nilfs2: unbreak compat ioctl
[zen-stable.git] / drivers / scsi / hpsa.c
blob865d452542be923ef7c02bc0f4eea816dfc898b3
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70 HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78 "Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82 "Use 'simple mode' rather than 'performant mode'");
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
101 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
102 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103 {0,}
106 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
112 static struct board_type products[] = {
113 {0x3241103C, "Smart Array P212", &SA5_access},
114 {0x3243103C, "Smart Array P410", &SA5_access},
115 {0x3245103C, "Smart Array P410i", &SA5_access},
116 {0x3247103C, "Smart Array P411", &SA5_access},
117 {0x3249103C, "Smart Array P812", &SA5_access},
118 {0x324a103C, "Smart Array P712m", &SA5_access},
119 {0x324b103C, "Smart Array P711m", &SA5_access},
120 {0x3350103C, "Smart Array", &SA5_access},
121 {0x3351103C, "Smart Array", &SA5_access},
122 {0x3352103C, "Smart Array", &SA5_access},
123 {0x3353103C, "Smart Array", &SA5_access},
124 {0x3354103C, "Smart Array", &SA5_access},
125 {0x3355103C, "Smart Array", &SA5_access},
126 {0x3356103C, "Smart Array", &SA5_access},
127 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
130 static int number_of_controllers;
132 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
133 static spinlock_t lockup_detector_lock;
134 static struct task_struct *hpsa_lockup_detector;
136 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
137 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
138 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
139 static void start_io(struct ctlr_info *h);
141 #ifdef CONFIG_COMPAT
142 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
143 #endif
145 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
146 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
147 static struct CommandList *cmd_alloc(struct ctlr_info *h);
148 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
149 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
150 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
151 int cmd_type);
153 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
154 static void hpsa_scan_start(struct Scsi_Host *);
155 static int hpsa_scan_finished(struct Scsi_Host *sh,
156 unsigned long elapsed_time);
157 static int hpsa_change_queue_depth(struct scsi_device *sdev,
158 int qdepth, int reason);
160 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
161 static int hpsa_slave_alloc(struct scsi_device *sdev);
162 static void hpsa_slave_destroy(struct scsi_device *sdev);
164 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
165 static int check_for_unit_attention(struct ctlr_info *h,
166 struct CommandList *c);
167 static void check_ioctl_unit_attention(struct ctlr_info *h,
168 struct CommandList *c);
169 /* performant mode helper functions */
170 static void calc_bucket_map(int *bucket, int num_buckets,
171 int nsgs, int *bucket_map);
172 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
173 static inline u32 next_command(struct ctlr_info *h);
174 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
175 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
176 u64 *cfg_offset);
177 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
178 unsigned long *memory_bar);
179 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
180 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
181 void __iomem *vaddr, int wait_for_ready);
182 #define BOARD_NOT_READY 0
183 #define BOARD_READY 1
185 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
187 unsigned long *priv = shost_priv(sdev->host);
188 return (struct ctlr_info *) *priv;
191 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
193 unsigned long *priv = shost_priv(sh);
194 return (struct ctlr_info *) *priv;
197 static int check_for_unit_attention(struct ctlr_info *h,
198 struct CommandList *c)
200 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
201 return 0;
203 switch (c->err_info->SenseInfo[12]) {
204 case STATE_CHANGED:
205 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
206 "detected, command retried\n", h->ctlr);
207 break;
208 case LUN_FAILED:
209 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
210 "detected, action required\n", h->ctlr);
211 break;
212 case REPORT_LUNS_CHANGED:
213 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
214 "changed, action required\n", h->ctlr);
216 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
218 break;
219 case POWER_OR_RESET:
220 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
221 "or device reset detected\n", h->ctlr);
222 break;
223 case UNIT_ATTENTION_CLEARED:
224 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
225 "cleared by another initiator\n", h->ctlr);
226 break;
227 default:
228 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
229 "unit attention detected\n", h->ctlr);
230 break;
232 return 1;
235 static ssize_t host_store_rescan(struct device *dev,
236 struct device_attribute *attr,
237 const char *buf, size_t count)
239 struct ctlr_info *h;
240 struct Scsi_Host *shost = class_to_shost(dev);
241 h = shost_to_hba(shost);
242 hpsa_scan_start(h->scsi_host);
243 return count;
246 static ssize_t host_show_firmware_revision(struct device *dev,
247 struct device_attribute *attr, char *buf)
249 struct ctlr_info *h;
250 struct Scsi_Host *shost = class_to_shost(dev);
251 unsigned char *fwrev;
253 h = shost_to_hba(shost);
254 if (!h->hba_inquiry_data)
255 return 0;
256 fwrev = &h->hba_inquiry_data[32];
257 return snprintf(buf, 20, "%c%c%c%c\n",
258 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
261 static ssize_t host_show_commands_outstanding(struct device *dev,
262 struct device_attribute *attr, char *buf)
264 struct Scsi_Host *shost = class_to_shost(dev);
265 struct ctlr_info *h = shost_to_hba(shost);
267 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
270 static ssize_t host_show_transport_mode(struct device *dev,
271 struct device_attribute *attr, char *buf)
273 struct ctlr_info *h;
274 struct Scsi_Host *shost = class_to_shost(dev);
276 h = shost_to_hba(shost);
277 return snprintf(buf, 20, "%s\n",
278 h->transMethod & CFGTBL_Trans_Performant ?
279 "performant" : "simple");
282 /* List of controllers which cannot be hard reset on kexec with reset_devices */
283 static u32 unresettable_controller[] = {
284 0x324a103C, /* Smart Array P712m */
285 0x324b103C, /* SmartArray P711m */
286 0x3223103C, /* Smart Array P800 */
287 0x3234103C, /* Smart Array P400 */
288 0x3235103C, /* Smart Array P400i */
289 0x3211103C, /* Smart Array E200i */
290 0x3212103C, /* Smart Array E200 */
291 0x3213103C, /* Smart Array E200i */
292 0x3214103C, /* Smart Array E200i */
293 0x3215103C, /* Smart Array E200i */
294 0x3237103C, /* Smart Array E500 */
295 0x323D103C, /* Smart Array P700m */
296 0x409C0E11, /* Smart Array 6400 */
297 0x409D0E11, /* Smart Array 6400 EM */
300 /* List of controllers which cannot even be soft reset */
301 static u32 soft_unresettable_controller[] = {
302 /* Exclude 640x boards. These are two pci devices in one slot
303 * which share a battery backed cache module. One controls the
304 * cache, the other accesses the cache through the one that controls
305 * it. If we reset the one controlling the cache, the other will
306 * likely not be happy. Just forbid resetting this conjoined mess.
307 * The 640x isn't really supported by hpsa anyway.
309 0x409C0E11, /* Smart Array 6400 */
310 0x409D0E11, /* Smart Array 6400 EM */
313 static int ctlr_is_hard_resettable(u32 board_id)
315 int i;
317 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
318 if (unresettable_controller[i] == board_id)
319 return 0;
320 return 1;
323 static int ctlr_is_soft_resettable(u32 board_id)
325 int i;
327 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
328 if (soft_unresettable_controller[i] == board_id)
329 return 0;
330 return 1;
333 static int ctlr_is_resettable(u32 board_id)
335 return ctlr_is_hard_resettable(board_id) ||
336 ctlr_is_soft_resettable(board_id);
339 static ssize_t host_show_resettable(struct device *dev,
340 struct device_attribute *attr, char *buf)
342 struct ctlr_info *h;
343 struct Scsi_Host *shost = class_to_shost(dev);
345 h = shost_to_hba(shost);
346 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
349 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
351 return (scsi3addr[3] & 0xC0) == 0x40;
354 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
355 "UNKNOWN"
357 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
359 static ssize_t raid_level_show(struct device *dev,
360 struct device_attribute *attr, char *buf)
362 ssize_t l = 0;
363 unsigned char rlevel;
364 struct ctlr_info *h;
365 struct scsi_device *sdev;
366 struct hpsa_scsi_dev_t *hdev;
367 unsigned long flags;
369 sdev = to_scsi_device(dev);
370 h = sdev_to_hba(sdev);
371 spin_lock_irqsave(&h->lock, flags);
372 hdev = sdev->hostdata;
373 if (!hdev) {
374 spin_unlock_irqrestore(&h->lock, flags);
375 return -ENODEV;
378 /* Is this even a logical drive? */
379 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
380 spin_unlock_irqrestore(&h->lock, flags);
381 l = snprintf(buf, PAGE_SIZE, "N/A\n");
382 return l;
385 rlevel = hdev->raid_level;
386 spin_unlock_irqrestore(&h->lock, flags);
387 if (rlevel > RAID_UNKNOWN)
388 rlevel = RAID_UNKNOWN;
389 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
390 return l;
393 static ssize_t lunid_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
396 struct ctlr_info *h;
397 struct scsi_device *sdev;
398 struct hpsa_scsi_dev_t *hdev;
399 unsigned long flags;
400 unsigned char lunid[8];
402 sdev = to_scsi_device(dev);
403 h = sdev_to_hba(sdev);
404 spin_lock_irqsave(&h->lock, flags);
405 hdev = sdev->hostdata;
406 if (!hdev) {
407 spin_unlock_irqrestore(&h->lock, flags);
408 return -ENODEV;
410 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
411 spin_unlock_irqrestore(&h->lock, flags);
412 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
413 lunid[0], lunid[1], lunid[2], lunid[3],
414 lunid[4], lunid[5], lunid[6], lunid[7]);
417 static ssize_t unique_id_show(struct device *dev,
418 struct device_attribute *attr, char *buf)
420 struct ctlr_info *h;
421 struct scsi_device *sdev;
422 struct hpsa_scsi_dev_t *hdev;
423 unsigned long flags;
424 unsigned char sn[16];
426 sdev = to_scsi_device(dev);
427 h = sdev_to_hba(sdev);
428 spin_lock_irqsave(&h->lock, flags);
429 hdev = sdev->hostdata;
430 if (!hdev) {
431 spin_unlock_irqrestore(&h->lock, flags);
432 return -ENODEV;
434 memcpy(sn, hdev->device_id, sizeof(sn));
435 spin_unlock_irqrestore(&h->lock, flags);
436 return snprintf(buf, 16 * 2 + 2,
437 "%02X%02X%02X%02X%02X%02X%02X%02X"
438 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
439 sn[0], sn[1], sn[2], sn[3],
440 sn[4], sn[5], sn[6], sn[7],
441 sn[8], sn[9], sn[10], sn[11],
442 sn[12], sn[13], sn[14], sn[15]);
445 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
446 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
447 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
448 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
449 static DEVICE_ATTR(firmware_revision, S_IRUGO,
450 host_show_firmware_revision, NULL);
451 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
452 host_show_commands_outstanding, NULL);
453 static DEVICE_ATTR(transport_mode, S_IRUGO,
454 host_show_transport_mode, NULL);
455 static DEVICE_ATTR(resettable, S_IRUGO,
456 host_show_resettable, NULL);
458 static struct device_attribute *hpsa_sdev_attrs[] = {
459 &dev_attr_raid_level,
460 &dev_attr_lunid,
461 &dev_attr_unique_id,
462 NULL,
465 static struct device_attribute *hpsa_shost_attrs[] = {
466 &dev_attr_rescan,
467 &dev_attr_firmware_revision,
468 &dev_attr_commands_outstanding,
469 &dev_attr_transport_mode,
470 &dev_attr_resettable,
471 NULL,
474 static struct scsi_host_template hpsa_driver_template = {
475 .module = THIS_MODULE,
476 .name = "hpsa",
477 .proc_name = "hpsa",
478 .queuecommand = hpsa_scsi_queue_command,
479 .scan_start = hpsa_scan_start,
480 .scan_finished = hpsa_scan_finished,
481 .change_queue_depth = hpsa_change_queue_depth,
482 .this_id = -1,
483 .use_clustering = ENABLE_CLUSTERING,
484 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
485 .ioctl = hpsa_ioctl,
486 .slave_alloc = hpsa_slave_alloc,
487 .slave_destroy = hpsa_slave_destroy,
488 #ifdef CONFIG_COMPAT
489 .compat_ioctl = hpsa_compat_ioctl,
490 #endif
491 .sdev_attrs = hpsa_sdev_attrs,
492 .shost_attrs = hpsa_shost_attrs,
493 .max_sectors = 8192,
497 /* Enqueuing and dequeuing functions for cmdlists. */
498 static inline void addQ(struct list_head *list, struct CommandList *c)
500 list_add_tail(&c->list, list);
503 static inline u32 next_command(struct ctlr_info *h)
505 u32 a;
507 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
508 return h->access.command_completed(h);
510 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
511 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
512 (h->reply_pool_head)++;
513 h->commands_outstanding--;
514 } else {
515 a = FIFO_EMPTY;
517 /* Check for wraparound */
518 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
519 h->reply_pool_head = h->reply_pool;
520 h->reply_pool_wraparound ^= 1;
522 return a;
525 /* set_performant_mode: Modify the tag for cciss performant
526 * set bit 0 for pull model, bits 3-1 for block fetch
527 * register number
529 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
531 if (likely(h->transMethod & CFGTBL_Trans_Performant))
532 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
535 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
536 struct CommandList *c)
538 unsigned long flags;
540 set_performant_mode(h, c);
541 spin_lock_irqsave(&h->lock, flags);
542 addQ(&h->reqQ, c);
543 h->Qdepth++;
544 start_io(h);
545 spin_unlock_irqrestore(&h->lock, flags);
548 static inline void removeQ(struct CommandList *c)
550 if (WARN_ON(list_empty(&c->list)))
551 return;
552 list_del_init(&c->list);
555 static inline int is_hba_lunid(unsigned char scsi3addr[])
557 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
560 static inline int is_scsi_rev_5(struct ctlr_info *h)
562 if (!h->hba_inquiry_data)
563 return 0;
564 if ((h->hba_inquiry_data[2] & 0x07) == 5)
565 return 1;
566 return 0;
569 static int hpsa_find_target_lun(struct ctlr_info *h,
570 unsigned char scsi3addr[], int bus, int *target, int *lun)
572 /* finds an unused bus, target, lun for a new physical device
573 * assumes h->devlock is held
575 int i, found = 0;
576 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
578 memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
580 for (i = 0; i < h->ndevices; i++) {
581 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
582 set_bit(h->dev[i]->target, lun_taken);
585 for (i = 0; i < HPSA_MAX_DEVICES; i++) {
586 if (!test_bit(i, lun_taken)) {
587 /* *bus = 1; */
588 *target = i;
589 *lun = 0;
590 found = 1;
591 break;
594 return !found;
597 /* Add an entry into h->dev[] array. */
598 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
599 struct hpsa_scsi_dev_t *device,
600 struct hpsa_scsi_dev_t *added[], int *nadded)
602 /* assumes h->devlock is held */
603 int n = h->ndevices;
604 int i;
605 unsigned char addr1[8], addr2[8];
606 struct hpsa_scsi_dev_t *sd;
608 if (n >= HPSA_MAX_DEVICES) {
609 dev_err(&h->pdev->dev, "too many devices, some will be "
610 "inaccessible.\n");
611 return -1;
614 /* physical devices do not have lun or target assigned until now. */
615 if (device->lun != -1)
616 /* Logical device, lun is already assigned. */
617 goto lun_assigned;
619 /* If this device a non-zero lun of a multi-lun device
620 * byte 4 of the 8-byte LUN addr will contain the logical
621 * unit no, zero otherise.
623 if (device->scsi3addr[4] == 0) {
624 /* This is not a non-zero lun of a multi-lun device */
625 if (hpsa_find_target_lun(h, device->scsi3addr,
626 device->bus, &device->target, &device->lun) != 0)
627 return -1;
628 goto lun_assigned;
631 /* This is a non-zero lun of a multi-lun device.
632 * Search through our list and find the device which
633 * has the same 8 byte LUN address, excepting byte 4.
634 * Assign the same bus and target for this new LUN.
635 * Use the logical unit number from the firmware.
637 memcpy(addr1, device->scsi3addr, 8);
638 addr1[4] = 0;
639 for (i = 0; i < n; i++) {
640 sd = h->dev[i];
641 memcpy(addr2, sd->scsi3addr, 8);
642 addr2[4] = 0;
643 /* differ only in byte 4? */
644 if (memcmp(addr1, addr2, 8) == 0) {
645 device->bus = sd->bus;
646 device->target = sd->target;
647 device->lun = device->scsi3addr[4];
648 break;
651 if (device->lun == -1) {
652 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
653 " suspect firmware bug or unsupported hardware "
654 "configuration.\n");
655 return -1;
658 lun_assigned:
660 h->dev[n] = device;
661 h->ndevices++;
662 added[*nadded] = device;
663 (*nadded)++;
665 /* initially, (before registering with scsi layer) we don't
666 * know our hostno and we don't want to print anything first
667 * time anyway (the scsi layer's inquiries will show that info)
669 /* if (hostno != -1) */
670 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
671 scsi_device_type(device->devtype), hostno,
672 device->bus, device->target, device->lun);
673 return 0;
676 /* Replace an entry from h->dev[] array. */
677 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
678 int entry, struct hpsa_scsi_dev_t *new_entry,
679 struct hpsa_scsi_dev_t *added[], int *nadded,
680 struct hpsa_scsi_dev_t *removed[], int *nremoved)
682 /* assumes h->devlock is held */
683 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
684 removed[*nremoved] = h->dev[entry];
685 (*nremoved)++;
688 * New physical devices won't have target/lun assigned yet
689 * so we need to preserve the values in the slot we are replacing.
691 if (new_entry->target == -1) {
692 new_entry->target = h->dev[entry]->target;
693 new_entry->lun = h->dev[entry]->lun;
696 h->dev[entry] = new_entry;
697 added[*nadded] = new_entry;
698 (*nadded)++;
699 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
700 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
701 new_entry->target, new_entry->lun);
704 /* Remove an entry from h->dev[] array. */
705 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
706 struct hpsa_scsi_dev_t *removed[], int *nremoved)
708 /* assumes h->devlock is held */
709 int i;
710 struct hpsa_scsi_dev_t *sd;
712 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
714 sd = h->dev[entry];
715 removed[*nremoved] = h->dev[entry];
716 (*nremoved)++;
718 for (i = entry; i < h->ndevices-1; i++)
719 h->dev[i] = h->dev[i+1];
720 h->ndevices--;
721 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
722 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
723 sd->lun);
726 #define SCSI3ADDR_EQ(a, b) ( \
727 (a)[7] == (b)[7] && \
728 (a)[6] == (b)[6] && \
729 (a)[5] == (b)[5] && \
730 (a)[4] == (b)[4] && \
731 (a)[3] == (b)[3] && \
732 (a)[2] == (b)[2] && \
733 (a)[1] == (b)[1] && \
734 (a)[0] == (b)[0])
736 static void fixup_botched_add(struct ctlr_info *h,
737 struct hpsa_scsi_dev_t *added)
739 /* called when scsi_add_device fails in order to re-adjust
740 * h->dev[] to match the mid layer's view.
742 unsigned long flags;
743 int i, j;
745 spin_lock_irqsave(&h->lock, flags);
746 for (i = 0; i < h->ndevices; i++) {
747 if (h->dev[i] == added) {
748 for (j = i; j < h->ndevices-1; j++)
749 h->dev[j] = h->dev[j+1];
750 h->ndevices--;
751 break;
754 spin_unlock_irqrestore(&h->lock, flags);
755 kfree(added);
758 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
759 struct hpsa_scsi_dev_t *dev2)
761 /* we compare everything except lun and target as these
762 * are not yet assigned. Compare parts likely
763 * to differ first
765 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
766 sizeof(dev1->scsi3addr)) != 0)
767 return 0;
768 if (memcmp(dev1->device_id, dev2->device_id,
769 sizeof(dev1->device_id)) != 0)
770 return 0;
771 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
772 return 0;
773 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
774 return 0;
775 if (dev1->devtype != dev2->devtype)
776 return 0;
777 if (dev1->bus != dev2->bus)
778 return 0;
779 return 1;
782 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
783 * and return needle location in *index. If scsi3addr matches, but not
784 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
785 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
787 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
788 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
789 int *index)
791 int i;
792 #define DEVICE_NOT_FOUND 0
793 #define DEVICE_CHANGED 1
794 #define DEVICE_SAME 2
795 for (i = 0; i < haystack_size; i++) {
796 if (haystack[i] == NULL) /* previously removed. */
797 continue;
798 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
799 *index = i;
800 if (device_is_the_same(needle, haystack[i]))
801 return DEVICE_SAME;
802 else
803 return DEVICE_CHANGED;
806 *index = -1;
807 return DEVICE_NOT_FOUND;
810 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
811 struct hpsa_scsi_dev_t *sd[], int nsds)
813 /* sd contains scsi3 addresses and devtypes, and inquiry
814 * data. This function takes what's in sd to be the current
815 * reality and updates h->dev[] to reflect that reality.
817 int i, entry, device_change, changes = 0;
818 struct hpsa_scsi_dev_t *csd;
819 unsigned long flags;
820 struct hpsa_scsi_dev_t **added, **removed;
821 int nadded, nremoved;
822 struct Scsi_Host *sh = NULL;
824 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
825 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
827 if (!added || !removed) {
828 dev_warn(&h->pdev->dev, "out of memory in "
829 "adjust_hpsa_scsi_table\n");
830 goto free_and_out;
833 spin_lock_irqsave(&h->devlock, flags);
835 /* find any devices in h->dev[] that are not in
836 * sd[] and remove them from h->dev[], and for any
837 * devices which have changed, remove the old device
838 * info and add the new device info.
840 i = 0;
841 nremoved = 0;
842 nadded = 0;
843 while (i < h->ndevices) {
844 csd = h->dev[i];
845 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
846 if (device_change == DEVICE_NOT_FOUND) {
847 changes++;
848 hpsa_scsi_remove_entry(h, hostno, i,
849 removed, &nremoved);
850 continue; /* remove ^^^, hence i not incremented */
851 } else if (device_change == DEVICE_CHANGED) {
852 changes++;
853 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
854 added, &nadded, removed, &nremoved);
855 /* Set it to NULL to prevent it from being freed
856 * at the bottom of hpsa_update_scsi_devices()
858 sd[entry] = NULL;
860 i++;
863 /* Now, make sure every device listed in sd[] is also
864 * listed in h->dev[], adding them if they aren't found
867 for (i = 0; i < nsds; i++) {
868 if (!sd[i]) /* if already added above. */
869 continue;
870 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
871 h->ndevices, &entry);
872 if (device_change == DEVICE_NOT_FOUND) {
873 changes++;
874 if (hpsa_scsi_add_entry(h, hostno, sd[i],
875 added, &nadded) != 0)
876 break;
877 sd[i] = NULL; /* prevent from being freed later. */
878 } else if (device_change == DEVICE_CHANGED) {
879 /* should never happen... */
880 changes++;
881 dev_warn(&h->pdev->dev,
882 "device unexpectedly changed.\n");
883 /* but if it does happen, we just ignore that device */
886 spin_unlock_irqrestore(&h->devlock, flags);
888 /* Don't notify scsi mid layer of any changes the first time through
889 * (or if there are no changes) scsi_scan_host will do it later the
890 * first time through.
892 if (hostno == -1 || !changes)
893 goto free_and_out;
895 sh = h->scsi_host;
896 /* Notify scsi mid layer of any removed devices */
897 for (i = 0; i < nremoved; i++) {
898 struct scsi_device *sdev =
899 scsi_device_lookup(sh, removed[i]->bus,
900 removed[i]->target, removed[i]->lun);
901 if (sdev != NULL) {
902 scsi_remove_device(sdev);
903 scsi_device_put(sdev);
904 } else {
905 /* We don't expect to get here.
906 * future cmds to this device will get selection
907 * timeout as if the device was gone.
909 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
910 " for removal.", hostno, removed[i]->bus,
911 removed[i]->target, removed[i]->lun);
913 kfree(removed[i]);
914 removed[i] = NULL;
917 /* Notify scsi mid layer of any added devices */
918 for (i = 0; i < nadded; i++) {
919 if (scsi_add_device(sh, added[i]->bus,
920 added[i]->target, added[i]->lun) == 0)
921 continue;
922 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
923 "device not added.\n", hostno, added[i]->bus,
924 added[i]->target, added[i]->lun);
925 /* now we have to remove it from h->dev,
926 * since it didn't get added to scsi mid layer
928 fixup_botched_add(h, added[i]);
931 free_and_out:
932 kfree(added);
933 kfree(removed);
937 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
938 * Assume's h->devlock is held.
940 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
941 int bus, int target, int lun)
943 int i;
944 struct hpsa_scsi_dev_t *sd;
946 for (i = 0; i < h->ndevices; i++) {
947 sd = h->dev[i];
948 if (sd->bus == bus && sd->target == target && sd->lun == lun)
949 return sd;
951 return NULL;
954 /* link sdev->hostdata to our per-device structure. */
955 static int hpsa_slave_alloc(struct scsi_device *sdev)
957 struct hpsa_scsi_dev_t *sd;
958 unsigned long flags;
959 struct ctlr_info *h;
961 h = sdev_to_hba(sdev);
962 spin_lock_irqsave(&h->devlock, flags);
963 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
964 sdev_id(sdev), sdev->lun);
965 if (sd != NULL)
966 sdev->hostdata = sd;
967 spin_unlock_irqrestore(&h->devlock, flags);
968 return 0;
971 static void hpsa_slave_destroy(struct scsi_device *sdev)
973 /* nothing to do. */
976 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
978 int i;
980 if (!h->cmd_sg_list)
981 return;
982 for (i = 0; i < h->nr_cmds; i++) {
983 kfree(h->cmd_sg_list[i]);
984 h->cmd_sg_list[i] = NULL;
986 kfree(h->cmd_sg_list);
987 h->cmd_sg_list = NULL;
990 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
992 int i;
994 if (h->chainsize <= 0)
995 return 0;
997 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
998 GFP_KERNEL);
999 if (!h->cmd_sg_list)
1000 return -ENOMEM;
1001 for (i = 0; i < h->nr_cmds; i++) {
1002 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1003 h->chainsize, GFP_KERNEL);
1004 if (!h->cmd_sg_list[i])
1005 goto clean;
1007 return 0;
1009 clean:
1010 hpsa_free_sg_chain_blocks(h);
1011 return -ENOMEM;
1014 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1015 struct CommandList *c)
1017 struct SGDescriptor *chain_sg, *chain_block;
1018 u64 temp64;
1020 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1021 chain_block = h->cmd_sg_list[c->cmdindex];
1022 chain_sg->Ext = HPSA_SG_CHAIN;
1023 chain_sg->Len = sizeof(*chain_sg) *
1024 (c->Header.SGTotal - h->max_cmd_sg_entries);
1025 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1026 PCI_DMA_TODEVICE);
1027 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1028 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1031 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1032 struct CommandList *c)
1034 struct SGDescriptor *chain_sg;
1035 union u64bit temp64;
1037 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1038 return;
1040 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1041 temp64.val32.lower = chain_sg->Addr.lower;
1042 temp64.val32.upper = chain_sg->Addr.upper;
1043 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1046 static void complete_scsi_command(struct CommandList *cp)
1048 struct scsi_cmnd *cmd;
1049 struct ctlr_info *h;
1050 struct ErrorInfo *ei;
1052 unsigned char sense_key;
1053 unsigned char asc; /* additional sense code */
1054 unsigned char ascq; /* additional sense code qualifier */
1055 unsigned long sense_data_size;
1057 ei = cp->err_info;
1058 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1059 h = cp->h;
1061 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1062 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1063 hpsa_unmap_sg_chain_block(h, cp);
1065 cmd->result = (DID_OK << 16); /* host byte */
1066 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1067 cmd->result |= ei->ScsiStatus;
1069 /* copy the sense data whether we need to or not. */
1070 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1071 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1072 else
1073 sense_data_size = sizeof(ei->SenseInfo);
1074 if (ei->SenseLen < sense_data_size)
1075 sense_data_size = ei->SenseLen;
1077 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1078 scsi_set_resid(cmd, ei->ResidualCnt);
1080 if (ei->CommandStatus == 0) {
1081 cmd->scsi_done(cmd);
1082 cmd_free(h, cp);
1083 return;
1086 /* an error has occurred */
1087 switch (ei->CommandStatus) {
1089 case CMD_TARGET_STATUS:
1090 if (ei->ScsiStatus) {
1091 /* Get sense key */
1092 sense_key = 0xf & ei->SenseInfo[2];
1093 /* Get additional sense code */
1094 asc = ei->SenseInfo[12];
1095 /* Get addition sense code qualifier */
1096 ascq = ei->SenseInfo[13];
1099 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1100 if (check_for_unit_attention(h, cp)) {
1101 cmd->result = DID_SOFT_ERROR << 16;
1102 break;
1104 if (sense_key == ILLEGAL_REQUEST) {
1106 * SCSI REPORT_LUNS is commonly unsupported on
1107 * Smart Array. Suppress noisy complaint.
1109 if (cp->Request.CDB[0] == REPORT_LUNS)
1110 break;
1112 /* If ASC/ASCQ indicate Logical Unit
1113 * Not Supported condition,
1115 if ((asc == 0x25) && (ascq == 0x0)) {
1116 dev_warn(&h->pdev->dev, "cp %p "
1117 "has check condition\n", cp);
1118 break;
1122 if (sense_key == NOT_READY) {
1123 /* If Sense is Not Ready, Logical Unit
1124 * Not ready, Manual Intervention
1125 * required
1127 if ((asc == 0x04) && (ascq == 0x03)) {
1128 dev_warn(&h->pdev->dev, "cp %p "
1129 "has check condition: unit "
1130 "not ready, manual "
1131 "intervention required\n", cp);
1132 break;
1135 if (sense_key == ABORTED_COMMAND) {
1136 /* Aborted command is retryable */
1137 dev_warn(&h->pdev->dev, "cp %p "
1138 "has check condition: aborted command: "
1139 "ASC: 0x%x, ASCQ: 0x%x\n",
1140 cp, asc, ascq);
1141 cmd->result = DID_SOFT_ERROR << 16;
1142 break;
1144 /* Must be some other type of check condition */
1145 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1146 "unknown type: "
1147 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1148 "Returning result: 0x%x, "
1149 "cmd=[%02x %02x %02x %02x %02x "
1150 "%02x %02x %02x %02x %02x %02x "
1151 "%02x %02x %02x %02x %02x]\n",
1152 cp, sense_key, asc, ascq,
1153 cmd->result,
1154 cmd->cmnd[0], cmd->cmnd[1],
1155 cmd->cmnd[2], cmd->cmnd[3],
1156 cmd->cmnd[4], cmd->cmnd[5],
1157 cmd->cmnd[6], cmd->cmnd[7],
1158 cmd->cmnd[8], cmd->cmnd[9],
1159 cmd->cmnd[10], cmd->cmnd[11],
1160 cmd->cmnd[12], cmd->cmnd[13],
1161 cmd->cmnd[14], cmd->cmnd[15]);
1162 break;
1166 /* Problem was not a check condition
1167 * Pass it up to the upper layers...
1169 if (ei->ScsiStatus) {
1170 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1171 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1172 "Returning result: 0x%x\n",
1173 cp, ei->ScsiStatus,
1174 sense_key, asc, ascq,
1175 cmd->result);
1176 } else { /* scsi status is zero??? How??? */
1177 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1178 "Returning no connection.\n", cp),
1180 /* Ordinarily, this case should never happen,
1181 * but there is a bug in some released firmware
1182 * revisions that allows it to happen if, for
1183 * example, a 4100 backplane loses power and
1184 * the tape drive is in it. We assume that
1185 * it's a fatal error of some kind because we
1186 * can't show that it wasn't. We will make it
1187 * look like selection timeout since that is
1188 * the most common reason for this to occur,
1189 * and it's severe enough.
1192 cmd->result = DID_NO_CONNECT << 16;
1194 break;
1196 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1197 break;
1198 case CMD_DATA_OVERRUN:
1199 dev_warn(&h->pdev->dev, "cp %p has"
1200 " completed with data overrun "
1201 "reported\n", cp);
1202 break;
1203 case CMD_INVALID: {
1204 /* print_bytes(cp, sizeof(*cp), 1, 0);
1205 print_cmd(cp); */
1206 /* We get CMD_INVALID if you address a non-existent device
1207 * instead of a selection timeout (no response). You will
1208 * see this if you yank out a drive, then try to access it.
1209 * This is kind of a shame because it means that any other
1210 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1211 * missing target. */
1212 cmd->result = DID_NO_CONNECT << 16;
1214 break;
1215 case CMD_PROTOCOL_ERR:
1216 dev_warn(&h->pdev->dev, "cp %p has "
1217 "protocol error \n", cp);
1218 break;
1219 case CMD_HARDWARE_ERR:
1220 cmd->result = DID_ERROR << 16;
1221 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1222 break;
1223 case CMD_CONNECTION_LOST:
1224 cmd->result = DID_ERROR << 16;
1225 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1226 break;
1227 case CMD_ABORTED:
1228 cmd->result = DID_ABORT << 16;
1229 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1230 cp, ei->ScsiStatus);
1231 break;
1232 case CMD_ABORT_FAILED:
1233 cmd->result = DID_ERROR << 16;
1234 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1235 break;
1236 case CMD_UNSOLICITED_ABORT:
1237 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1238 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1239 "abort\n", cp);
1240 break;
1241 case CMD_TIMEOUT:
1242 cmd->result = DID_TIME_OUT << 16;
1243 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1244 break;
1245 case CMD_UNABORTABLE:
1246 cmd->result = DID_ERROR << 16;
1247 dev_warn(&h->pdev->dev, "Command unabortable\n");
1248 break;
1249 default:
1250 cmd->result = DID_ERROR << 16;
1251 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1252 cp, ei->CommandStatus);
1254 cmd->scsi_done(cmd);
1255 cmd_free(h, cp);
1258 static int hpsa_scsi_detect(struct ctlr_info *h)
1260 struct Scsi_Host *sh;
1261 int error;
1263 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1264 if (sh == NULL)
1265 goto fail;
1267 sh->io_port = 0;
1268 sh->n_io_port = 0;
1269 sh->this_id = -1;
1270 sh->max_channel = 3;
1271 sh->max_cmd_len = MAX_COMMAND_SIZE;
1272 sh->max_lun = HPSA_MAX_LUN;
1273 sh->max_id = HPSA_MAX_LUN;
1274 sh->can_queue = h->nr_cmds;
1275 sh->cmd_per_lun = h->nr_cmds;
1276 sh->sg_tablesize = h->maxsgentries;
1277 h->scsi_host = sh;
1278 sh->hostdata[0] = (unsigned long) h;
1279 sh->irq = h->intr[h->intr_mode];
1280 sh->unique_id = sh->irq;
1281 error = scsi_add_host(sh, &h->pdev->dev);
1282 if (error)
1283 goto fail_host_put;
1284 scsi_scan_host(sh);
1285 return 0;
1287 fail_host_put:
1288 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1289 " failed for controller %d\n", h->ctlr);
1290 scsi_host_put(sh);
1291 return error;
1292 fail:
1293 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1294 " failed for controller %d\n", h->ctlr);
1295 return -ENOMEM;
1298 static void hpsa_pci_unmap(struct pci_dev *pdev,
1299 struct CommandList *c, int sg_used, int data_direction)
1301 int i;
1302 union u64bit addr64;
1304 for (i = 0; i < sg_used; i++) {
1305 addr64.val32.lower = c->SG[i].Addr.lower;
1306 addr64.val32.upper = c->SG[i].Addr.upper;
1307 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1308 data_direction);
1312 static void hpsa_map_one(struct pci_dev *pdev,
1313 struct CommandList *cp,
1314 unsigned char *buf,
1315 size_t buflen,
1316 int data_direction)
1318 u64 addr64;
1320 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1321 cp->Header.SGList = 0;
1322 cp->Header.SGTotal = 0;
1323 return;
1326 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1327 cp->SG[0].Addr.lower =
1328 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1329 cp->SG[0].Addr.upper =
1330 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1331 cp->SG[0].Len = buflen;
1332 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1333 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1336 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1337 struct CommandList *c)
1339 DECLARE_COMPLETION_ONSTACK(wait);
1341 c->waiting = &wait;
1342 enqueue_cmd_and_start_io(h, c);
1343 wait_for_completion(&wait);
1346 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1347 struct CommandList *c)
1349 unsigned long flags;
1351 /* If controller lockup detected, fake a hardware error. */
1352 spin_lock_irqsave(&h->lock, flags);
1353 if (unlikely(h->lockup_detected)) {
1354 spin_unlock_irqrestore(&h->lock, flags);
1355 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1356 } else {
1357 spin_unlock_irqrestore(&h->lock, flags);
1358 hpsa_scsi_do_simple_cmd_core(h, c);
1362 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1363 struct CommandList *c, int data_direction)
1365 int retry_count = 0;
1367 do {
1368 memset(c->err_info, 0, sizeof(*c->err_info));
1369 hpsa_scsi_do_simple_cmd_core(h, c);
1370 retry_count++;
1371 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1372 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1375 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1377 struct ErrorInfo *ei;
1378 struct device *d = &cp->h->pdev->dev;
1380 ei = cp->err_info;
1381 switch (ei->CommandStatus) {
1382 case CMD_TARGET_STATUS:
1383 dev_warn(d, "cmd %p has completed with errors\n", cp);
1384 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1385 ei->ScsiStatus);
1386 if (ei->ScsiStatus == 0)
1387 dev_warn(d, "SCSI status is abnormally zero. "
1388 "(probably indicates selection timeout "
1389 "reported incorrectly due to a known "
1390 "firmware bug, circa July, 2001.)\n");
1391 break;
1392 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1393 dev_info(d, "UNDERRUN\n");
1394 break;
1395 case CMD_DATA_OVERRUN:
1396 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1397 break;
1398 case CMD_INVALID: {
1399 /* controller unfortunately reports SCSI passthru's
1400 * to non-existent targets as invalid commands.
1402 dev_warn(d, "cp %p is reported invalid (probably means "
1403 "target device no longer present)\n", cp);
1404 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1405 print_cmd(cp); */
1407 break;
1408 case CMD_PROTOCOL_ERR:
1409 dev_warn(d, "cp %p has protocol error \n", cp);
1410 break;
1411 case CMD_HARDWARE_ERR:
1412 /* cmd->result = DID_ERROR << 16; */
1413 dev_warn(d, "cp %p had hardware error\n", cp);
1414 break;
1415 case CMD_CONNECTION_LOST:
1416 dev_warn(d, "cp %p had connection lost\n", cp);
1417 break;
1418 case CMD_ABORTED:
1419 dev_warn(d, "cp %p was aborted\n", cp);
1420 break;
1421 case CMD_ABORT_FAILED:
1422 dev_warn(d, "cp %p reports abort failed\n", cp);
1423 break;
1424 case CMD_UNSOLICITED_ABORT:
1425 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1426 break;
1427 case CMD_TIMEOUT:
1428 dev_warn(d, "cp %p timed out\n", cp);
1429 break;
1430 case CMD_UNABORTABLE:
1431 dev_warn(d, "Command unabortable\n");
1432 break;
1433 default:
1434 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1435 ei->CommandStatus);
1439 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1440 unsigned char page, unsigned char *buf,
1441 unsigned char bufsize)
1443 int rc = IO_OK;
1444 struct CommandList *c;
1445 struct ErrorInfo *ei;
1447 c = cmd_special_alloc(h);
1449 if (c == NULL) { /* trouble... */
1450 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1451 return -ENOMEM;
1454 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1455 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1456 ei = c->err_info;
1457 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1458 hpsa_scsi_interpret_error(c);
1459 rc = -1;
1461 cmd_special_free(h, c);
1462 return rc;
1465 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1467 int rc = IO_OK;
1468 struct CommandList *c;
1469 struct ErrorInfo *ei;
1471 c = cmd_special_alloc(h);
1473 if (c == NULL) { /* trouble... */
1474 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1475 return -ENOMEM;
1478 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1479 hpsa_scsi_do_simple_cmd_core(h, c);
1480 /* no unmap needed here because no data xfer. */
1482 ei = c->err_info;
1483 if (ei->CommandStatus != 0) {
1484 hpsa_scsi_interpret_error(c);
1485 rc = -1;
1487 cmd_special_free(h, c);
1488 return rc;
1491 static void hpsa_get_raid_level(struct ctlr_info *h,
1492 unsigned char *scsi3addr, unsigned char *raid_level)
1494 int rc;
1495 unsigned char *buf;
1497 *raid_level = RAID_UNKNOWN;
1498 buf = kzalloc(64, GFP_KERNEL);
1499 if (!buf)
1500 return;
1501 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1502 if (rc == 0)
1503 *raid_level = buf[8];
1504 if (*raid_level > RAID_UNKNOWN)
1505 *raid_level = RAID_UNKNOWN;
1506 kfree(buf);
1507 return;
1510 /* Get the device id from inquiry page 0x83 */
1511 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1512 unsigned char *device_id, int buflen)
1514 int rc;
1515 unsigned char *buf;
1517 if (buflen > 16)
1518 buflen = 16;
1519 buf = kzalloc(64, GFP_KERNEL);
1520 if (!buf)
1521 return -1;
1522 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1523 if (rc == 0)
1524 memcpy(device_id, &buf[8], buflen);
1525 kfree(buf);
1526 return rc != 0;
1529 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1530 struct ReportLUNdata *buf, int bufsize,
1531 int extended_response)
1533 int rc = IO_OK;
1534 struct CommandList *c;
1535 unsigned char scsi3addr[8];
1536 struct ErrorInfo *ei;
1538 c = cmd_special_alloc(h);
1539 if (c == NULL) { /* trouble... */
1540 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1541 return -1;
1543 /* address the controller */
1544 memset(scsi3addr, 0, sizeof(scsi3addr));
1545 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1546 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1547 if (extended_response)
1548 c->Request.CDB[1] = extended_response;
1549 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1550 ei = c->err_info;
1551 if (ei->CommandStatus != 0 &&
1552 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1553 hpsa_scsi_interpret_error(c);
1554 rc = -1;
1556 cmd_special_free(h, c);
1557 return rc;
1560 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1561 struct ReportLUNdata *buf,
1562 int bufsize, int extended_response)
1564 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1567 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1568 struct ReportLUNdata *buf, int bufsize)
1570 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1573 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1574 int bus, int target, int lun)
1576 device->bus = bus;
1577 device->target = target;
1578 device->lun = lun;
1581 static int hpsa_update_device_info(struct ctlr_info *h,
1582 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1583 unsigned char *is_OBDR_device)
1586 #define OBDR_SIG_OFFSET 43
1587 #define OBDR_TAPE_SIG "$DR-10"
1588 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1589 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1591 unsigned char *inq_buff;
1592 unsigned char *obdr_sig;
1594 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1595 if (!inq_buff)
1596 goto bail_out;
1598 /* Do an inquiry to the device to see what it is. */
1599 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1600 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1601 /* Inquiry failed (msg printed already) */
1602 dev_err(&h->pdev->dev,
1603 "hpsa_update_device_info: inquiry failed\n");
1604 goto bail_out;
1607 this_device->devtype = (inq_buff[0] & 0x1f);
1608 memcpy(this_device->scsi3addr, scsi3addr, 8);
1609 memcpy(this_device->vendor, &inq_buff[8],
1610 sizeof(this_device->vendor));
1611 memcpy(this_device->model, &inq_buff[16],
1612 sizeof(this_device->model));
1613 memset(this_device->device_id, 0,
1614 sizeof(this_device->device_id));
1615 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1616 sizeof(this_device->device_id));
1618 if (this_device->devtype == TYPE_DISK &&
1619 is_logical_dev_addr_mode(scsi3addr))
1620 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1621 else
1622 this_device->raid_level = RAID_UNKNOWN;
1624 if (is_OBDR_device) {
1625 /* See if this is a One-Button-Disaster-Recovery device
1626 * by looking for "$DR-10" at offset 43 in inquiry data.
1628 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1629 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1630 strncmp(obdr_sig, OBDR_TAPE_SIG,
1631 OBDR_SIG_LEN) == 0);
1634 kfree(inq_buff);
1635 return 0;
1637 bail_out:
1638 kfree(inq_buff);
1639 return 1;
1642 static unsigned char *msa2xxx_model[] = {
1643 "MSA2012",
1644 "MSA2024",
1645 "MSA2312",
1646 "MSA2324",
1647 "P2000 G3 SAS",
1648 NULL,
1651 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1653 int i;
1655 for (i = 0; msa2xxx_model[i]; i++)
1656 if (strncmp(device->model, msa2xxx_model[i],
1657 strlen(msa2xxx_model[i])) == 0)
1658 return 1;
1659 return 0;
1662 /* Helper function to assign bus, target, lun mapping of devices.
1663 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1664 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1665 * Logical drive target and lun are assigned at this time, but
1666 * physical device lun and target assignment are deferred (assigned
1667 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1669 static void figure_bus_target_lun(struct ctlr_info *h,
1670 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1671 struct hpsa_scsi_dev_t *device)
1673 u32 lunid;
1675 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1676 /* logical device */
1677 if (unlikely(is_scsi_rev_5(h))) {
1678 /* p1210m, logical drives lun assignments
1679 * match SCSI REPORT LUNS data.
1681 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1682 *bus = 0;
1683 *target = 0;
1684 *lun = (lunid & 0x3fff) + 1;
1685 } else {
1686 /* not p1210m... */
1687 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1688 if (is_msa2xxx(h, device)) {
1689 /* msa2xxx way, put logicals on bus 1
1690 * and match target/lun numbers box
1691 * reports.
1693 *bus = 1;
1694 *target = (lunid >> 16) & 0x3fff;
1695 *lun = lunid & 0x00ff;
1696 } else {
1697 /* Traditional smart array way. */
1698 *bus = 0;
1699 *lun = 0;
1700 *target = lunid & 0x3fff;
1703 } else {
1704 /* physical device */
1705 if (is_hba_lunid(lunaddrbytes))
1706 if (unlikely(is_scsi_rev_5(h))) {
1707 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1708 *target = 0;
1709 *lun = 0;
1710 return;
1711 } else
1712 *bus = 3; /* traditional smartarray */
1713 else
1714 *bus = 2; /* physical disk */
1715 *target = -1;
1716 *lun = -1; /* we will fill these in later. */
1721 * If there is no lun 0 on a target, linux won't find any devices.
1722 * For the MSA2xxx boxes, we have to manually detect the enclosure
1723 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1724 * it for some reason. *tmpdevice is the target we're adding,
1725 * this_device is a pointer into the current element of currentsd[]
1726 * that we're building up in update_scsi_devices(), below.
1727 * lunzerobits is a bitmap that tracks which targets already have a
1728 * lun 0 assigned.
1729 * Returns 1 if an enclosure was added, 0 if not.
1731 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1732 struct hpsa_scsi_dev_t *tmpdevice,
1733 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1734 int bus, int target, int lun, unsigned long lunzerobits[],
1735 int *nmsa2xxx_enclosures)
1737 unsigned char scsi3addr[8];
1739 if (test_bit(target, lunzerobits))
1740 return 0; /* There is already a lun 0 on this target. */
1742 if (!is_logical_dev_addr_mode(lunaddrbytes))
1743 return 0; /* It's the logical targets that may lack lun 0. */
1745 if (!is_msa2xxx(h, tmpdevice))
1746 return 0; /* It's only the MSA2xxx that have this problem. */
1748 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1749 return 0;
1751 memset(scsi3addr, 0, 8);
1752 scsi3addr[3] = target;
1753 if (is_hba_lunid(scsi3addr))
1754 return 0; /* Don't add the RAID controller here. */
1756 if (is_scsi_rev_5(h))
1757 return 0; /* p1210m doesn't need to do this. */
1759 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1760 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1761 "enclosures exceeded. Check your hardware "
1762 "configuration.");
1763 return 0;
1766 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1767 return 0;
1768 (*nmsa2xxx_enclosures)++;
1769 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1770 set_bit(target, lunzerobits);
1771 return 1;
1775 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1776 * logdev. The number of luns in physdev and logdev are returned in
1777 * *nphysicals and *nlogicals, respectively.
1778 * Returns 0 on success, -1 otherwise.
1780 static int hpsa_gather_lun_info(struct ctlr_info *h,
1781 int reportlunsize,
1782 struct ReportLUNdata *physdev, u32 *nphysicals,
1783 struct ReportLUNdata *logdev, u32 *nlogicals)
1785 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1786 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1787 return -1;
1789 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1790 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1791 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1792 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1793 *nphysicals - HPSA_MAX_PHYS_LUN);
1794 *nphysicals = HPSA_MAX_PHYS_LUN;
1796 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1797 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1798 return -1;
1800 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1801 /* Reject Logicals in excess of our max capability. */
1802 if (*nlogicals > HPSA_MAX_LUN) {
1803 dev_warn(&h->pdev->dev,
1804 "maximum logical LUNs (%d) exceeded. "
1805 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1806 *nlogicals - HPSA_MAX_LUN);
1807 *nlogicals = HPSA_MAX_LUN;
1809 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1810 dev_warn(&h->pdev->dev,
1811 "maximum logical + physical LUNs (%d) exceeded. "
1812 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1813 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1814 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1816 return 0;
1819 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1820 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1821 struct ReportLUNdata *logdev_list)
1823 /* Helper function, figure out where the LUN ID info is coming from
1824 * given index i, lists of physical and logical devices, where in
1825 * the list the raid controller is supposed to appear (first or last)
1828 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1829 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1831 if (i == raid_ctlr_position)
1832 return RAID_CTLR_LUNID;
1834 if (i < logicals_start)
1835 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1837 if (i < last_device)
1838 return &logdev_list->LUN[i - nphysicals -
1839 (raid_ctlr_position == 0)][0];
1840 BUG();
1841 return NULL;
1844 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1846 /* the idea here is we could get notified
1847 * that some devices have changed, so we do a report
1848 * physical luns and report logical luns cmd, and adjust
1849 * our list of devices accordingly.
1851 * The scsi3addr's of devices won't change so long as the
1852 * adapter is not reset. That means we can rescan and
1853 * tell which devices we already know about, vs. new
1854 * devices, vs. disappearing devices.
1856 struct ReportLUNdata *physdev_list = NULL;
1857 struct ReportLUNdata *logdev_list = NULL;
1858 u32 nphysicals = 0;
1859 u32 nlogicals = 0;
1860 u32 ndev_allocated = 0;
1861 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1862 int ncurrent = 0;
1863 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1864 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1865 int bus, target, lun;
1866 int raid_ctlr_position;
1867 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1869 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1870 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1871 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1872 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1874 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1875 dev_err(&h->pdev->dev, "out of memory\n");
1876 goto out;
1878 memset(lunzerobits, 0, sizeof(lunzerobits));
1880 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1881 logdev_list, &nlogicals))
1882 goto out;
1884 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1885 * but each of them 4 times through different paths. The plus 1
1886 * is for the RAID controller.
1888 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1890 /* Allocate the per device structures */
1891 for (i = 0; i < ndevs_to_allocate; i++) {
1892 if (i >= HPSA_MAX_DEVICES) {
1893 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1894 " %d devices ignored.\n", HPSA_MAX_DEVICES,
1895 ndevs_to_allocate - HPSA_MAX_DEVICES);
1896 break;
1899 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1900 if (!currentsd[i]) {
1901 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1902 __FILE__, __LINE__);
1903 goto out;
1905 ndev_allocated++;
1908 if (unlikely(is_scsi_rev_5(h)))
1909 raid_ctlr_position = 0;
1910 else
1911 raid_ctlr_position = nphysicals + nlogicals;
1913 /* adjust our table of devices */
1914 nmsa2xxx_enclosures = 0;
1915 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1916 u8 *lunaddrbytes, is_OBDR = 0;
1918 /* Figure out where the LUN ID info is coming from */
1919 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1920 i, nphysicals, nlogicals, physdev_list, logdev_list);
1921 /* skip masked physical devices. */
1922 if (lunaddrbytes[3] & 0xC0 &&
1923 i < nphysicals + (raid_ctlr_position == 0))
1924 continue;
1926 /* Get device type, vendor, model, device id */
1927 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1928 &is_OBDR))
1929 continue; /* skip it if we can't talk to it. */
1930 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1931 tmpdevice);
1932 this_device = currentsd[ncurrent];
1935 * For the msa2xxx boxes, we have to insert a LUN 0 which
1936 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1937 * is nonetheless an enclosure device there. We have to
1938 * present that otherwise linux won't find anything if
1939 * there is no lun 0.
1941 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1942 lunaddrbytes, bus, target, lun, lunzerobits,
1943 &nmsa2xxx_enclosures)) {
1944 ncurrent++;
1945 this_device = currentsd[ncurrent];
1948 *this_device = *tmpdevice;
1949 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1951 switch (this_device->devtype) {
1952 case TYPE_ROM:
1953 /* We don't *really* support actual CD-ROM devices,
1954 * just "One Button Disaster Recovery" tape drive
1955 * which temporarily pretends to be a CD-ROM drive.
1956 * So we check that the device is really an OBDR tape
1957 * device by checking for "$DR-10" in bytes 43-48 of
1958 * the inquiry data.
1960 if (is_OBDR)
1961 ncurrent++;
1962 break;
1963 case TYPE_DISK:
1964 if (i < nphysicals)
1965 break;
1966 ncurrent++;
1967 break;
1968 case TYPE_TAPE:
1969 case TYPE_MEDIUM_CHANGER:
1970 ncurrent++;
1971 break;
1972 case TYPE_RAID:
1973 /* Only present the Smartarray HBA as a RAID controller.
1974 * If it's a RAID controller other than the HBA itself
1975 * (an external RAID controller, MSA500 or similar)
1976 * don't present it.
1978 if (!is_hba_lunid(lunaddrbytes))
1979 break;
1980 ncurrent++;
1981 break;
1982 default:
1983 break;
1985 if (ncurrent >= HPSA_MAX_DEVICES)
1986 break;
1988 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1989 out:
1990 kfree(tmpdevice);
1991 for (i = 0; i < ndev_allocated; i++)
1992 kfree(currentsd[i]);
1993 kfree(currentsd);
1994 kfree(physdev_list);
1995 kfree(logdev_list);
1998 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1999 * dma mapping and fills in the scatter gather entries of the
2000 * hpsa command, cp.
2002 static int hpsa_scatter_gather(struct ctlr_info *h,
2003 struct CommandList *cp,
2004 struct scsi_cmnd *cmd)
2006 unsigned int len;
2007 struct scatterlist *sg;
2008 u64 addr64;
2009 int use_sg, i, sg_index, chained;
2010 struct SGDescriptor *curr_sg;
2012 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2014 use_sg = scsi_dma_map(cmd);
2015 if (use_sg < 0)
2016 return use_sg;
2018 if (!use_sg)
2019 goto sglist_finished;
2021 curr_sg = cp->SG;
2022 chained = 0;
2023 sg_index = 0;
2024 scsi_for_each_sg(cmd, sg, use_sg, i) {
2025 if (i == h->max_cmd_sg_entries - 1 &&
2026 use_sg > h->max_cmd_sg_entries) {
2027 chained = 1;
2028 curr_sg = h->cmd_sg_list[cp->cmdindex];
2029 sg_index = 0;
2031 addr64 = (u64) sg_dma_address(sg);
2032 len = sg_dma_len(sg);
2033 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2034 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2035 curr_sg->Len = len;
2036 curr_sg->Ext = 0; /* we are not chaining */
2037 curr_sg++;
2040 if (use_sg + chained > h->maxSG)
2041 h->maxSG = use_sg + chained;
2043 if (chained) {
2044 cp->Header.SGList = h->max_cmd_sg_entries;
2045 cp->Header.SGTotal = (u16) (use_sg + 1);
2046 hpsa_map_sg_chain_block(h, cp);
2047 return 0;
2050 sglist_finished:
2052 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2053 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2054 return 0;
2058 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2059 void (*done)(struct scsi_cmnd *))
2061 struct ctlr_info *h;
2062 struct hpsa_scsi_dev_t *dev;
2063 unsigned char scsi3addr[8];
2064 struct CommandList *c;
2065 unsigned long flags;
2067 /* Get the ptr to our adapter structure out of cmd->host. */
2068 h = sdev_to_hba(cmd->device);
2069 dev = cmd->device->hostdata;
2070 if (!dev) {
2071 cmd->result = DID_NO_CONNECT << 16;
2072 done(cmd);
2073 return 0;
2075 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2077 spin_lock_irqsave(&h->lock, flags);
2078 if (unlikely(h->lockup_detected)) {
2079 spin_unlock_irqrestore(&h->lock, flags);
2080 cmd->result = DID_ERROR << 16;
2081 done(cmd);
2082 return 0;
2084 /* Need a lock as this is being allocated from the pool */
2085 c = cmd_alloc(h);
2086 spin_unlock_irqrestore(&h->lock, flags);
2087 if (c == NULL) { /* trouble... */
2088 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2089 return SCSI_MLQUEUE_HOST_BUSY;
2092 /* Fill in the command list header */
2094 cmd->scsi_done = done; /* save this for use by completion code */
2096 /* save c in case we have to abort it */
2097 cmd->host_scribble = (unsigned char *) c;
2099 c->cmd_type = CMD_SCSI;
2100 c->scsi_cmd = cmd;
2101 c->Header.ReplyQueue = 0; /* unused in simple mode */
2102 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2103 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2104 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2106 /* Fill in the request block... */
2108 c->Request.Timeout = 0;
2109 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2110 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2111 c->Request.CDBLen = cmd->cmd_len;
2112 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2113 c->Request.Type.Type = TYPE_CMD;
2114 c->Request.Type.Attribute = ATTR_SIMPLE;
2115 switch (cmd->sc_data_direction) {
2116 case DMA_TO_DEVICE:
2117 c->Request.Type.Direction = XFER_WRITE;
2118 break;
2119 case DMA_FROM_DEVICE:
2120 c->Request.Type.Direction = XFER_READ;
2121 break;
2122 case DMA_NONE:
2123 c->Request.Type.Direction = XFER_NONE;
2124 break;
2125 case DMA_BIDIRECTIONAL:
2126 /* This can happen if a buggy application does a scsi passthru
2127 * and sets both inlen and outlen to non-zero. ( see
2128 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2131 c->Request.Type.Direction = XFER_RSVD;
2132 /* This is technically wrong, and hpsa controllers should
2133 * reject it with CMD_INVALID, which is the most correct
2134 * response, but non-fibre backends appear to let it
2135 * slide by, and give the same results as if this field
2136 * were set correctly. Either way is acceptable for
2137 * our purposes here.
2140 break;
2142 default:
2143 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2144 cmd->sc_data_direction);
2145 BUG();
2146 break;
2149 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2150 cmd_free(h, c);
2151 return SCSI_MLQUEUE_HOST_BUSY;
2153 enqueue_cmd_and_start_io(h, c);
2154 /* the cmd'll come back via intr handler in complete_scsi_command() */
2155 return 0;
2158 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2160 static void hpsa_scan_start(struct Scsi_Host *sh)
2162 struct ctlr_info *h = shost_to_hba(sh);
2163 unsigned long flags;
2165 /* wait until any scan already in progress is finished. */
2166 while (1) {
2167 spin_lock_irqsave(&h->scan_lock, flags);
2168 if (h->scan_finished)
2169 break;
2170 spin_unlock_irqrestore(&h->scan_lock, flags);
2171 wait_event(h->scan_wait_queue, h->scan_finished);
2172 /* Note: We don't need to worry about a race between this
2173 * thread and driver unload because the midlayer will
2174 * have incremented the reference count, so unload won't
2175 * happen if we're in here.
2178 h->scan_finished = 0; /* mark scan as in progress */
2179 spin_unlock_irqrestore(&h->scan_lock, flags);
2181 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2183 spin_lock_irqsave(&h->scan_lock, flags);
2184 h->scan_finished = 1; /* mark scan as finished. */
2185 wake_up_all(&h->scan_wait_queue);
2186 spin_unlock_irqrestore(&h->scan_lock, flags);
2189 static int hpsa_scan_finished(struct Scsi_Host *sh,
2190 unsigned long elapsed_time)
2192 struct ctlr_info *h = shost_to_hba(sh);
2193 unsigned long flags;
2194 int finished;
2196 spin_lock_irqsave(&h->scan_lock, flags);
2197 finished = h->scan_finished;
2198 spin_unlock_irqrestore(&h->scan_lock, flags);
2199 return finished;
2202 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2203 int qdepth, int reason)
2205 struct ctlr_info *h = sdev_to_hba(sdev);
2207 if (reason != SCSI_QDEPTH_DEFAULT)
2208 return -ENOTSUPP;
2210 if (qdepth < 1)
2211 qdepth = 1;
2212 else
2213 if (qdepth > h->nr_cmds)
2214 qdepth = h->nr_cmds;
2215 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2216 return sdev->queue_depth;
2219 static void hpsa_unregister_scsi(struct ctlr_info *h)
2221 /* we are being forcibly unloaded, and may not refuse. */
2222 scsi_remove_host(h->scsi_host);
2223 scsi_host_put(h->scsi_host);
2224 h->scsi_host = NULL;
2227 static int hpsa_register_scsi(struct ctlr_info *h)
2229 int rc;
2231 rc = hpsa_scsi_detect(h);
2232 if (rc != 0)
2233 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2234 " hpsa_scsi_detect(), rc is %d\n", rc);
2235 return rc;
2238 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2239 unsigned char lunaddr[])
2241 int rc = 0;
2242 int count = 0;
2243 int waittime = 1; /* seconds */
2244 struct CommandList *c;
2246 c = cmd_special_alloc(h);
2247 if (!c) {
2248 dev_warn(&h->pdev->dev, "out of memory in "
2249 "wait_for_device_to_become_ready.\n");
2250 return IO_ERROR;
2253 /* Send test unit ready until device ready, or give up. */
2254 while (count < HPSA_TUR_RETRY_LIMIT) {
2256 /* Wait for a bit. do this first, because if we send
2257 * the TUR right away, the reset will just abort it.
2259 msleep(1000 * waittime);
2260 count++;
2262 /* Increase wait time with each try, up to a point. */
2263 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2264 waittime = waittime * 2;
2266 /* Send the Test Unit Ready */
2267 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2268 hpsa_scsi_do_simple_cmd_core(h, c);
2269 /* no unmap needed here because no data xfer. */
2271 if (c->err_info->CommandStatus == CMD_SUCCESS)
2272 break;
2274 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2275 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2276 (c->err_info->SenseInfo[2] == NO_SENSE ||
2277 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2278 break;
2280 dev_warn(&h->pdev->dev, "waiting %d secs "
2281 "for device to become ready.\n", waittime);
2282 rc = 1; /* device not ready. */
2285 if (rc)
2286 dev_warn(&h->pdev->dev, "giving up on device.\n");
2287 else
2288 dev_warn(&h->pdev->dev, "device is ready.\n");
2290 cmd_special_free(h, c);
2291 return rc;
2294 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2295 * complaining. Doing a host- or bus-reset can't do anything good here.
2297 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2299 int rc;
2300 struct ctlr_info *h;
2301 struct hpsa_scsi_dev_t *dev;
2303 /* find the controller to which the command to be aborted was sent */
2304 h = sdev_to_hba(scsicmd->device);
2305 if (h == NULL) /* paranoia */
2306 return FAILED;
2307 dev = scsicmd->device->hostdata;
2308 if (!dev) {
2309 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2310 "device lookup failed.\n");
2311 return FAILED;
2313 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2314 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2315 /* send a reset to the SCSI LUN which the command was sent to */
2316 rc = hpsa_send_reset(h, dev->scsi3addr);
2317 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2318 return SUCCESS;
2320 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2321 return FAILED;
2325 * For operations that cannot sleep, a command block is allocated at init,
2326 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2327 * which ones are free or in use. Lock must be held when calling this.
2328 * cmd_free() is the complement.
2330 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2332 struct CommandList *c;
2333 int i;
2334 union u64bit temp64;
2335 dma_addr_t cmd_dma_handle, err_dma_handle;
2337 do {
2338 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2339 if (i == h->nr_cmds)
2340 return NULL;
2341 } while (test_and_set_bit
2342 (i & (BITS_PER_LONG - 1),
2343 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2344 c = h->cmd_pool + i;
2345 memset(c, 0, sizeof(*c));
2346 cmd_dma_handle = h->cmd_pool_dhandle
2347 + i * sizeof(*c);
2348 c->err_info = h->errinfo_pool + i;
2349 memset(c->err_info, 0, sizeof(*c->err_info));
2350 err_dma_handle = h->errinfo_pool_dhandle
2351 + i * sizeof(*c->err_info);
2352 h->nr_allocs++;
2354 c->cmdindex = i;
2356 INIT_LIST_HEAD(&c->list);
2357 c->busaddr = (u32) cmd_dma_handle;
2358 temp64.val = (u64) err_dma_handle;
2359 c->ErrDesc.Addr.lower = temp64.val32.lower;
2360 c->ErrDesc.Addr.upper = temp64.val32.upper;
2361 c->ErrDesc.Len = sizeof(*c->err_info);
2363 c->h = h;
2364 return c;
2367 /* For operations that can wait for kmalloc to possibly sleep,
2368 * this routine can be called. Lock need not be held to call
2369 * cmd_special_alloc. cmd_special_free() is the complement.
2371 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2373 struct CommandList *c;
2374 union u64bit temp64;
2375 dma_addr_t cmd_dma_handle, err_dma_handle;
2377 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2378 if (c == NULL)
2379 return NULL;
2380 memset(c, 0, sizeof(*c));
2382 c->cmdindex = -1;
2384 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2385 &err_dma_handle);
2387 if (c->err_info == NULL) {
2388 pci_free_consistent(h->pdev,
2389 sizeof(*c), c, cmd_dma_handle);
2390 return NULL;
2392 memset(c->err_info, 0, sizeof(*c->err_info));
2394 INIT_LIST_HEAD(&c->list);
2395 c->busaddr = (u32) cmd_dma_handle;
2396 temp64.val = (u64) err_dma_handle;
2397 c->ErrDesc.Addr.lower = temp64.val32.lower;
2398 c->ErrDesc.Addr.upper = temp64.val32.upper;
2399 c->ErrDesc.Len = sizeof(*c->err_info);
2401 c->h = h;
2402 return c;
2405 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2407 int i;
2409 i = c - h->cmd_pool;
2410 clear_bit(i & (BITS_PER_LONG - 1),
2411 h->cmd_pool_bits + (i / BITS_PER_LONG));
2412 h->nr_frees++;
2415 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2417 union u64bit temp64;
2419 temp64.val32.lower = c->ErrDesc.Addr.lower;
2420 temp64.val32.upper = c->ErrDesc.Addr.upper;
2421 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2422 c->err_info, (dma_addr_t) temp64.val);
2423 pci_free_consistent(h->pdev, sizeof(*c),
2424 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2427 #ifdef CONFIG_COMPAT
2429 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2431 IOCTL32_Command_struct __user *arg32 =
2432 (IOCTL32_Command_struct __user *) arg;
2433 IOCTL_Command_struct arg64;
2434 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2435 int err;
2436 u32 cp;
2438 memset(&arg64, 0, sizeof(arg64));
2439 err = 0;
2440 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2441 sizeof(arg64.LUN_info));
2442 err |= copy_from_user(&arg64.Request, &arg32->Request,
2443 sizeof(arg64.Request));
2444 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2445 sizeof(arg64.error_info));
2446 err |= get_user(arg64.buf_size, &arg32->buf_size);
2447 err |= get_user(cp, &arg32->buf);
2448 arg64.buf = compat_ptr(cp);
2449 err |= copy_to_user(p, &arg64, sizeof(arg64));
2451 if (err)
2452 return -EFAULT;
2454 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2455 if (err)
2456 return err;
2457 err |= copy_in_user(&arg32->error_info, &p->error_info,
2458 sizeof(arg32->error_info));
2459 if (err)
2460 return -EFAULT;
2461 return err;
2464 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2465 int cmd, void *arg)
2467 BIG_IOCTL32_Command_struct __user *arg32 =
2468 (BIG_IOCTL32_Command_struct __user *) arg;
2469 BIG_IOCTL_Command_struct arg64;
2470 BIG_IOCTL_Command_struct __user *p =
2471 compat_alloc_user_space(sizeof(arg64));
2472 int err;
2473 u32 cp;
2475 memset(&arg64, 0, sizeof(arg64));
2476 err = 0;
2477 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2478 sizeof(arg64.LUN_info));
2479 err |= copy_from_user(&arg64.Request, &arg32->Request,
2480 sizeof(arg64.Request));
2481 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2482 sizeof(arg64.error_info));
2483 err |= get_user(arg64.buf_size, &arg32->buf_size);
2484 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2485 err |= get_user(cp, &arg32->buf);
2486 arg64.buf = compat_ptr(cp);
2487 err |= copy_to_user(p, &arg64, sizeof(arg64));
2489 if (err)
2490 return -EFAULT;
2492 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2493 if (err)
2494 return err;
2495 err |= copy_in_user(&arg32->error_info, &p->error_info,
2496 sizeof(arg32->error_info));
2497 if (err)
2498 return -EFAULT;
2499 return err;
2502 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2504 switch (cmd) {
2505 case CCISS_GETPCIINFO:
2506 case CCISS_GETINTINFO:
2507 case CCISS_SETINTINFO:
2508 case CCISS_GETNODENAME:
2509 case CCISS_SETNODENAME:
2510 case CCISS_GETHEARTBEAT:
2511 case CCISS_GETBUSTYPES:
2512 case CCISS_GETFIRMVER:
2513 case CCISS_GETDRIVVER:
2514 case CCISS_REVALIDVOLS:
2515 case CCISS_DEREGDISK:
2516 case CCISS_REGNEWDISK:
2517 case CCISS_REGNEWD:
2518 case CCISS_RESCANDISK:
2519 case CCISS_GETLUNINFO:
2520 return hpsa_ioctl(dev, cmd, arg);
2522 case CCISS_PASSTHRU32:
2523 return hpsa_ioctl32_passthru(dev, cmd, arg);
2524 case CCISS_BIG_PASSTHRU32:
2525 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2527 default:
2528 return -ENOIOCTLCMD;
2531 #endif
2533 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2535 struct hpsa_pci_info pciinfo;
2537 if (!argp)
2538 return -EINVAL;
2539 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2540 pciinfo.bus = h->pdev->bus->number;
2541 pciinfo.dev_fn = h->pdev->devfn;
2542 pciinfo.board_id = h->board_id;
2543 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2544 return -EFAULT;
2545 return 0;
2548 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2550 DriverVer_type DriverVer;
2551 unsigned char vmaj, vmin, vsubmin;
2552 int rc;
2554 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2555 &vmaj, &vmin, &vsubmin);
2556 if (rc != 3) {
2557 dev_info(&h->pdev->dev, "driver version string '%s' "
2558 "unrecognized.", HPSA_DRIVER_VERSION);
2559 vmaj = 0;
2560 vmin = 0;
2561 vsubmin = 0;
2563 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2564 if (!argp)
2565 return -EINVAL;
2566 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2567 return -EFAULT;
2568 return 0;
2571 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2573 IOCTL_Command_struct iocommand;
2574 struct CommandList *c;
2575 char *buff = NULL;
2576 union u64bit temp64;
2578 if (!argp)
2579 return -EINVAL;
2580 if (!capable(CAP_SYS_RAWIO))
2581 return -EPERM;
2582 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2583 return -EFAULT;
2584 if ((iocommand.buf_size < 1) &&
2585 (iocommand.Request.Type.Direction != XFER_NONE)) {
2586 return -EINVAL;
2588 if (iocommand.buf_size > 0) {
2589 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2590 if (buff == NULL)
2591 return -EFAULT;
2592 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2593 /* Copy the data into the buffer we created */
2594 if (copy_from_user(buff, iocommand.buf,
2595 iocommand.buf_size)) {
2596 kfree(buff);
2597 return -EFAULT;
2599 } else {
2600 memset(buff, 0, iocommand.buf_size);
2603 c = cmd_special_alloc(h);
2604 if (c == NULL) {
2605 kfree(buff);
2606 return -ENOMEM;
2608 /* Fill in the command type */
2609 c->cmd_type = CMD_IOCTL_PEND;
2610 /* Fill in Command Header */
2611 c->Header.ReplyQueue = 0; /* unused in simple mode */
2612 if (iocommand.buf_size > 0) { /* buffer to fill */
2613 c->Header.SGList = 1;
2614 c->Header.SGTotal = 1;
2615 } else { /* no buffers to fill */
2616 c->Header.SGList = 0;
2617 c->Header.SGTotal = 0;
2619 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2620 /* use the kernel address the cmd block for tag */
2621 c->Header.Tag.lower = c->busaddr;
2623 /* Fill in Request block */
2624 memcpy(&c->Request, &iocommand.Request,
2625 sizeof(c->Request));
2627 /* Fill in the scatter gather information */
2628 if (iocommand.buf_size > 0) {
2629 temp64.val = pci_map_single(h->pdev, buff,
2630 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2631 c->SG[0].Addr.lower = temp64.val32.lower;
2632 c->SG[0].Addr.upper = temp64.val32.upper;
2633 c->SG[0].Len = iocommand.buf_size;
2634 c->SG[0].Ext = 0; /* we are not chaining*/
2636 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2637 if (iocommand.buf_size > 0)
2638 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2639 check_ioctl_unit_attention(h, c);
2641 /* Copy the error information out */
2642 memcpy(&iocommand.error_info, c->err_info,
2643 sizeof(iocommand.error_info));
2644 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2645 kfree(buff);
2646 cmd_special_free(h, c);
2647 return -EFAULT;
2649 if (iocommand.Request.Type.Direction == XFER_READ &&
2650 iocommand.buf_size > 0) {
2651 /* Copy the data out of the buffer we created */
2652 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2653 kfree(buff);
2654 cmd_special_free(h, c);
2655 return -EFAULT;
2658 kfree(buff);
2659 cmd_special_free(h, c);
2660 return 0;
2663 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2665 BIG_IOCTL_Command_struct *ioc;
2666 struct CommandList *c;
2667 unsigned char **buff = NULL;
2668 int *buff_size = NULL;
2669 union u64bit temp64;
2670 BYTE sg_used = 0;
2671 int status = 0;
2672 int i;
2673 u32 left;
2674 u32 sz;
2675 BYTE __user *data_ptr;
2677 if (!argp)
2678 return -EINVAL;
2679 if (!capable(CAP_SYS_RAWIO))
2680 return -EPERM;
2681 ioc = (BIG_IOCTL_Command_struct *)
2682 kmalloc(sizeof(*ioc), GFP_KERNEL);
2683 if (!ioc) {
2684 status = -ENOMEM;
2685 goto cleanup1;
2687 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2688 status = -EFAULT;
2689 goto cleanup1;
2691 if ((ioc->buf_size < 1) &&
2692 (ioc->Request.Type.Direction != XFER_NONE)) {
2693 status = -EINVAL;
2694 goto cleanup1;
2696 /* Check kmalloc limits using all SGs */
2697 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2698 status = -EINVAL;
2699 goto cleanup1;
2701 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2702 status = -EINVAL;
2703 goto cleanup1;
2705 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2706 if (!buff) {
2707 status = -ENOMEM;
2708 goto cleanup1;
2710 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2711 if (!buff_size) {
2712 status = -ENOMEM;
2713 goto cleanup1;
2715 left = ioc->buf_size;
2716 data_ptr = ioc->buf;
2717 while (left) {
2718 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2719 buff_size[sg_used] = sz;
2720 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2721 if (buff[sg_used] == NULL) {
2722 status = -ENOMEM;
2723 goto cleanup1;
2725 if (ioc->Request.Type.Direction == XFER_WRITE) {
2726 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2727 status = -ENOMEM;
2728 goto cleanup1;
2730 } else
2731 memset(buff[sg_used], 0, sz);
2732 left -= sz;
2733 data_ptr += sz;
2734 sg_used++;
2736 c = cmd_special_alloc(h);
2737 if (c == NULL) {
2738 status = -ENOMEM;
2739 goto cleanup1;
2741 c->cmd_type = CMD_IOCTL_PEND;
2742 c->Header.ReplyQueue = 0;
2743 c->Header.SGList = c->Header.SGTotal = sg_used;
2744 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2745 c->Header.Tag.lower = c->busaddr;
2746 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2747 if (ioc->buf_size > 0) {
2748 int i;
2749 for (i = 0; i < sg_used; i++) {
2750 temp64.val = pci_map_single(h->pdev, buff[i],
2751 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2752 c->SG[i].Addr.lower = temp64.val32.lower;
2753 c->SG[i].Addr.upper = temp64.val32.upper;
2754 c->SG[i].Len = buff_size[i];
2755 /* we are not chaining */
2756 c->SG[i].Ext = 0;
2759 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2760 if (sg_used)
2761 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2762 check_ioctl_unit_attention(h, c);
2763 /* Copy the error information out */
2764 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2765 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2766 cmd_special_free(h, c);
2767 status = -EFAULT;
2768 goto cleanup1;
2770 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2771 /* Copy the data out of the buffer we created */
2772 BYTE __user *ptr = ioc->buf;
2773 for (i = 0; i < sg_used; i++) {
2774 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2775 cmd_special_free(h, c);
2776 status = -EFAULT;
2777 goto cleanup1;
2779 ptr += buff_size[i];
2782 cmd_special_free(h, c);
2783 status = 0;
2784 cleanup1:
2785 if (buff) {
2786 for (i = 0; i < sg_used; i++)
2787 kfree(buff[i]);
2788 kfree(buff);
2790 kfree(buff_size);
2791 kfree(ioc);
2792 return status;
2795 static void check_ioctl_unit_attention(struct ctlr_info *h,
2796 struct CommandList *c)
2798 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2799 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2800 (void) check_for_unit_attention(h, c);
2803 * ioctl
2805 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2807 struct ctlr_info *h;
2808 void __user *argp = (void __user *)arg;
2810 h = sdev_to_hba(dev);
2812 switch (cmd) {
2813 case CCISS_DEREGDISK:
2814 case CCISS_REGNEWDISK:
2815 case CCISS_REGNEWD:
2816 hpsa_scan_start(h->scsi_host);
2817 return 0;
2818 case CCISS_GETPCIINFO:
2819 return hpsa_getpciinfo_ioctl(h, argp);
2820 case CCISS_GETDRIVVER:
2821 return hpsa_getdrivver_ioctl(h, argp);
2822 case CCISS_PASSTHRU:
2823 return hpsa_passthru_ioctl(h, argp);
2824 case CCISS_BIG_PASSTHRU:
2825 return hpsa_big_passthru_ioctl(h, argp);
2826 default:
2827 return -ENOTTY;
2831 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2832 unsigned char *scsi3addr, u8 reset_type)
2834 struct CommandList *c;
2836 c = cmd_alloc(h);
2837 if (!c)
2838 return -ENOMEM;
2839 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2840 RAID_CTLR_LUNID, TYPE_MSG);
2841 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2842 c->waiting = NULL;
2843 enqueue_cmd_and_start_io(h, c);
2844 /* Don't wait for completion, the reset won't complete. Don't free
2845 * the command either. This is the last command we will send before
2846 * re-initializing everything, so it doesn't matter and won't leak.
2848 return 0;
2851 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2852 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2853 int cmd_type)
2855 int pci_dir = XFER_NONE;
2857 c->cmd_type = CMD_IOCTL_PEND;
2858 c->Header.ReplyQueue = 0;
2859 if (buff != NULL && size > 0) {
2860 c->Header.SGList = 1;
2861 c->Header.SGTotal = 1;
2862 } else {
2863 c->Header.SGList = 0;
2864 c->Header.SGTotal = 0;
2866 c->Header.Tag.lower = c->busaddr;
2867 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2869 c->Request.Type.Type = cmd_type;
2870 if (cmd_type == TYPE_CMD) {
2871 switch (cmd) {
2872 case HPSA_INQUIRY:
2873 /* are we trying to read a vital product page */
2874 if (page_code != 0) {
2875 c->Request.CDB[1] = 0x01;
2876 c->Request.CDB[2] = page_code;
2878 c->Request.CDBLen = 6;
2879 c->Request.Type.Attribute = ATTR_SIMPLE;
2880 c->Request.Type.Direction = XFER_READ;
2881 c->Request.Timeout = 0;
2882 c->Request.CDB[0] = HPSA_INQUIRY;
2883 c->Request.CDB[4] = size & 0xFF;
2884 break;
2885 case HPSA_REPORT_LOG:
2886 case HPSA_REPORT_PHYS:
2887 /* Talking to controller so It's a physical command
2888 mode = 00 target = 0. Nothing to write.
2890 c->Request.CDBLen = 12;
2891 c->Request.Type.Attribute = ATTR_SIMPLE;
2892 c->Request.Type.Direction = XFER_READ;
2893 c->Request.Timeout = 0;
2894 c->Request.CDB[0] = cmd;
2895 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2896 c->Request.CDB[7] = (size >> 16) & 0xFF;
2897 c->Request.CDB[8] = (size >> 8) & 0xFF;
2898 c->Request.CDB[9] = size & 0xFF;
2899 break;
2900 case HPSA_CACHE_FLUSH:
2901 c->Request.CDBLen = 12;
2902 c->Request.Type.Attribute = ATTR_SIMPLE;
2903 c->Request.Type.Direction = XFER_WRITE;
2904 c->Request.Timeout = 0;
2905 c->Request.CDB[0] = BMIC_WRITE;
2906 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2907 c->Request.CDB[7] = (size >> 8) & 0xFF;
2908 c->Request.CDB[8] = size & 0xFF;
2909 break;
2910 case TEST_UNIT_READY:
2911 c->Request.CDBLen = 6;
2912 c->Request.Type.Attribute = ATTR_SIMPLE;
2913 c->Request.Type.Direction = XFER_NONE;
2914 c->Request.Timeout = 0;
2915 break;
2916 default:
2917 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2918 BUG();
2919 return;
2921 } else if (cmd_type == TYPE_MSG) {
2922 switch (cmd) {
2924 case HPSA_DEVICE_RESET_MSG:
2925 c->Request.CDBLen = 16;
2926 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2927 c->Request.Type.Attribute = ATTR_SIMPLE;
2928 c->Request.Type.Direction = XFER_NONE;
2929 c->Request.Timeout = 0; /* Don't time out */
2930 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2931 c->Request.CDB[0] = cmd;
2932 c->Request.CDB[1] = 0x03; /* Reset target above */
2933 /* If bytes 4-7 are zero, it means reset the */
2934 /* LunID device */
2935 c->Request.CDB[4] = 0x00;
2936 c->Request.CDB[5] = 0x00;
2937 c->Request.CDB[6] = 0x00;
2938 c->Request.CDB[7] = 0x00;
2939 break;
2941 default:
2942 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2943 cmd);
2944 BUG();
2946 } else {
2947 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2948 BUG();
2951 switch (c->Request.Type.Direction) {
2952 case XFER_READ:
2953 pci_dir = PCI_DMA_FROMDEVICE;
2954 break;
2955 case XFER_WRITE:
2956 pci_dir = PCI_DMA_TODEVICE;
2957 break;
2958 case XFER_NONE:
2959 pci_dir = PCI_DMA_NONE;
2960 break;
2961 default:
2962 pci_dir = PCI_DMA_BIDIRECTIONAL;
2965 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2967 return;
2971 * Map (physical) PCI mem into (virtual) kernel space
2973 static void __iomem *remap_pci_mem(ulong base, ulong size)
2975 ulong page_base = ((ulong) base) & PAGE_MASK;
2976 ulong page_offs = ((ulong) base) - page_base;
2977 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2979 return page_remapped ? (page_remapped + page_offs) : NULL;
2982 /* Takes cmds off the submission queue and sends them to the hardware,
2983 * then puts them on the queue of cmds waiting for completion.
2985 static void start_io(struct ctlr_info *h)
2987 struct CommandList *c;
2989 while (!list_empty(&h->reqQ)) {
2990 c = list_entry(h->reqQ.next, struct CommandList, list);
2991 /* can't do anything if fifo is full */
2992 if ((h->access.fifo_full(h))) {
2993 dev_warn(&h->pdev->dev, "fifo full\n");
2994 break;
2997 /* Get the first entry from the Request Q */
2998 removeQ(c);
2999 h->Qdepth--;
3001 /* Tell the controller execute command */
3002 h->access.submit_command(h, c);
3004 /* Put job onto the completed Q */
3005 addQ(&h->cmpQ, c);
3009 static inline unsigned long get_next_completion(struct ctlr_info *h)
3011 return h->access.command_completed(h);
3014 static inline bool interrupt_pending(struct ctlr_info *h)
3016 return h->access.intr_pending(h);
3019 static inline long interrupt_not_for_us(struct ctlr_info *h)
3021 return (h->access.intr_pending(h) == 0) ||
3022 (h->interrupts_enabled == 0);
3025 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3026 u32 raw_tag)
3028 if (unlikely(tag_index >= h->nr_cmds)) {
3029 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3030 return 1;
3032 return 0;
3035 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3037 removeQ(c);
3038 if (likely(c->cmd_type == CMD_SCSI))
3039 complete_scsi_command(c);
3040 else if (c->cmd_type == CMD_IOCTL_PEND)
3041 complete(c->waiting);
3044 static inline u32 hpsa_tag_contains_index(u32 tag)
3046 return tag & DIRECT_LOOKUP_BIT;
3049 static inline u32 hpsa_tag_to_index(u32 tag)
3051 return tag >> DIRECT_LOOKUP_SHIFT;
3055 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3057 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3058 #define HPSA_SIMPLE_ERROR_BITS 0x03
3059 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3060 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3061 return tag & ~HPSA_PERF_ERROR_BITS;
3064 /* process completion of an indexed ("direct lookup") command */
3065 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3066 u32 raw_tag)
3068 u32 tag_index;
3069 struct CommandList *c;
3071 tag_index = hpsa_tag_to_index(raw_tag);
3072 if (bad_tag(h, tag_index, raw_tag))
3073 return next_command(h);
3074 c = h->cmd_pool + tag_index;
3075 finish_cmd(c, raw_tag);
3076 return next_command(h);
3079 /* process completion of a non-indexed command */
3080 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3081 u32 raw_tag)
3083 u32 tag;
3084 struct CommandList *c = NULL;
3086 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3087 list_for_each_entry(c, &h->cmpQ, list) {
3088 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3089 finish_cmd(c, raw_tag);
3090 return next_command(h);
3093 bad_tag(h, h->nr_cmds + 1, raw_tag);
3094 return next_command(h);
3097 /* Some controllers, like p400, will give us one interrupt
3098 * after a soft reset, even if we turned interrupts off.
3099 * Only need to check for this in the hpsa_xxx_discard_completions
3100 * functions.
3102 static int ignore_bogus_interrupt(struct ctlr_info *h)
3104 if (likely(!reset_devices))
3105 return 0;
3107 if (likely(h->interrupts_enabled))
3108 return 0;
3110 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3111 "(known firmware bug.) Ignoring.\n");
3113 return 1;
3116 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3118 struct ctlr_info *h = dev_id;
3119 unsigned long flags;
3120 u32 raw_tag;
3122 if (ignore_bogus_interrupt(h))
3123 return IRQ_NONE;
3125 if (interrupt_not_for_us(h))
3126 return IRQ_NONE;
3127 spin_lock_irqsave(&h->lock, flags);
3128 h->last_intr_timestamp = get_jiffies_64();
3129 while (interrupt_pending(h)) {
3130 raw_tag = get_next_completion(h);
3131 while (raw_tag != FIFO_EMPTY)
3132 raw_tag = next_command(h);
3134 spin_unlock_irqrestore(&h->lock, flags);
3135 return IRQ_HANDLED;
3138 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3140 struct ctlr_info *h = dev_id;
3141 unsigned long flags;
3142 u32 raw_tag;
3144 if (ignore_bogus_interrupt(h))
3145 return IRQ_NONE;
3147 spin_lock_irqsave(&h->lock, flags);
3148 h->last_intr_timestamp = get_jiffies_64();
3149 raw_tag = get_next_completion(h);
3150 while (raw_tag != FIFO_EMPTY)
3151 raw_tag = next_command(h);
3152 spin_unlock_irqrestore(&h->lock, flags);
3153 return IRQ_HANDLED;
3156 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3158 struct ctlr_info *h = dev_id;
3159 unsigned long flags;
3160 u32 raw_tag;
3162 if (interrupt_not_for_us(h))
3163 return IRQ_NONE;
3164 spin_lock_irqsave(&h->lock, flags);
3165 h->last_intr_timestamp = get_jiffies_64();
3166 while (interrupt_pending(h)) {
3167 raw_tag = get_next_completion(h);
3168 while (raw_tag != FIFO_EMPTY) {
3169 if (hpsa_tag_contains_index(raw_tag))
3170 raw_tag = process_indexed_cmd(h, raw_tag);
3171 else
3172 raw_tag = process_nonindexed_cmd(h, raw_tag);
3175 spin_unlock_irqrestore(&h->lock, flags);
3176 return IRQ_HANDLED;
3179 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3181 struct ctlr_info *h = dev_id;
3182 unsigned long flags;
3183 u32 raw_tag;
3185 spin_lock_irqsave(&h->lock, flags);
3186 h->last_intr_timestamp = get_jiffies_64();
3187 raw_tag = get_next_completion(h);
3188 while (raw_tag != FIFO_EMPTY) {
3189 if (hpsa_tag_contains_index(raw_tag))
3190 raw_tag = process_indexed_cmd(h, raw_tag);
3191 else
3192 raw_tag = process_nonindexed_cmd(h, raw_tag);
3194 spin_unlock_irqrestore(&h->lock, flags);
3195 return IRQ_HANDLED;
3198 /* Send a message CDB to the firmware. Careful, this only works
3199 * in simple mode, not performant mode due to the tag lookup.
3200 * We only ever use this immediately after a controller reset.
3202 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3203 unsigned char type)
3205 struct Command {
3206 struct CommandListHeader CommandHeader;
3207 struct RequestBlock Request;
3208 struct ErrDescriptor ErrorDescriptor;
3210 struct Command *cmd;
3211 static const size_t cmd_sz = sizeof(*cmd) +
3212 sizeof(cmd->ErrorDescriptor);
3213 dma_addr_t paddr64;
3214 uint32_t paddr32, tag;
3215 void __iomem *vaddr;
3216 int i, err;
3218 vaddr = pci_ioremap_bar(pdev, 0);
3219 if (vaddr == NULL)
3220 return -ENOMEM;
3222 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3223 * CCISS commands, so they must be allocated from the lower 4GiB of
3224 * memory.
3226 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3227 if (err) {
3228 iounmap(vaddr);
3229 return -ENOMEM;
3232 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3233 if (cmd == NULL) {
3234 iounmap(vaddr);
3235 return -ENOMEM;
3238 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3239 * although there's no guarantee, we assume that the address is at
3240 * least 4-byte aligned (most likely, it's page-aligned).
3242 paddr32 = paddr64;
3244 cmd->CommandHeader.ReplyQueue = 0;
3245 cmd->CommandHeader.SGList = 0;
3246 cmd->CommandHeader.SGTotal = 0;
3247 cmd->CommandHeader.Tag.lower = paddr32;
3248 cmd->CommandHeader.Tag.upper = 0;
3249 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3251 cmd->Request.CDBLen = 16;
3252 cmd->Request.Type.Type = TYPE_MSG;
3253 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3254 cmd->Request.Type.Direction = XFER_NONE;
3255 cmd->Request.Timeout = 0; /* Don't time out */
3256 cmd->Request.CDB[0] = opcode;
3257 cmd->Request.CDB[1] = type;
3258 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3259 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3260 cmd->ErrorDescriptor.Addr.upper = 0;
3261 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3263 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3265 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3266 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3267 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3268 break;
3269 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3272 iounmap(vaddr);
3274 /* we leak the DMA buffer here ... no choice since the controller could
3275 * still complete the command.
3277 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3278 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3279 opcode, type);
3280 return -ETIMEDOUT;
3283 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3285 if (tag & HPSA_ERROR_BIT) {
3286 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3287 opcode, type);
3288 return -EIO;
3291 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3292 opcode, type);
3293 return 0;
3296 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3298 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3299 void * __iomem vaddr, u32 use_doorbell)
3301 u16 pmcsr;
3302 int pos;
3304 if (use_doorbell) {
3305 /* For everything after the P600, the PCI power state method
3306 * of resetting the controller doesn't work, so we have this
3307 * other way using the doorbell register.
3309 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3310 writel(use_doorbell, vaddr + SA5_DOORBELL);
3311 } else { /* Try to do it the PCI power state way */
3313 /* Quoting from the Open CISS Specification: "The Power
3314 * Management Control/Status Register (CSR) controls the power
3315 * state of the device. The normal operating state is D0,
3316 * CSR=00h. The software off state is D3, CSR=03h. To reset
3317 * the controller, place the interface device in D3 then to D0,
3318 * this causes a secondary PCI reset which will reset the
3319 * controller." */
3321 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3322 if (pos == 0) {
3323 dev_err(&pdev->dev,
3324 "hpsa_reset_controller: "
3325 "PCI PM not supported\n");
3326 return -ENODEV;
3328 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3329 /* enter the D3hot power management state */
3330 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3331 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3332 pmcsr |= PCI_D3hot;
3333 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3335 msleep(500);
3337 /* enter the D0 power management state */
3338 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3339 pmcsr |= PCI_D0;
3340 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3343 * The P600 requires a small delay when changing states.
3344 * Otherwise we may think the board did not reset and we bail.
3345 * This for kdump only and is particular to the P600.
3347 msleep(500);
3349 return 0;
3352 static __devinit void init_driver_version(char *driver_version, int len)
3354 memset(driver_version, 0, len);
3355 strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3358 static __devinit int write_driver_ver_to_cfgtable(
3359 struct CfgTable __iomem *cfgtable)
3361 char *driver_version;
3362 int i, size = sizeof(cfgtable->driver_version);
3364 driver_version = kmalloc(size, GFP_KERNEL);
3365 if (!driver_version)
3366 return -ENOMEM;
3368 init_driver_version(driver_version, size);
3369 for (i = 0; i < size; i++)
3370 writeb(driver_version[i], &cfgtable->driver_version[i]);
3371 kfree(driver_version);
3372 return 0;
3375 static __devinit void read_driver_ver_from_cfgtable(
3376 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3378 int i;
3380 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3381 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3384 static __devinit int controller_reset_failed(
3385 struct CfgTable __iomem *cfgtable)
3388 char *driver_ver, *old_driver_ver;
3389 int rc, size = sizeof(cfgtable->driver_version);
3391 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3392 if (!old_driver_ver)
3393 return -ENOMEM;
3394 driver_ver = old_driver_ver + size;
3396 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3397 * should have been changed, otherwise we know the reset failed.
3399 init_driver_version(old_driver_ver, size);
3400 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3401 rc = !memcmp(driver_ver, old_driver_ver, size);
3402 kfree(old_driver_ver);
3403 return rc;
3405 /* This does a hard reset of the controller using PCI power management
3406 * states or the using the doorbell register.
3408 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3410 u64 cfg_offset;
3411 u32 cfg_base_addr;
3412 u64 cfg_base_addr_index;
3413 void __iomem *vaddr;
3414 unsigned long paddr;
3415 u32 misc_fw_support;
3416 int rc;
3417 struct CfgTable __iomem *cfgtable;
3418 u32 use_doorbell;
3419 u32 board_id;
3420 u16 command_register;
3422 /* For controllers as old as the P600, this is very nearly
3423 * the same thing as
3425 * pci_save_state(pci_dev);
3426 * pci_set_power_state(pci_dev, PCI_D3hot);
3427 * pci_set_power_state(pci_dev, PCI_D0);
3428 * pci_restore_state(pci_dev);
3430 * For controllers newer than the P600, the pci power state
3431 * method of resetting doesn't work so we have another way
3432 * using the doorbell register.
3435 rc = hpsa_lookup_board_id(pdev, &board_id);
3436 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3437 dev_warn(&pdev->dev, "Not resetting device.\n");
3438 return -ENODEV;
3441 /* if controller is soft- but not hard resettable... */
3442 if (!ctlr_is_hard_resettable(board_id))
3443 return -ENOTSUPP; /* try soft reset later. */
3445 /* Save the PCI command register */
3446 pci_read_config_word(pdev, 4, &command_register);
3447 /* Turn the board off. This is so that later pci_restore_state()
3448 * won't turn the board on before the rest of config space is ready.
3450 pci_disable_device(pdev);
3451 pci_save_state(pdev);
3453 /* find the first memory BAR, so we can find the cfg table */
3454 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3455 if (rc)
3456 return rc;
3457 vaddr = remap_pci_mem(paddr, 0x250);
3458 if (!vaddr)
3459 return -ENOMEM;
3461 /* find cfgtable in order to check if reset via doorbell is supported */
3462 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3463 &cfg_base_addr_index, &cfg_offset);
3464 if (rc)
3465 goto unmap_vaddr;
3466 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3467 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3468 if (!cfgtable) {
3469 rc = -ENOMEM;
3470 goto unmap_vaddr;
3472 rc = write_driver_ver_to_cfgtable(cfgtable);
3473 if (rc)
3474 goto unmap_vaddr;
3476 /* If reset via doorbell register is supported, use that.
3477 * There are two such methods. Favor the newest method.
3479 misc_fw_support = readl(&cfgtable->misc_fw_support);
3480 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3481 if (use_doorbell) {
3482 use_doorbell = DOORBELL_CTLR_RESET2;
3483 } else {
3484 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3485 if (use_doorbell) {
3486 dev_warn(&pdev->dev, "Soft reset not supported. "
3487 "Firmware update is required.\n");
3488 rc = -ENOTSUPP; /* try soft reset */
3489 goto unmap_cfgtable;
3493 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3494 if (rc)
3495 goto unmap_cfgtable;
3497 pci_restore_state(pdev);
3498 rc = pci_enable_device(pdev);
3499 if (rc) {
3500 dev_warn(&pdev->dev, "failed to enable device.\n");
3501 goto unmap_cfgtable;
3503 pci_write_config_word(pdev, 4, command_register);
3505 /* Some devices (notably the HP Smart Array 5i Controller)
3506 need a little pause here */
3507 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3509 /* Wait for board to become not ready, then ready. */
3510 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3511 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3512 if (rc) {
3513 dev_warn(&pdev->dev,
3514 "failed waiting for board to reset."
3515 " Will try soft reset.\n");
3516 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3517 goto unmap_cfgtable;
3519 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3520 if (rc) {
3521 dev_warn(&pdev->dev,
3522 "failed waiting for board to become ready "
3523 "after hard reset\n");
3524 goto unmap_cfgtable;
3527 rc = controller_reset_failed(vaddr);
3528 if (rc < 0)
3529 goto unmap_cfgtable;
3530 if (rc) {
3531 dev_warn(&pdev->dev, "Unable to successfully reset "
3532 "controller. Will try soft reset.\n");
3533 rc = -ENOTSUPP;
3534 } else {
3535 dev_info(&pdev->dev, "board ready after hard reset.\n");
3538 unmap_cfgtable:
3539 iounmap(cfgtable);
3541 unmap_vaddr:
3542 iounmap(vaddr);
3543 return rc;
3547 * We cannot read the structure directly, for portability we must use
3548 * the io functions.
3549 * This is for debug only.
3551 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3553 #ifdef HPSA_DEBUG
3554 int i;
3555 char temp_name[17];
3557 dev_info(dev, "Controller Configuration information\n");
3558 dev_info(dev, "------------------------------------\n");
3559 for (i = 0; i < 4; i++)
3560 temp_name[i] = readb(&(tb->Signature[i]));
3561 temp_name[4] = '\0';
3562 dev_info(dev, " Signature = %s\n", temp_name);
3563 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3564 dev_info(dev, " Transport methods supported = 0x%x\n",
3565 readl(&(tb->TransportSupport)));
3566 dev_info(dev, " Transport methods active = 0x%x\n",
3567 readl(&(tb->TransportActive)));
3568 dev_info(dev, " Requested transport Method = 0x%x\n",
3569 readl(&(tb->HostWrite.TransportRequest)));
3570 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3571 readl(&(tb->HostWrite.CoalIntDelay)));
3572 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3573 readl(&(tb->HostWrite.CoalIntCount)));
3574 dev_info(dev, " Max outstanding commands = 0x%d\n",
3575 readl(&(tb->CmdsOutMax)));
3576 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3577 for (i = 0; i < 16; i++)
3578 temp_name[i] = readb(&(tb->ServerName[i]));
3579 temp_name[16] = '\0';
3580 dev_info(dev, " Server Name = %s\n", temp_name);
3581 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3582 readl(&(tb->HeartBeat)));
3583 #endif /* HPSA_DEBUG */
3586 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3588 int i, offset, mem_type, bar_type;
3590 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3591 return 0;
3592 offset = 0;
3593 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3594 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3595 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3596 offset += 4;
3597 else {
3598 mem_type = pci_resource_flags(pdev, i) &
3599 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3600 switch (mem_type) {
3601 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3602 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3603 offset += 4; /* 32 bit */
3604 break;
3605 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3606 offset += 8;
3607 break;
3608 default: /* reserved in PCI 2.2 */
3609 dev_warn(&pdev->dev,
3610 "base address is invalid\n");
3611 return -1;
3612 break;
3615 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3616 return i + 1;
3618 return -1;
3621 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3622 * controllers that are capable. If not, we use IO-APIC mode.
3625 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3627 #ifdef CONFIG_PCI_MSI
3628 int err;
3629 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3630 {0, 2}, {0, 3}
3633 /* Some boards advertise MSI but don't really support it */
3634 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3635 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3636 goto default_int_mode;
3637 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3638 dev_info(&h->pdev->dev, "MSIX\n");
3639 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3640 if (!err) {
3641 h->intr[0] = hpsa_msix_entries[0].vector;
3642 h->intr[1] = hpsa_msix_entries[1].vector;
3643 h->intr[2] = hpsa_msix_entries[2].vector;
3644 h->intr[3] = hpsa_msix_entries[3].vector;
3645 h->msix_vector = 1;
3646 return;
3648 if (err > 0) {
3649 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3650 "available\n", err);
3651 goto default_int_mode;
3652 } else {
3653 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3654 err);
3655 goto default_int_mode;
3658 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3659 dev_info(&h->pdev->dev, "MSI\n");
3660 if (!pci_enable_msi(h->pdev))
3661 h->msi_vector = 1;
3662 else
3663 dev_warn(&h->pdev->dev, "MSI init failed\n");
3665 default_int_mode:
3666 #endif /* CONFIG_PCI_MSI */
3667 /* if we get here we're going to use the default interrupt mode */
3668 h->intr[h->intr_mode] = h->pdev->irq;
3671 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3673 int i;
3674 u32 subsystem_vendor_id, subsystem_device_id;
3676 subsystem_vendor_id = pdev->subsystem_vendor;
3677 subsystem_device_id = pdev->subsystem_device;
3678 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3679 subsystem_vendor_id;
3681 for (i = 0; i < ARRAY_SIZE(products); i++)
3682 if (*board_id == products[i].board_id)
3683 return i;
3685 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3686 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3687 !hpsa_allow_any) {
3688 dev_warn(&pdev->dev, "unrecognized board ID: "
3689 "0x%08x, ignoring.\n", *board_id);
3690 return -ENODEV;
3692 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3695 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3697 u16 command;
3699 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3700 return ((command & PCI_COMMAND_MEMORY) == 0);
3703 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3704 unsigned long *memory_bar)
3706 int i;
3708 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3709 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3710 /* addressing mode bits already removed */
3711 *memory_bar = pci_resource_start(pdev, i);
3712 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3713 *memory_bar);
3714 return 0;
3716 dev_warn(&pdev->dev, "no memory BAR found\n");
3717 return -ENODEV;
3720 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3721 void __iomem *vaddr, int wait_for_ready)
3723 int i, iterations;
3724 u32 scratchpad;
3725 if (wait_for_ready)
3726 iterations = HPSA_BOARD_READY_ITERATIONS;
3727 else
3728 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3730 for (i = 0; i < iterations; i++) {
3731 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3732 if (wait_for_ready) {
3733 if (scratchpad == HPSA_FIRMWARE_READY)
3734 return 0;
3735 } else {
3736 if (scratchpad != HPSA_FIRMWARE_READY)
3737 return 0;
3739 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3741 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3742 return -ENODEV;
3745 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3746 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3747 u64 *cfg_offset)
3749 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3750 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3751 *cfg_base_addr &= (u32) 0x0000ffff;
3752 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3753 if (*cfg_base_addr_index == -1) {
3754 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3755 return -ENODEV;
3757 return 0;
3760 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3762 u64 cfg_offset;
3763 u32 cfg_base_addr;
3764 u64 cfg_base_addr_index;
3765 u32 trans_offset;
3766 int rc;
3768 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3769 &cfg_base_addr_index, &cfg_offset);
3770 if (rc)
3771 return rc;
3772 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3773 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3774 if (!h->cfgtable)
3775 return -ENOMEM;
3776 rc = write_driver_ver_to_cfgtable(h->cfgtable);
3777 if (rc)
3778 return rc;
3779 /* Find performant mode table. */
3780 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3781 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3782 cfg_base_addr_index)+cfg_offset+trans_offset,
3783 sizeof(*h->transtable));
3784 if (!h->transtable)
3785 return -ENOMEM;
3786 return 0;
3789 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3791 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3793 /* Limit commands in memory limited kdump scenario. */
3794 if (reset_devices && h->max_commands > 32)
3795 h->max_commands = 32;
3797 if (h->max_commands < 16) {
3798 dev_warn(&h->pdev->dev, "Controller reports "
3799 "max supported commands of %d, an obvious lie. "
3800 "Using 16. Ensure that firmware is up to date.\n",
3801 h->max_commands);
3802 h->max_commands = 16;
3806 /* Interrogate the hardware for some limits:
3807 * max commands, max SG elements without chaining, and with chaining,
3808 * SG chain block size, etc.
3810 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3812 hpsa_get_max_perf_mode_cmds(h);
3813 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3814 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3816 * Limit in-command s/g elements to 32 save dma'able memory.
3817 * Howvever spec says if 0, use 31
3819 h->max_cmd_sg_entries = 31;
3820 if (h->maxsgentries > 512) {
3821 h->max_cmd_sg_entries = 32;
3822 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3823 h->maxsgentries--; /* save one for chain pointer */
3824 } else {
3825 h->maxsgentries = 31; /* default to traditional values */
3826 h->chainsize = 0;
3830 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3832 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3833 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3834 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3835 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3836 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3837 return false;
3839 return true;
3842 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3843 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3845 #ifdef CONFIG_X86
3846 u32 prefetch;
3848 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3849 prefetch |= 0x100;
3850 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3851 #endif
3854 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3855 * in a prefetch beyond physical memory.
3857 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3859 u32 dma_prefetch;
3861 if (h->board_id != 0x3225103C)
3862 return;
3863 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3864 dma_prefetch |= 0x8000;
3865 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3868 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3870 int i;
3871 u32 doorbell_value;
3872 unsigned long flags;
3874 /* under certain very rare conditions, this can take awhile.
3875 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3876 * as we enter this code.)
3878 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3879 spin_lock_irqsave(&h->lock, flags);
3880 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3881 spin_unlock_irqrestore(&h->lock, flags);
3882 if (!(doorbell_value & CFGTBL_ChangeReq))
3883 break;
3884 /* delay and try again */
3885 usleep_range(10000, 20000);
3889 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3891 u32 trans_support;
3893 trans_support = readl(&(h->cfgtable->TransportSupport));
3894 if (!(trans_support & SIMPLE_MODE))
3895 return -ENOTSUPP;
3897 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3898 /* Update the field, and then ring the doorbell */
3899 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3900 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3901 hpsa_wait_for_mode_change_ack(h);
3902 print_cfg_table(&h->pdev->dev, h->cfgtable);
3903 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3904 dev_warn(&h->pdev->dev,
3905 "unable to get board into simple mode\n");
3906 return -ENODEV;
3908 h->transMethod = CFGTBL_Trans_Simple;
3909 return 0;
3912 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3914 int prod_index, err;
3916 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3917 if (prod_index < 0)
3918 return -ENODEV;
3919 h->product_name = products[prod_index].product_name;
3920 h->access = *(products[prod_index].access);
3922 if (hpsa_board_disabled(h->pdev)) {
3923 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3924 return -ENODEV;
3927 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3928 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3930 err = pci_enable_device(h->pdev);
3931 if (err) {
3932 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3933 return err;
3936 err = pci_request_regions(h->pdev, "hpsa");
3937 if (err) {
3938 dev_err(&h->pdev->dev,
3939 "cannot obtain PCI resources, aborting\n");
3940 return err;
3942 hpsa_interrupt_mode(h);
3943 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3944 if (err)
3945 goto err_out_free_res;
3946 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3947 if (!h->vaddr) {
3948 err = -ENOMEM;
3949 goto err_out_free_res;
3951 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3952 if (err)
3953 goto err_out_free_res;
3954 err = hpsa_find_cfgtables(h);
3955 if (err)
3956 goto err_out_free_res;
3957 hpsa_find_board_params(h);
3959 if (!hpsa_CISS_signature_present(h)) {
3960 err = -ENODEV;
3961 goto err_out_free_res;
3963 hpsa_enable_scsi_prefetch(h);
3964 hpsa_p600_dma_prefetch_quirk(h);
3965 err = hpsa_enter_simple_mode(h);
3966 if (err)
3967 goto err_out_free_res;
3968 return 0;
3970 err_out_free_res:
3971 if (h->transtable)
3972 iounmap(h->transtable);
3973 if (h->cfgtable)
3974 iounmap(h->cfgtable);
3975 if (h->vaddr)
3976 iounmap(h->vaddr);
3978 * Deliberately omit pci_disable_device(): it does something nasty to
3979 * Smart Array controllers that pci_enable_device does not undo
3981 pci_release_regions(h->pdev);
3982 return err;
3985 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3987 int rc;
3989 #define HBA_INQUIRY_BYTE_COUNT 64
3990 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3991 if (!h->hba_inquiry_data)
3992 return;
3993 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3994 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3995 if (rc != 0) {
3996 kfree(h->hba_inquiry_data);
3997 h->hba_inquiry_data = NULL;
4001 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4003 int rc, i;
4005 if (!reset_devices)
4006 return 0;
4008 /* Reset the controller with a PCI power-cycle or via doorbell */
4009 rc = hpsa_kdump_hard_reset_controller(pdev);
4011 /* -ENOTSUPP here means we cannot reset the controller
4012 * but it's already (and still) up and running in
4013 * "performant mode". Or, it might be 640x, which can't reset
4014 * due to concerns about shared bbwc between 6402/6404 pair.
4016 if (rc == -ENOTSUPP)
4017 return rc; /* just try to do the kdump anyhow. */
4018 if (rc)
4019 return -ENODEV;
4021 /* Now try to get the controller to respond to a no-op */
4022 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4023 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4024 if (hpsa_noop(pdev) == 0)
4025 break;
4026 else
4027 dev_warn(&pdev->dev, "no-op failed%s\n",
4028 (i < 11 ? "; re-trying" : ""));
4030 return 0;
4033 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4035 h->cmd_pool_bits = kzalloc(
4036 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4037 sizeof(unsigned long), GFP_KERNEL);
4038 h->cmd_pool = pci_alloc_consistent(h->pdev,
4039 h->nr_cmds * sizeof(*h->cmd_pool),
4040 &(h->cmd_pool_dhandle));
4041 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4042 h->nr_cmds * sizeof(*h->errinfo_pool),
4043 &(h->errinfo_pool_dhandle));
4044 if ((h->cmd_pool_bits == NULL)
4045 || (h->cmd_pool == NULL)
4046 || (h->errinfo_pool == NULL)) {
4047 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4048 return -ENOMEM;
4050 return 0;
4053 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4055 kfree(h->cmd_pool_bits);
4056 if (h->cmd_pool)
4057 pci_free_consistent(h->pdev,
4058 h->nr_cmds * sizeof(struct CommandList),
4059 h->cmd_pool, h->cmd_pool_dhandle);
4060 if (h->errinfo_pool)
4061 pci_free_consistent(h->pdev,
4062 h->nr_cmds * sizeof(struct ErrorInfo),
4063 h->errinfo_pool,
4064 h->errinfo_pool_dhandle);
4067 static int hpsa_request_irq(struct ctlr_info *h,
4068 irqreturn_t (*msixhandler)(int, void *),
4069 irqreturn_t (*intxhandler)(int, void *))
4071 int rc;
4073 if (h->msix_vector || h->msi_vector)
4074 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4075 IRQF_DISABLED, h->devname, h);
4076 else
4077 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4078 IRQF_DISABLED, h->devname, h);
4079 if (rc) {
4080 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4081 h->intr[h->intr_mode], h->devname);
4082 return -ENODEV;
4084 return 0;
4087 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4089 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4090 HPSA_RESET_TYPE_CONTROLLER)) {
4091 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4092 return -EIO;
4095 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4096 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4097 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4098 return -1;
4101 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4102 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4103 dev_warn(&h->pdev->dev, "Board failed to become ready "
4104 "after soft reset.\n");
4105 return -1;
4108 return 0;
4111 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4113 free_irq(h->intr[h->intr_mode], h);
4114 #ifdef CONFIG_PCI_MSI
4115 if (h->msix_vector)
4116 pci_disable_msix(h->pdev);
4117 else if (h->msi_vector)
4118 pci_disable_msi(h->pdev);
4119 #endif /* CONFIG_PCI_MSI */
4120 hpsa_free_sg_chain_blocks(h);
4121 hpsa_free_cmd_pool(h);
4122 kfree(h->blockFetchTable);
4123 pci_free_consistent(h->pdev, h->reply_pool_size,
4124 h->reply_pool, h->reply_pool_dhandle);
4125 if (h->vaddr)
4126 iounmap(h->vaddr);
4127 if (h->transtable)
4128 iounmap(h->transtable);
4129 if (h->cfgtable)
4130 iounmap(h->cfgtable);
4131 pci_release_regions(h->pdev);
4132 kfree(h);
4135 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4137 assert_spin_locked(&lockup_detector_lock);
4138 if (!hpsa_lockup_detector)
4139 return;
4140 if (h->lockup_detected)
4141 return; /* already stopped the lockup detector */
4142 list_del(&h->lockup_list);
4145 /* Called when controller lockup detected. */
4146 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4148 struct CommandList *c = NULL;
4150 assert_spin_locked(&h->lock);
4151 /* Mark all outstanding commands as failed and complete them. */
4152 while (!list_empty(list)) {
4153 c = list_entry(list->next, struct CommandList, list);
4154 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4155 finish_cmd(c, c->Header.Tag.lower);
4159 static void controller_lockup_detected(struct ctlr_info *h)
4161 unsigned long flags;
4163 assert_spin_locked(&lockup_detector_lock);
4164 remove_ctlr_from_lockup_detector_list(h);
4165 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4166 spin_lock_irqsave(&h->lock, flags);
4167 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4168 spin_unlock_irqrestore(&h->lock, flags);
4169 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4170 h->lockup_detected);
4171 pci_disable_device(h->pdev);
4172 spin_lock_irqsave(&h->lock, flags);
4173 fail_all_cmds_on_list(h, &h->cmpQ);
4174 fail_all_cmds_on_list(h, &h->reqQ);
4175 spin_unlock_irqrestore(&h->lock, flags);
4178 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4179 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4181 static void detect_controller_lockup(struct ctlr_info *h)
4183 u64 now;
4184 u32 heartbeat;
4185 unsigned long flags;
4187 assert_spin_locked(&lockup_detector_lock);
4188 now = get_jiffies_64();
4189 /* If we've received an interrupt recently, we're ok. */
4190 if (time_after64(h->last_intr_timestamp +
4191 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4192 return;
4195 * If we've already checked the heartbeat recently, we're ok.
4196 * This could happen if someone sends us a signal. We
4197 * otherwise don't care about signals in this thread.
4199 if (time_after64(h->last_heartbeat_timestamp +
4200 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4201 return;
4203 /* If heartbeat has not changed since we last looked, we're not ok. */
4204 spin_lock_irqsave(&h->lock, flags);
4205 heartbeat = readl(&h->cfgtable->HeartBeat);
4206 spin_unlock_irqrestore(&h->lock, flags);
4207 if (h->last_heartbeat == heartbeat) {
4208 controller_lockup_detected(h);
4209 return;
4212 /* We're ok. */
4213 h->last_heartbeat = heartbeat;
4214 h->last_heartbeat_timestamp = now;
4217 static int detect_controller_lockup_thread(void *notused)
4219 struct ctlr_info *h;
4220 unsigned long flags;
4222 while (1) {
4223 struct list_head *this, *tmp;
4225 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4226 if (kthread_should_stop())
4227 break;
4228 spin_lock_irqsave(&lockup_detector_lock, flags);
4229 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4230 h = list_entry(this, struct ctlr_info, lockup_list);
4231 detect_controller_lockup(h);
4233 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4235 return 0;
4238 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4240 unsigned long flags;
4242 spin_lock_irqsave(&lockup_detector_lock, flags);
4243 list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4244 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4247 static void start_controller_lockup_detector(struct ctlr_info *h)
4249 /* Start the lockup detector thread if not already started */
4250 if (!hpsa_lockup_detector) {
4251 spin_lock_init(&lockup_detector_lock);
4252 hpsa_lockup_detector =
4253 kthread_run(detect_controller_lockup_thread,
4254 NULL, "hpsa");
4256 if (!hpsa_lockup_detector) {
4257 dev_warn(&h->pdev->dev,
4258 "Could not start lockup detector thread\n");
4259 return;
4261 add_ctlr_to_lockup_detector_list(h);
4264 static void stop_controller_lockup_detector(struct ctlr_info *h)
4266 unsigned long flags;
4268 spin_lock_irqsave(&lockup_detector_lock, flags);
4269 remove_ctlr_from_lockup_detector_list(h);
4270 /* If the list of ctlr's to monitor is empty, stop the thread */
4271 if (list_empty(&hpsa_ctlr_list)) {
4272 kthread_stop(hpsa_lockup_detector);
4273 hpsa_lockup_detector = NULL;
4275 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4278 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4279 const struct pci_device_id *ent)
4281 int dac, rc;
4282 struct ctlr_info *h;
4283 int try_soft_reset = 0;
4284 unsigned long flags;
4286 if (number_of_controllers == 0)
4287 printk(KERN_INFO DRIVER_NAME "\n");
4289 rc = hpsa_init_reset_devices(pdev);
4290 if (rc) {
4291 if (rc != -ENOTSUPP)
4292 return rc;
4293 /* If the reset fails in a particular way (it has no way to do
4294 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4295 * a soft reset once we get the controller configured up to the
4296 * point that it can accept a command.
4298 try_soft_reset = 1;
4299 rc = 0;
4302 reinit_after_soft_reset:
4304 /* Command structures must be aligned on a 32-byte boundary because
4305 * the 5 lower bits of the address are used by the hardware. and by
4306 * the driver. See comments in hpsa.h for more info.
4308 #define COMMANDLIST_ALIGNMENT 32
4309 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4310 h = kzalloc(sizeof(*h), GFP_KERNEL);
4311 if (!h)
4312 return -ENOMEM;
4314 h->pdev = pdev;
4315 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4316 INIT_LIST_HEAD(&h->cmpQ);
4317 INIT_LIST_HEAD(&h->reqQ);
4318 spin_lock_init(&h->lock);
4319 spin_lock_init(&h->scan_lock);
4320 rc = hpsa_pci_init(h);
4321 if (rc != 0)
4322 goto clean1;
4324 sprintf(h->devname, "hpsa%d", number_of_controllers);
4325 h->ctlr = number_of_controllers;
4326 number_of_controllers++;
4328 /* configure PCI DMA stuff */
4329 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4330 if (rc == 0) {
4331 dac = 1;
4332 } else {
4333 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4334 if (rc == 0) {
4335 dac = 0;
4336 } else {
4337 dev_err(&pdev->dev, "no suitable DMA available\n");
4338 goto clean1;
4342 /* make sure the board interrupts are off */
4343 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4345 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4346 goto clean2;
4347 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4348 h->devname, pdev->device,
4349 h->intr[h->intr_mode], dac ? "" : " not");
4350 if (hpsa_allocate_cmd_pool(h))
4351 goto clean4;
4352 if (hpsa_allocate_sg_chain_blocks(h))
4353 goto clean4;
4354 init_waitqueue_head(&h->scan_wait_queue);
4355 h->scan_finished = 1; /* no scan currently in progress */
4357 pci_set_drvdata(pdev, h);
4358 h->ndevices = 0;
4359 h->scsi_host = NULL;
4360 spin_lock_init(&h->devlock);
4361 hpsa_put_ctlr_into_performant_mode(h);
4363 /* At this point, the controller is ready to take commands.
4364 * Now, if reset_devices and the hard reset didn't work, try
4365 * the soft reset and see if that works.
4367 if (try_soft_reset) {
4369 /* This is kind of gross. We may or may not get a completion
4370 * from the soft reset command, and if we do, then the value
4371 * from the fifo may or may not be valid. So, we wait 10 secs
4372 * after the reset throwing away any completions we get during
4373 * that time. Unregister the interrupt handler and register
4374 * fake ones to scoop up any residual completions.
4376 spin_lock_irqsave(&h->lock, flags);
4377 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4378 spin_unlock_irqrestore(&h->lock, flags);
4379 free_irq(h->intr[h->intr_mode], h);
4380 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4381 hpsa_intx_discard_completions);
4382 if (rc) {
4383 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4384 "soft reset.\n");
4385 goto clean4;
4388 rc = hpsa_kdump_soft_reset(h);
4389 if (rc)
4390 /* Neither hard nor soft reset worked, we're hosed. */
4391 goto clean4;
4393 dev_info(&h->pdev->dev, "Board READY.\n");
4394 dev_info(&h->pdev->dev,
4395 "Waiting for stale completions to drain.\n");
4396 h->access.set_intr_mask(h, HPSA_INTR_ON);
4397 msleep(10000);
4398 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4400 rc = controller_reset_failed(h->cfgtable);
4401 if (rc)
4402 dev_info(&h->pdev->dev,
4403 "Soft reset appears to have failed.\n");
4405 /* since the controller's reset, we have to go back and re-init
4406 * everything. Easiest to just forget what we've done and do it
4407 * all over again.
4409 hpsa_undo_allocations_after_kdump_soft_reset(h);
4410 try_soft_reset = 0;
4411 if (rc)
4412 /* don't go to clean4, we already unallocated */
4413 return -ENODEV;
4415 goto reinit_after_soft_reset;
4418 /* Turn the interrupts on so we can service requests */
4419 h->access.set_intr_mask(h, HPSA_INTR_ON);
4421 hpsa_hba_inquiry(h);
4422 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4423 start_controller_lockup_detector(h);
4424 return 1;
4426 clean4:
4427 hpsa_free_sg_chain_blocks(h);
4428 hpsa_free_cmd_pool(h);
4429 free_irq(h->intr[h->intr_mode], h);
4430 clean2:
4431 clean1:
4432 kfree(h);
4433 return rc;
4436 static void hpsa_flush_cache(struct ctlr_info *h)
4438 char *flush_buf;
4439 struct CommandList *c;
4441 flush_buf = kzalloc(4, GFP_KERNEL);
4442 if (!flush_buf)
4443 return;
4445 c = cmd_special_alloc(h);
4446 if (!c) {
4447 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4448 goto out_of_memory;
4450 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4451 RAID_CTLR_LUNID, TYPE_CMD);
4452 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4453 if (c->err_info->CommandStatus != 0)
4454 dev_warn(&h->pdev->dev,
4455 "error flushing cache on controller\n");
4456 cmd_special_free(h, c);
4457 out_of_memory:
4458 kfree(flush_buf);
4461 static void hpsa_shutdown(struct pci_dev *pdev)
4463 struct ctlr_info *h;
4465 h = pci_get_drvdata(pdev);
4466 /* Turn board interrupts off and send the flush cache command
4467 * sendcmd will turn off interrupt, and send the flush...
4468 * To write all data in the battery backed cache to disks
4470 hpsa_flush_cache(h);
4471 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4472 free_irq(h->intr[h->intr_mode], h);
4473 #ifdef CONFIG_PCI_MSI
4474 if (h->msix_vector)
4475 pci_disable_msix(h->pdev);
4476 else if (h->msi_vector)
4477 pci_disable_msi(h->pdev);
4478 #endif /* CONFIG_PCI_MSI */
4481 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4483 struct ctlr_info *h;
4485 if (pci_get_drvdata(pdev) == NULL) {
4486 dev_err(&pdev->dev, "unable to remove device\n");
4487 return;
4489 h = pci_get_drvdata(pdev);
4490 stop_controller_lockup_detector(h);
4491 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4492 hpsa_shutdown(pdev);
4493 iounmap(h->vaddr);
4494 iounmap(h->transtable);
4495 iounmap(h->cfgtable);
4496 hpsa_free_sg_chain_blocks(h);
4497 pci_free_consistent(h->pdev,
4498 h->nr_cmds * sizeof(struct CommandList),
4499 h->cmd_pool, h->cmd_pool_dhandle);
4500 pci_free_consistent(h->pdev,
4501 h->nr_cmds * sizeof(struct ErrorInfo),
4502 h->errinfo_pool, h->errinfo_pool_dhandle);
4503 pci_free_consistent(h->pdev, h->reply_pool_size,
4504 h->reply_pool, h->reply_pool_dhandle);
4505 kfree(h->cmd_pool_bits);
4506 kfree(h->blockFetchTable);
4507 kfree(h->hba_inquiry_data);
4509 * Deliberately omit pci_disable_device(): it does something nasty to
4510 * Smart Array controllers that pci_enable_device does not undo
4512 pci_release_regions(pdev);
4513 pci_set_drvdata(pdev, NULL);
4514 kfree(h);
4517 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4518 __attribute__((unused)) pm_message_t state)
4520 return -ENOSYS;
4523 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4525 return -ENOSYS;
4528 static struct pci_driver hpsa_pci_driver = {
4529 .name = "hpsa",
4530 .probe = hpsa_init_one,
4531 .remove = __devexit_p(hpsa_remove_one),
4532 .id_table = hpsa_pci_device_id, /* id_table */
4533 .shutdown = hpsa_shutdown,
4534 .suspend = hpsa_suspend,
4535 .resume = hpsa_resume,
4538 /* Fill in bucket_map[], given nsgs (the max number of
4539 * scatter gather elements supported) and bucket[],
4540 * which is an array of 8 integers. The bucket[] array
4541 * contains 8 different DMA transfer sizes (in 16
4542 * byte increments) which the controller uses to fetch
4543 * commands. This function fills in bucket_map[], which
4544 * maps a given number of scatter gather elements to one of
4545 * the 8 DMA transfer sizes. The point of it is to allow the
4546 * controller to only do as much DMA as needed to fetch the
4547 * command, with the DMA transfer size encoded in the lower
4548 * bits of the command address.
4550 static void calc_bucket_map(int bucket[], int num_buckets,
4551 int nsgs, int *bucket_map)
4553 int i, j, b, size;
4555 /* even a command with 0 SGs requires 4 blocks */
4556 #define MINIMUM_TRANSFER_BLOCKS 4
4557 #define NUM_BUCKETS 8
4558 /* Note, bucket_map must have nsgs+1 entries. */
4559 for (i = 0; i <= nsgs; i++) {
4560 /* Compute size of a command with i SG entries */
4561 size = i + MINIMUM_TRANSFER_BLOCKS;
4562 b = num_buckets; /* Assume the biggest bucket */
4563 /* Find the bucket that is just big enough */
4564 for (j = 0; j < 8; j++) {
4565 if (bucket[j] >= size) {
4566 b = j;
4567 break;
4570 /* for a command with i SG entries, use bucket b. */
4571 bucket_map[i] = b;
4575 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4576 u32 use_short_tags)
4578 int i;
4579 unsigned long register_value;
4581 /* This is a bit complicated. There are 8 registers on
4582 * the controller which we write to to tell it 8 different
4583 * sizes of commands which there may be. It's a way of
4584 * reducing the DMA done to fetch each command. Encoded into
4585 * each command's tag are 3 bits which communicate to the controller
4586 * which of the eight sizes that command fits within. The size of
4587 * each command depends on how many scatter gather entries there are.
4588 * Each SG entry requires 16 bytes. The eight registers are programmed
4589 * with the number of 16-byte blocks a command of that size requires.
4590 * The smallest command possible requires 5 such 16 byte blocks.
4591 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4592 * blocks. Note, this only extends to the SG entries contained
4593 * within the command block, and does not extend to chained blocks
4594 * of SG elements. bft[] contains the eight values we write to
4595 * the registers. They are not evenly distributed, but have more
4596 * sizes for small commands, and fewer sizes for larger commands.
4598 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4599 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4600 /* 5 = 1 s/g entry or 4k
4601 * 6 = 2 s/g entry or 8k
4602 * 8 = 4 s/g entry or 16k
4603 * 10 = 6 s/g entry or 24k
4606 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4608 /* Controller spec: zero out this buffer. */
4609 memset(h->reply_pool, 0, h->reply_pool_size);
4610 h->reply_pool_head = h->reply_pool;
4612 bft[7] = h->max_sg_entries + 4;
4613 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4614 for (i = 0; i < 8; i++)
4615 writel(bft[i], &h->transtable->BlockFetch[i]);
4617 /* size of controller ring buffer */
4618 writel(h->max_commands, &h->transtable->RepQSize);
4619 writel(1, &h->transtable->RepQCount);
4620 writel(0, &h->transtable->RepQCtrAddrLow32);
4621 writel(0, &h->transtable->RepQCtrAddrHigh32);
4622 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4623 writel(0, &h->transtable->RepQAddr0High32);
4624 writel(CFGTBL_Trans_Performant | use_short_tags,
4625 &(h->cfgtable->HostWrite.TransportRequest));
4626 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4627 hpsa_wait_for_mode_change_ack(h);
4628 register_value = readl(&(h->cfgtable->TransportActive));
4629 if (!(register_value & CFGTBL_Trans_Performant)) {
4630 dev_warn(&h->pdev->dev, "unable to get board into"
4631 " performant mode\n");
4632 return;
4634 /* Change the access methods to the performant access methods */
4635 h->access = SA5_performant_access;
4636 h->transMethod = CFGTBL_Trans_Performant;
4639 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4641 u32 trans_support;
4643 if (hpsa_simple_mode)
4644 return;
4646 trans_support = readl(&(h->cfgtable->TransportSupport));
4647 if (!(trans_support & PERFORMANT_MODE))
4648 return;
4650 hpsa_get_max_perf_mode_cmds(h);
4651 h->max_sg_entries = 32;
4652 /* Performant mode ring buffer and supporting data structures */
4653 h->reply_pool_size = h->max_commands * sizeof(u64);
4654 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4655 &(h->reply_pool_dhandle));
4657 /* Need a block fetch table for performant mode */
4658 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4659 sizeof(u32)), GFP_KERNEL);
4661 if ((h->reply_pool == NULL)
4662 || (h->blockFetchTable == NULL))
4663 goto clean_up;
4665 hpsa_enter_performant_mode(h,
4666 trans_support & CFGTBL_Trans_use_short_tags);
4668 return;
4670 clean_up:
4671 if (h->reply_pool)
4672 pci_free_consistent(h->pdev, h->reply_pool_size,
4673 h->reply_pool, h->reply_pool_dhandle);
4674 kfree(h->blockFetchTable);
4678 * This is it. Register the PCI driver information for the cards we control
4679 * the OS will call our registered routines when it finds one of our cards.
4681 static int __init hpsa_init(void)
4683 return pci_register_driver(&hpsa_pci_driver);
4686 static void __exit hpsa_cleanup(void)
4688 pci_unregister_driver(&hpsa_pci_driver);
4691 module_init(hpsa_init);
4692 module_exit(hpsa_cleanup);