .hot_add_disk
= raid1_add_disk
,
2770 .hot_remove_disk
= raid1_remove_disk
,
2771 .spare_active
= raid1_spare_active
,
2772 .sync_request
= sync_request
,
2773 .resize
= raid1_resize
,
2775 .check_reshape
= raid1_reshape
,
2776 .quiesce
= raid1_quiesce
,
2777 .takeover
= raid1_takeover
,
2780 static int __init
raid_init(void)
2782 return register_md_personality(&raid1_personality
);
2785 static void raid_exit(void)
2787 unregister_md_personality(&raid1_personality
);
2790 module_init(raid_init
);
2791 module_exit(raid_exit
);
2792 MODULE_LICENSE("GPL");
2793 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2794 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2795 MODULE_ALIAS("md-raid1");
2796 MODULE_ALIAS("md-level-1");
2798 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);