1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_cdb.h"
57 #include "target_core_hba.h"
58 #include "target_core_pr.h"
59 #include "target_core_ua.h"
61 static int sub_api_initialized
;
63 static struct workqueue_struct
*target_completion_wq
;
64 static struct kmem_cache
*se_sess_cache
;
65 struct kmem_cache
*se_tmr_req_cache
;
66 struct kmem_cache
*se_ua_cache
;
67 struct kmem_cache
*t10_pr_reg_cache
;
68 struct kmem_cache
*t10_alua_lu_gp_cache
;
69 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
70 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
71 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
73 static int transport_generic_write_pending(struct se_cmd
*);
74 static int transport_processing_thread(void *param
);
75 static int __transport_execute_tasks(struct se_device
*dev
);
76 static void transport_complete_task_attr(struct se_cmd
*cmd
);
77 static void transport_handle_queue_full(struct se_cmd
*cmd
,
78 struct se_device
*dev
);
79 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
80 static int transport_generic_get_mem(struct se_cmd
*cmd
);
81 static void transport_put_cmd(struct se_cmd
*cmd
);
82 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
);
83 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
84 static void transport_generic_request_failure(struct se_cmd
*);
85 static void target_complete_ok_work(struct work_struct
*work
);
87 int init_se_kmem_caches(void)
89 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
90 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
92 if (!se_tmr_req_cache
) {
93 pr_err("kmem_cache_create() for struct se_tmr_req"
97 se_sess_cache
= kmem_cache_create("se_sess_cache",
98 sizeof(struct se_session
), __alignof__(struct se_session
),
100 if (!se_sess_cache
) {
101 pr_err("kmem_cache_create() for struct se_session"
103 goto out_free_tmr_req_cache
;
105 se_ua_cache
= kmem_cache_create("se_ua_cache",
106 sizeof(struct se_ua
), __alignof__(struct se_ua
),
109 pr_err("kmem_cache_create() for struct se_ua failed\n");
110 goto out_free_sess_cache
;
112 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
113 sizeof(struct t10_pr_registration
),
114 __alignof__(struct t10_pr_registration
), 0, NULL
);
115 if (!t10_pr_reg_cache
) {
116 pr_err("kmem_cache_create() for struct t10_pr_registration"
118 goto out_free_ua_cache
;
120 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
121 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
123 if (!t10_alua_lu_gp_cache
) {
124 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
126 goto out_free_pr_reg_cache
;
128 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
129 sizeof(struct t10_alua_lu_gp_member
),
130 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
131 if (!t10_alua_lu_gp_mem_cache
) {
132 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
134 goto out_free_lu_gp_cache
;
136 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
137 sizeof(struct t10_alua_tg_pt_gp
),
138 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
139 if (!t10_alua_tg_pt_gp_cache
) {
140 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
142 goto out_free_lu_gp_mem_cache
;
144 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
145 "t10_alua_tg_pt_gp_mem_cache",
146 sizeof(struct t10_alua_tg_pt_gp_member
),
147 __alignof__(struct t10_alua_tg_pt_gp_member
),
149 if (!t10_alua_tg_pt_gp_mem_cache
) {
150 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
152 goto out_free_tg_pt_gp_cache
;
155 target_completion_wq
= alloc_workqueue("target_completion",
157 if (!target_completion_wq
)
158 goto out_free_tg_pt_gp_mem_cache
;
162 out_free_tg_pt_gp_mem_cache
:
163 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
164 out_free_tg_pt_gp_cache
:
165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
166 out_free_lu_gp_mem_cache
:
167 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
168 out_free_lu_gp_cache
:
169 kmem_cache_destroy(t10_alua_lu_gp_cache
);
170 out_free_pr_reg_cache
:
171 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(se_ua_cache
);
175 kmem_cache_destroy(se_sess_cache
);
176 out_free_tmr_req_cache
:
177 kmem_cache_destroy(se_tmr_req_cache
);
182 void release_se_kmem_caches(void)
184 destroy_workqueue(target_completion_wq
);
185 kmem_cache_destroy(se_tmr_req_cache
);
186 kmem_cache_destroy(se_sess_cache
);
187 kmem_cache_destroy(se_ua_cache
);
188 kmem_cache_destroy(t10_pr_reg_cache
);
189 kmem_cache_destroy(t10_alua_lu_gp_cache
);
190 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
191 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
192 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
197 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
200 * Allocate a new row index for the entry type specified
202 u32
scsi_get_new_index(scsi_index_t type
)
206 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
208 spin_lock(&scsi_mib_index_lock
);
209 new_index
= ++scsi_mib_index
[type
];
210 spin_unlock(&scsi_mib_index_lock
);
215 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
217 atomic_set(&qobj
->queue_cnt
, 0);
218 INIT_LIST_HEAD(&qobj
->qobj_list
);
219 init_waitqueue_head(&qobj
->thread_wq
);
220 spin_lock_init(&qobj
->cmd_queue_lock
);
222 EXPORT_SYMBOL(transport_init_queue_obj
);
224 void transport_subsystem_check_init(void)
228 if (sub_api_initialized
)
231 ret
= request_module("target_core_iblock");
233 pr_err("Unable to load target_core_iblock\n");
235 ret
= request_module("target_core_file");
237 pr_err("Unable to load target_core_file\n");
239 ret
= request_module("target_core_pscsi");
241 pr_err("Unable to load target_core_pscsi\n");
243 ret
= request_module("target_core_stgt");
245 pr_err("Unable to load target_core_stgt\n");
247 sub_api_initialized
= 1;
251 struct se_session
*transport_init_session(void)
253 struct se_session
*se_sess
;
255 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
257 pr_err("Unable to allocate struct se_session from"
259 return ERR_PTR(-ENOMEM
);
261 INIT_LIST_HEAD(&se_sess
->sess_list
);
262 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
263 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
264 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
265 spin_lock_init(&se_sess
->sess_cmd_lock
);
269 EXPORT_SYMBOL(transport_init_session
);
272 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
274 void __transport_register_session(
275 struct se_portal_group
*se_tpg
,
276 struct se_node_acl
*se_nacl
,
277 struct se_session
*se_sess
,
278 void *fabric_sess_ptr
)
280 unsigned char buf
[PR_REG_ISID_LEN
];
282 se_sess
->se_tpg
= se_tpg
;
283 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
285 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
287 * Only set for struct se_session's that will actually be moving I/O.
288 * eg: *NOT* discovery sessions.
292 * If the fabric module supports an ISID based TransportID,
293 * save this value in binary from the fabric I_T Nexus now.
295 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
296 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
297 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
298 &buf
[0], PR_REG_ISID_LEN
);
299 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
301 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
303 * The se_nacl->nacl_sess pointer will be set to the
304 * last active I_T Nexus for each struct se_node_acl.
306 se_nacl
->nacl_sess
= se_sess
;
308 list_add_tail(&se_sess
->sess_acl_list
,
309 &se_nacl
->acl_sess_list
);
310 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
312 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
314 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
315 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
317 EXPORT_SYMBOL(__transport_register_session
);
319 void transport_register_session(
320 struct se_portal_group
*se_tpg
,
321 struct se_node_acl
*se_nacl
,
322 struct se_session
*se_sess
,
323 void *fabric_sess_ptr
)
325 spin_lock_bh(&se_tpg
->session_lock
);
326 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
327 spin_unlock_bh(&se_tpg
->session_lock
);
329 EXPORT_SYMBOL(transport_register_session
);
331 void transport_deregister_session_configfs(struct se_session
*se_sess
)
333 struct se_node_acl
*se_nacl
;
336 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
338 se_nacl
= se_sess
->se_node_acl
;
340 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
341 list_del(&se_sess
->sess_acl_list
);
343 * If the session list is empty, then clear the pointer.
344 * Otherwise, set the struct se_session pointer from the tail
345 * element of the per struct se_node_acl active session list.
347 if (list_empty(&se_nacl
->acl_sess_list
))
348 se_nacl
->nacl_sess
= NULL
;
350 se_nacl
->nacl_sess
= container_of(
351 se_nacl
->acl_sess_list
.prev
,
352 struct se_session
, sess_acl_list
);
354 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
357 EXPORT_SYMBOL(transport_deregister_session_configfs
);
359 void transport_free_session(struct se_session
*se_sess
)
361 kmem_cache_free(se_sess_cache
, se_sess
);
363 EXPORT_SYMBOL(transport_free_session
);
365 void transport_deregister_session(struct se_session
*se_sess
)
367 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
368 struct se_node_acl
*se_nacl
;
372 transport_free_session(se_sess
);
376 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
377 list_del(&se_sess
->sess_list
);
378 se_sess
->se_tpg
= NULL
;
379 se_sess
->fabric_sess_ptr
= NULL
;
380 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
383 * Determine if we need to do extra work for this initiator node's
384 * struct se_node_acl if it had been previously dynamically generated.
386 se_nacl
= se_sess
->se_node_acl
;
388 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
389 if (se_nacl
->dynamic_node_acl
) {
390 if (!se_tpg
->se_tpg_tfo
->tpg_check_demo_mode_cache(
392 list_del(&se_nacl
->acl_list
);
393 se_tpg
->num_node_acls
--;
394 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
396 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
397 core_free_device_list_for_node(se_nacl
, se_tpg
);
398 se_tpg
->se_tpg_tfo
->tpg_release_fabric_acl(se_tpg
,
400 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
403 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
406 transport_free_session(se_sess
);
408 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
409 se_tpg
->se_tpg_tfo
->get_fabric_name());
411 EXPORT_SYMBOL(transport_deregister_session
);
414 * Called with cmd->t_state_lock held.
416 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
418 struct se_device
*dev
= cmd
->se_dev
;
419 struct se_task
*task
;
425 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
426 if (task
->task_flags
& TF_ACTIVE
)
429 if (!atomic_read(&task
->task_state_active
))
432 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
433 list_del(&task
->t_state_list
);
434 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
435 cmd
->se_tfo
->get_task_tag(cmd
), dev
, task
);
436 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
438 atomic_set(&task
->task_state_active
, 0);
439 atomic_dec(&cmd
->t_task_cdbs_ex_left
);
443 /* transport_cmd_check_stop():
445 * 'transport_off = 1' determines if t_transport_active should be cleared.
446 * 'transport_off = 2' determines if task_dev_state should be removed.
448 * A non-zero u8 t_state sets cmd->t_state.
449 * Returns 1 when command is stopped, else 0.
451 static int transport_cmd_check_stop(
458 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
460 * Determine if IOCTL context caller in requesting the stopping of this
461 * command for LUN shutdown purposes.
463 if (atomic_read(&cmd
->transport_lun_stop
)) {
464 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
465 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
466 cmd
->se_tfo
->get_task_tag(cmd
));
468 atomic_set(&cmd
->t_transport_active
, 0);
469 if (transport_off
== 2)
470 transport_all_task_dev_remove_state(cmd
);
471 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
473 complete(&cmd
->transport_lun_stop_comp
);
477 * Determine if frontend context caller is requesting the stopping of
478 * this command for frontend exceptions.
480 if (atomic_read(&cmd
->t_transport_stop
)) {
481 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
482 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
483 cmd
->se_tfo
->get_task_tag(cmd
));
485 if (transport_off
== 2)
486 transport_all_task_dev_remove_state(cmd
);
489 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
492 if (transport_off
== 2)
494 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
496 complete(&cmd
->t_transport_stop_comp
);
500 atomic_set(&cmd
->t_transport_active
, 0);
501 if (transport_off
== 2) {
502 transport_all_task_dev_remove_state(cmd
);
504 * Clear struct se_cmd->se_lun before the transport_off == 2
505 * handoff to fabric module.
509 * Some fabric modules like tcm_loop can release
510 * their internally allocated I/O reference now and
513 * Fabric modules are expected to return '1' here if the
514 * se_cmd being passed is released at this point,
515 * or zero if not being released.
517 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
518 spin_unlock_irqrestore(
519 &cmd
->t_state_lock
, flags
);
521 return cmd
->se_tfo
->check_stop_free(cmd
);
524 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
528 cmd
->t_state
= t_state
;
529 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
534 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
536 return transport_cmd_check_stop(cmd
, 2, 0);
539 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
541 struct se_lun
*lun
= cmd
->se_lun
;
547 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
548 if (!atomic_read(&cmd
->transport_dev_active
)) {
549 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
552 atomic_set(&cmd
->transport_dev_active
, 0);
553 transport_all_task_dev_remove_state(cmd
);
554 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
558 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
559 if (atomic_read(&cmd
->transport_lun_active
)) {
560 list_del(&cmd
->se_lun_node
);
561 atomic_set(&cmd
->transport_lun_active
, 0);
563 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
564 cmd
->se_tfo
->get_task_tag(cmd
), lun
->unpacked_lun
);
567 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
570 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
572 if (!cmd
->se_tmr_req
)
573 transport_lun_remove_cmd(cmd
);
575 if (transport_cmd_check_stop_to_fabric(cmd
))
578 transport_remove_cmd_from_queue(cmd
);
579 transport_put_cmd(cmd
);
583 static void transport_add_cmd_to_queue(struct se_cmd
*cmd
, int t_state
,
586 struct se_device
*dev
= cmd
->se_dev
;
587 struct se_queue_obj
*qobj
= &dev
->dev_queue_obj
;
591 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
592 cmd
->t_state
= t_state
;
593 atomic_set(&cmd
->t_transport_active
, 1);
594 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
597 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
599 /* If the cmd is already on the list, remove it before we add it */
600 if (!list_empty(&cmd
->se_queue_node
))
601 list_del(&cmd
->se_queue_node
);
603 atomic_inc(&qobj
->queue_cnt
);
606 list_add(&cmd
->se_queue_node
, &qobj
->qobj_list
);
608 list_add_tail(&cmd
->se_queue_node
, &qobj
->qobj_list
);
609 atomic_set(&cmd
->t_transport_queue_active
, 1);
610 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
612 wake_up_interruptible(&qobj
->thread_wq
);
615 static struct se_cmd
*
616 transport_get_cmd_from_queue(struct se_queue_obj
*qobj
)
621 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
622 if (list_empty(&qobj
->qobj_list
)) {
623 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
626 cmd
= list_first_entry(&qobj
->qobj_list
, struct se_cmd
, se_queue_node
);
628 atomic_set(&cmd
->t_transport_queue_active
, 0);
630 list_del_init(&cmd
->se_queue_node
);
631 atomic_dec(&qobj
->queue_cnt
);
632 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
637 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
)
639 struct se_queue_obj
*qobj
= &cmd
->se_dev
->dev_queue_obj
;
642 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
643 if (!atomic_read(&cmd
->t_transport_queue_active
)) {
644 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
647 atomic_set(&cmd
->t_transport_queue_active
, 0);
648 atomic_dec(&qobj
->queue_cnt
);
649 list_del_init(&cmd
->se_queue_node
);
650 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
652 if (atomic_read(&cmd
->t_transport_queue_active
)) {
653 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
654 cmd
->se_tfo
->get_task_tag(cmd
),
655 atomic_read(&cmd
->t_transport_queue_active
));
660 * Completion function used by TCM subsystem plugins (such as FILEIO)
661 * for queueing up response from struct se_subsystem_api->do_task()
663 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
665 struct se_task
*task
= list_entry(cmd
->t_task_list
.next
,
666 struct se_task
, t_list
);
669 cmd
->scsi_status
= SAM_STAT_GOOD
;
670 task
->task_scsi_status
= GOOD
;
672 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
673 task
->task_se_cmd
->scsi_sense_reason
=
674 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
678 transport_complete_task(task
, good
);
680 EXPORT_SYMBOL(transport_complete_sync_cache
);
682 static void target_complete_failure_work(struct work_struct
*work
)
684 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
686 transport_generic_request_failure(cmd
);
689 /* transport_complete_task():
691 * Called from interrupt and non interrupt context depending
692 * on the transport plugin.
694 void transport_complete_task(struct se_task
*task
, int success
)
696 struct se_cmd
*cmd
= task
->task_se_cmd
;
697 struct se_device
*dev
= cmd
->se_dev
;
700 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
701 cmd
->t_task_cdb
[0], dev
);
704 atomic_inc(&dev
->depth_left
);
706 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
707 task
->task_flags
&= ~TF_ACTIVE
;
710 * See if any sense data exists, if so set the TASK_SENSE flag.
711 * Also check for any other post completion work that needs to be
712 * done by the plugins.
714 if (dev
&& dev
->transport
->transport_complete
) {
715 if (dev
->transport
->transport_complete(task
) != 0) {
716 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
717 task
->task_sense
= 1;
723 * See if we are waiting for outstanding struct se_task
724 * to complete for an exception condition
726 if (task
->task_flags
& TF_REQUEST_STOP
) {
727 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
728 complete(&task
->task_stop_comp
);
733 cmd
->t_tasks_failed
= 1;
736 * Decrement the outstanding t_task_cdbs_left count. The last
737 * struct se_task from struct se_cmd will complete itself into the
738 * device queue depending upon int success.
740 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_left
)) {
741 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
745 if (cmd
->t_tasks_failed
) {
746 if (!task
->task_error_status
) {
747 task
->task_error_status
=
748 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
749 cmd
->scsi_sense_reason
=
750 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
753 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
755 atomic_set(&cmd
->t_transport_complete
, 1);
756 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
759 cmd
->t_state
= TRANSPORT_COMPLETE
;
760 atomic_set(&cmd
->t_transport_active
, 1);
761 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
763 queue_work(target_completion_wq
, &cmd
->work
);
765 EXPORT_SYMBOL(transport_complete_task
);
768 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
769 * struct se_task list are ready to be added to the active execution list
772 * Called with se_dev_t->execute_task_lock called.
774 static inline int transport_add_task_check_sam_attr(
775 struct se_task
*task
,
776 struct se_task
*task_prev
,
777 struct se_device
*dev
)
780 * No SAM Task attribute emulation enabled, add to tail of
783 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
784 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
788 * HEAD_OF_QUEUE attribute for received CDB, which means
789 * the first task that is associated with a struct se_cmd goes to
790 * head of the struct se_device->execute_task_list, and task_prev
791 * after that for each subsequent task
793 if (task
->task_se_cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
794 list_add(&task
->t_execute_list
,
795 (task_prev
!= NULL
) ?
796 &task_prev
->t_execute_list
:
797 &dev
->execute_task_list
);
799 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
800 " in execution queue\n",
801 task
->task_se_cmd
->t_task_cdb
[0]);
805 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
806 * transitioned from Dermant -> Active state, and are added to the end
807 * of the struct se_device->execute_task_list
809 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
813 /* __transport_add_task_to_execute_queue():
815 * Called with se_dev_t->execute_task_lock called.
817 static void __transport_add_task_to_execute_queue(
818 struct se_task
*task
,
819 struct se_task
*task_prev
,
820 struct se_device
*dev
)
824 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
825 atomic_inc(&dev
->execute_tasks
);
827 if (atomic_read(&task
->task_state_active
))
830 * Determine if this task needs to go to HEAD_OF_QUEUE for the
831 * state list as well. Running with SAM Task Attribute emulation
832 * will always return head_of_queue == 0 here
835 list_add(&task
->t_state_list
, (task_prev
) ?
836 &task_prev
->t_state_list
:
837 &dev
->state_task_list
);
839 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
841 atomic_set(&task
->task_state_active
, 1);
843 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
844 task
->task_se_cmd
->se_tfo
->get_task_tag(task
->task_se_cmd
),
848 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
850 struct se_device
*dev
= cmd
->se_dev
;
851 struct se_task
*task
;
854 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
855 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
856 if (atomic_read(&task
->task_state_active
))
859 spin_lock(&dev
->execute_task_lock
);
860 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
861 atomic_set(&task
->task_state_active
, 1);
863 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
864 task
->task_se_cmd
->se_tfo
->get_task_tag(
865 task
->task_se_cmd
), task
, dev
);
867 spin_unlock(&dev
->execute_task_lock
);
869 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
872 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
874 struct se_device
*dev
= cmd
->se_dev
;
875 struct se_task
*task
, *task_prev
= NULL
;
878 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
879 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
880 if (!list_empty(&task
->t_execute_list
))
883 * __transport_add_task_to_execute_queue() handles the
884 * SAM Task Attribute emulation if enabled
886 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
889 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
892 void __transport_remove_task_from_execute_queue(struct se_task
*task
,
893 struct se_device
*dev
)
895 list_del_init(&task
->t_execute_list
);
896 atomic_dec(&dev
->execute_tasks
);
899 void transport_remove_task_from_execute_queue(
900 struct se_task
*task
,
901 struct se_device
*dev
)
905 if (WARN_ON(list_empty(&task
->t_execute_list
)))
908 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
909 __transport_remove_task_from_execute_queue(task
, dev
);
910 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
914 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
917 static void target_qf_do_work(struct work_struct
*work
)
919 struct se_device
*dev
= container_of(work
, struct se_device
,
921 LIST_HEAD(qf_cmd_list
);
922 struct se_cmd
*cmd
, *cmd_tmp
;
924 spin_lock_irq(&dev
->qf_cmd_lock
);
925 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
926 spin_unlock_irq(&dev
->qf_cmd_lock
);
928 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
929 list_del(&cmd
->se_qf_node
);
930 atomic_dec(&dev
->dev_qf_count
);
931 smp_mb__after_atomic_dec();
933 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
934 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
935 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
936 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
939 transport_add_cmd_to_queue(cmd
, cmd
->t_state
, true);
943 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
945 switch (cmd
->data_direction
) {
948 case DMA_FROM_DEVICE
:
952 case DMA_BIDIRECTIONAL
:
961 void transport_dump_dev_state(
962 struct se_device
*dev
,
966 *bl
+= sprintf(b
+ *bl
, "Status: ");
967 switch (dev
->dev_status
) {
968 case TRANSPORT_DEVICE_ACTIVATED
:
969 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
971 case TRANSPORT_DEVICE_DEACTIVATED
:
972 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
974 case TRANSPORT_DEVICE_SHUTDOWN
:
975 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
977 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
978 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
979 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
982 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
986 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
987 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
989 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
990 dev
->se_sub_dev
->se_dev_attrib
.block_size
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
991 *bl
+= sprintf(b
+ *bl
, " ");
994 void transport_dump_vpd_proto_id(
996 unsigned char *p_buf
,
999 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1002 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1003 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1005 switch (vpd
->protocol_identifier
) {
1007 sprintf(buf
+len
, "Fibre Channel\n");
1010 sprintf(buf
+len
, "Parallel SCSI\n");
1013 sprintf(buf
+len
, "SSA\n");
1016 sprintf(buf
+len
, "IEEE 1394\n");
1019 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1023 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1026 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1029 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1033 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1036 sprintf(buf
+len
, "Unknown 0x%02x\n",
1037 vpd
->protocol_identifier
);
1042 strncpy(p_buf
, buf
, p_buf_len
);
1044 pr_debug("%s", buf
);
1048 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1051 * Check if the Protocol Identifier Valid (PIV) bit is set..
1053 * from spc3r23.pdf section 7.5.1
1055 if (page_83
[1] & 0x80) {
1056 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1057 vpd
->protocol_identifier_set
= 1;
1058 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1061 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1063 int transport_dump_vpd_assoc(
1064 struct t10_vpd
*vpd
,
1065 unsigned char *p_buf
,
1068 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1072 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1073 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1075 switch (vpd
->association
) {
1077 sprintf(buf
+len
, "addressed logical unit\n");
1080 sprintf(buf
+len
, "target port\n");
1083 sprintf(buf
+len
, "SCSI target device\n");
1086 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1092 strncpy(p_buf
, buf
, p_buf_len
);
1094 pr_debug("%s", buf
);
1099 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1102 * The VPD identification association..
1104 * from spc3r23.pdf Section 7.6.3.1 Table 297
1106 vpd
->association
= (page_83
[1] & 0x30);
1107 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1109 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1111 int transport_dump_vpd_ident_type(
1112 struct t10_vpd
*vpd
,
1113 unsigned char *p_buf
,
1116 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1120 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1121 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1123 switch (vpd
->device_identifier_type
) {
1125 sprintf(buf
+len
, "Vendor specific\n");
1128 sprintf(buf
+len
, "T10 Vendor ID based\n");
1131 sprintf(buf
+len
, "EUI-64 based\n");
1134 sprintf(buf
+len
, "NAA\n");
1137 sprintf(buf
+len
, "Relative target port identifier\n");
1140 sprintf(buf
+len
, "SCSI name string\n");
1143 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1144 vpd
->device_identifier_type
);
1150 if (p_buf_len
< strlen(buf
)+1)
1152 strncpy(p_buf
, buf
, p_buf_len
);
1154 pr_debug("%s", buf
);
1160 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1163 * The VPD identifier type..
1165 * from spc3r23.pdf Section 7.6.3.1 Table 298
1167 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1168 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1170 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1172 int transport_dump_vpd_ident(
1173 struct t10_vpd
*vpd
,
1174 unsigned char *p_buf
,
1177 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1180 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1182 switch (vpd
->device_identifier_code_set
) {
1183 case 0x01: /* Binary */
1184 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1185 &vpd
->device_identifier
[0]);
1187 case 0x02: /* ASCII */
1188 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1189 &vpd
->device_identifier
[0]);
1191 case 0x03: /* UTF-8 */
1192 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1193 &vpd
->device_identifier
[0]);
1196 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1197 " 0x%02x", vpd
->device_identifier_code_set
);
1203 strncpy(p_buf
, buf
, p_buf_len
);
1205 pr_debug("%s", buf
);
1211 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1213 static const char hex_str
[] = "0123456789abcdef";
1214 int j
= 0, i
= 4; /* offset to start of the identifer */
1217 * The VPD Code Set (encoding)
1219 * from spc3r23.pdf Section 7.6.3.1 Table 296
1221 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1222 switch (vpd
->device_identifier_code_set
) {
1223 case 0x01: /* Binary */
1224 vpd
->device_identifier
[j
++] =
1225 hex_str
[vpd
->device_identifier_type
];
1226 while (i
< (4 + page_83
[3])) {
1227 vpd
->device_identifier
[j
++] =
1228 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1229 vpd
->device_identifier
[j
++] =
1230 hex_str
[page_83
[i
] & 0x0f];
1234 case 0x02: /* ASCII */
1235 case 0x03: /* UTF-8 */
1236 while (i
< (4 + page_83
[3]))
1237 vpd
->device_identifier
[j
++] = page_83
[i
++];
1243 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1245 EXPORT_SYMBOL(transport_set_vpd_ident
);
1247 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1250 * If this device is from Target_Core_Mod/pSCSI, disable the
1251 * SAM Task Attribute emulation.
1253 * This is currently not available in upsream Linux/SCSI Target
1254 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1256 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1257 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1261 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1262 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1263 " device\n", dev
->transport
->name
,
1264 dev
->transport
->get_device_rev(dev
));
1267 static void scsi_dump_inquiry(struct se_device
*dev
)
1269 struct t10_wwn
*wwn
= &dev
->se_sub_dev
->t10_wwn
;
1272 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1274 pr_debug(" Vendor: ");
1275 for (i
= 0; i
< 8; i
++)
1276 if (wwn
->vendor
[i
] >= 0x20)
1277 pr_debug("%c", wwn
->vendor
[i
]);
1281 pr_debug(" Model: ");
1282 for (i
= 0; i
< 16; i
++)
1283 if (wwn
->model
[i
] >= 0x20)
1284 pr_debug("%c", wwn
->model
[i
]);
1288 pr_debug(" Revision: ");
1289 for (i
= 0; i
< 4; i
++)
1290 if (wwn
->revision
[i
] >= 0x20)
1291 pr_debug("%c", wwn
->revision
[i
]);
1297 device_type
= dev
->transport
->get_device_type(dev
);
1298 pr_debug(" Type: %s ", scsi_device_type(device_type
));
1299 pr_debug(" ANSI SCSI revision: %02x\n",
1300 dev
->transport
->get_device_rev(dev
));
1303 struct se_device
*transport_add_device_to_core_hba(
1305 struct se_subsystem_api
*transport
,
1306 struct se_subsystem_dev
*se_dev
,
1308 void *transport_dev
,
1309 struct se_dev_limits
*dev_limits
,
1310 const char *inquiry_prod
,
1311 const char *inquiry_rev
)
1314 struct se_device
*dev
;
1316 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1318 pr_err("Unable to allocate memory for se_dev_t\n");
1322 transport_init_queue_obj(&dev
->dev_queue_obj
);
1323 dev
->dev_flags
= device_flags
;
1324 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1325 dev
->dev_ptr
= transport_dev
;
1327 dev
->se_sub_dev
= se_dev
;
1328 dev
->transport
= transport
;
1329 INIT_LIST_HEAD(&dev
->dev_list
);
1330 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1331 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1332 INIT_LIST_HEAD(&dev
->execute_task_list
);
1333 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1334 INIT_LIST_HEAD(&dev
->state_task_list
);
1335 INIT_LIST_HEAD(&dev
->qf_cmd_list
);
1336 spin_lock_init(&dev
->execute_task_lock
);
1337 spin_lock_init(&dev
->delayed_cmd_lock
);
1338 spin_lock_init(&dev
->dev_reservation_lock
);
1339 spin_lock_init(&dev
->dev_status_lock
);
1340 spin_lock_init(&dev
->se_port_lock
);
1341 spin_lock_init(&dev
->se_tmr_lock
);
1342 spin_lock_init(&dev
->qf_cmd_lock
);
1344 dev
->queue_depth
= dev_limits
->queue_depth
;
1345 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1346 atomic_set(&dev
->dev_ordered_id
, 0);
1348 se_dev_set_default_attribs(dev
, dev_limits
);
1350 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1351 dev
->creation_time
= get_jiffies_64();
1352 spin_lock_init(&dev
->stats_lock
);
1354 spin_lock(&hba
->device_lock
);
1355 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1357 spin_unlock(&hba
->device_lock
);
1359 * Setup the SAM Task Attribute emulation for struct se_device
1361 core_setup_task_attr_emulation(dev
);
1363 * Force PR and ALUA passthrough emulation with internal object use.
1365 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1367 * Setup the Reservations infrastructure for struct se_device
1369 core_setup_reservations(dev
, force_pt
);
1371 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1373 if (core_setup_alua(dev
, force_pt
) < 0)
1377 * Startup the struct se_device processing thread
1379 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1380 "LIO_%s", dev
->transport
->name
);
1381 if (IS_ERR(dev
->process_thread
)) {
1382 pr_err("Unable to create kthread: LIO_%s\n",
1383 dev
->transport
->name
);
1387 * Setup work_queue for QUEUE_FULL
1389 INIT_WORK(&dev
->qf_work_queue
, target_qf_do_work
);
1391 * Preload the initial INQUIRY const values if we are doing
1392 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1393 * passthrough because this is being provided by the backend LLD.
1394 * This is required so that transport_get_inquiry() copies these
1395 * originals once back into DEV_T10_WWN(dev) for the virtual device
1398 if (dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1399 if (!inquiry_prod
|| !inquiry_rev
) {
1400 pr_err("All non TCM/pSCSI plugins require"
1401 " INQUIRY consts\n");
1405 strncpy(&dev
->se_sub_dev
->t10_wwn
.vendor
[0], "LIO-ORG", 8);
1406 strncpy(&dev
->se_sub_dev
->t10_wwn
.model
[0], inquiry_prod
, 16);
1407 strncpy(&dev
->se_sub_dev
->t10_wwn
.revision
[0], inquiry_rev
, 4);
1409 scsi_dump_inquiry(dev
);
1413 kthread_stop(dev
->process_thread
);
1415 spin_lock(&hba
->device_lock
);
1416 list_del(&dev
->dev_list
);
1418 spin_unlock(&hba
->device_lock
);
1420 se_release_vpd_for_dev(dev
);
1426 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1428 /* transport_generic_prepare_cdb():
1430 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1431 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1432 * The point of this is since we are mapping iSCSI LUNs to
1433 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1434 * devices and HBAs for a loop.
1436 static inline void transport_generic_prepare_cdb(
1440 case READ_10
: /* SBC - RDProtect */
1441 case READ_12
: /* SBC - RDProtect */
1442 case READ_16
: /* SBC - RDProtect */
1443 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1444 case VERIFY
: /* SBC - VRProtect */
1445 case VERIFY_16
: /* SBC - VRProtect */
1446 case WRITE_VERIFY
: /* SBC - VRProtect */
1447 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1450 cdb
[1] &= 0x1f; /* clear logical unit number */
1455 static struct se_task
*
1456 transport_generic_get_task(struct se_cmd
*cmd
,
1457 enum dma_data_direction data_direction
)
1459 struct se_task
*task
;
1460 struct se_device
*dev
= cmd
->se_dev
;
1462 task
= dev
->transport
->alloc_task(cmd
->t_task_cdb
);
1464 pr_err("Unable to allocate struct se_task\n");
1468 INIT_LIST_HEAD(&task
->t_list
);
1469 INIT_LIST_HEAD(&task
->t_execute_list
);
1470 INIT_LIST_HEAD(&task
->t_state_list
);
1471 init_completion(&task
->task_stop_comp
);
1472 task
->task_se_cmd
= cmd
;
1473 task
->task_data_direction
= data_direction
;
1478 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1481 * Used by fabric modules containing a local struct se_cmd within their
1482 * fabric dependent per I/O descriptor.
1484 void transport_init_se_cmd(
1486 struct target_core_fabric_ops
*tfo
,
1487 struct se_session
*se_sess
,
1491 unsigned char *sense_buffer
)
1493 INIT_LIST_HEAD(&cmd
->se_lun_node
);
1494 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1495 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1496 INIT_LIST_HEAD(&cmd
->se_queue_node
);
1497 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1498 INIT_LIST_HEAD(&cmd
->t_task_list
);
1499 init_completion(&cmd
->transport_lun_fe_stop_comp
);
1500 init_completion(&cmd
->transport_lun_stop_comp
);
1501 init_completion(&cmd
->t_transport_stop_comp
);
1502 init_completion(&cmd
->cmd_wait_comp
);
1503 spin_lock_init(&cmd
->t_state_lock
);
1504 atomic_set(&cmd
->transport_dev_active
, 1);
1507 cmd
->se_sess
= se_sess
;
1508 cmd
->data_length
= data_length
;
1509 cmd
->data_direction
= data_direction
;
1510 cmd
->sam_task_attr
= task_attr
;
1511 cmd
->sense_buffer
= sense_buffer
;
1513 EXPORT_SYMBOL(transport_init_se_cmd
);
1515 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1518 * Check if SAM Task Attribute emulation is enabled for this
1519 * struct se_device storage object
1521 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1524 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1525 pr_debug("SAM Task Attribute ACA"
1526 " emulation is not supported\n");
1530 * Used to determine when ORDERED commands should go from
1531 * Dormant to Active status.
1533 cmd
->se_ordered_id
= atomic_inc_return(&cmd
->se_dev
->dev_ordered_id
);
1534 smp_mb__after_atomic_inc();
1535 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1536 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1537 cmd
->se_dev
->transport
->name
);
1541 /* transport_generic_allocate_tasks():
1543 * Called from fabric RX Thread.
1545 int transport_generic_allocate_tasks(
1551 transport_generic_prepare_cdb(cdb
);
1553 * Ensure that the received CDB is less than the max (252 + 8) bytes
1554 * for VARIABLE_LENGTH_CMD
1556 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1557 pr_err("Received SCSI CDB with command_size: %d that"
1558 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1559 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1560 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1561 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1565 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1566 * allocate the additional extended CDB buffer now.. Otherwise
1567 * setup the pointer from __t_task_cdb to t_task_cdb.
1569 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1570 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1572 if (!cmd
->t_task_cdb
) {
1573 pr_err("Unable to allocate cmd->t_task_cdb"
1574 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1575 scsi_command_size(cdb
),
1576 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1577 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1578 cmd
->scsi_sense_reason
=
1579 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1583 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1585 * Copy the original CDB into cmd->
1587 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1589 * Setup the received CDB based on SCSI defined opcodes and
1590 * perform unit attention, persistent reservations and ALUA
1591 * checks for virtual device backends. The cmd->t_task_cdb
1592 * pointer is expected to be setup before we reach this point.
1594 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1598 * Check for SAM Task Attribute Emulation
1600 if (transport_check_alloc_task_attr(cmd
) < 0) {
1601 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1602 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1605 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1606 if (cmd
->se_lun
->lun_sep
)
1607 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1608 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1611 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1614 * Used by fabric module frontends to queue tasks directly.
1615 * Many only be used from process context only
1617 int transport_handle_cdb_direct(
1624 pr_err("cmd->se_lun is NULL\n");
1627 if (in_interrupt()) {
1629 pr_err("transport_generic_handle_cdb cannot be called"
1630 " from interrupt context\n");
1634 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1635 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1636 * in existing usage to ensure that outstanding descriptors are handled
1637 * correctly during shutdown via transport_wait_for_tasks()
1639 * Also, we don't take cmd->t_state_lock here as we only expect
1640 * this to be called for initial descriptor submission.
1642 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1643 atomic_set(&cmd
->t_transport_active
, 1);
1645 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1646 * so follow TRANSPORT_NEW_CMD processing thread context usage
1647 * and call transport_generic_request_failure() if necessary..
1649 ret
= transport_generic_new_cmd(cmd
);
1651 transport_generic_request_failure(cmd
);
1655 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1658 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1659 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1660 * complete setup in TCM process context w/ TFO->new_cmd_map().
1662 int transport_generic_handle_cdb_map(
1667 pr_err("cmd->se_lun is NULL\n");
1671 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
, false);
1674 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
1676 /* transport_generic_handle_data():
1680 int transport_generic_handle_data(
1684 * For the software fabric case, then we assume the nexus is being
1685 * failed/shutdown when signals are pending from the kthread context
1686 * caller, so we return a failure. For the HW target mode case running
1687 * in interrupt code, the signal_pending() check is skipped.
1689 if (!in_interrupt() && signal_pending(current
))
1692 * If the received CDB has aleady been ABORTED by the generic
1693 * target engine, we now call transport_check_aborted_status()
1694 * to queue any delated TASK_ABORTED status for the received CDB to the
1695 * fabric module as we are expecting no further incoming DATA OUT
1696 * sequences at this point.
1698 if (transport_check_aborted_status(cmd
, 1) != 0)
1701 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
, false);
1704 EXPORT_SYMBOL(transport_generic_handle_data
);
1706 /* transport_generic_handle_tmr():
1710 int transport_generic_handle_tmr(
1713 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
, false);
1716 EXPORT_SYMBOL(transport_generic_handle_tmr
);
1719 * If the task is active, request it to be stopped and sleep until it
1722 bool target_stop_task(struct se_task
*task
, unsigned long *flags
)
1724 struct se_cmd
*cmd
= task
->task_se_cmd
;
1725 bool was_active
= false;
1727 if (task
->task_flags
& TF_ACTIVE
) {
1728 task
->task_flags
|= TF_REQUEST_STOP
;
1729 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1731 pr_debug("Task %p waiting to complete\n", task
);
1732 wait_for_completion(&task
->task_stop_comp
);
1733 pr_debug("Task %p stopped successfully\n", task
);
1735 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1736 atomic_dec(&cmd
->t_task_cdbs_left
);
1737 task
->task_flags
&= ~(TF_ACTIVE
| TF_REQUEST_STOP
);
1744 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
1746 struct se_task
*task
, *task_tmp
;
1747 unsigned long flags
;
1750 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1751 cmd
->se_tfo
->get_task_tag(cmd
));
1754 * No tasks remain in the execution queue
1756 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1757 list_for_each_entry_safe(task
, task_tmp
,
1758 &cmd
->t_task_list
, t_list
) {
1759 pr_debug("Processing task %p\n", task
);
1761 * If the struct se_task has not been sent and is not active,
1762 * remove the struct se_task from the execution queue.
1764 if (!(task
->task_flags
& (TF_ACTIVE
| TF_SENT
))) {
1765 spin_unlock_irqrestore(&cmd
->t_state_lock
,
1767 transport_remove_task_from_execute_queue(task
,
1770 pr_debug("Task %p removed from execute queue\n", task
);
1771 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1775 if (!target_stop_task(task
, &flags
)) {
1776 pr_debug("Task %p - did nothing\n", task
);
1780 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
1786 * Handle SAM-esque emulation for generic transport request failures.
1788 static void transport_generic_request_failure(struct se_cmd
*cmd
)
1792 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1793 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1794 cmd
->t_task_cdb
[0]);
1795 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1796 cmd
->se_tfo
->get_cmd_state(cmd
),
1797 cmd
->t_state
, cmd
->scsi_sense_reason
);
1798 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1799 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1800 " t_transport_active: %d t_transport_stop: %d"
1801 " t_transport_sent: %d\n", cmd
->t_task_list_num
,
1802 atomic_read(&cmd
->t_task_cdbs_left
),
1803 atomic_read(&cmd
->t_task_cdbs_sent
),
1804 atomic_read(&cmd
->t_task_cdbs_ex_left
),
1805 atomic_read(&cmd
->t_transport_active
),
1806 atomic_read(&cmd
->t_transport_stop
),
1807 atomic_read(&cmd
->t_transport_sent
));
1810 * For SAM Task Attribute emulation for failed struct se_cmd
1812 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
1813 transport_complete_task_attr(cmd
);
1815 switch (cmd
->scsi_sense_reason
) {
1816 case TCM_NON_EXISTENT_LUN
:
1817 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1818 case TCM_INVALID_CDB_FIELD
:
1819 case TCM_INVALID_PARAMETER_LIST
:
1820 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1821 case TCM_UNKNOWN_MODE_PAGE
:
1822 case TCM_WRITE_PROTECTED
:
1823 case TCM_CHECK_CONDITION_ABORT_CMD
:
1824 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1825 case TCM_CHECK_CONDITION_NOT_READY
:
1827 case TCM_RESERVATION_CONFLICT
:
1829 * No SENSE Data payload for this case, set SCSI Status
1830 * and queue the response to $FABRIC_MOD.
1832 * Uses linux/include/scsi/scsi.h SAM status codes defs
1834 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1836 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1837 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1840 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1843 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
1844 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
1845 cmd
->orig_fe_lun
, 0x2C,
1846 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1848 ret
= cmd
->se_tfo
->queue_status(cmd
);
1849 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1853 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1854 cmd
->t_task_cdb
[0], cmd
->scsi_sense_reason
);
1855 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1859 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1860 * make the call to transport_send_check_condition_and_sense()
1861 * directly. Otherwise expect the fabric to make the call to
1862 * transport_send_check_condition_and_sense() after handling
1863 * possible unsoliticied write data payloads.
1865 ret
= transport_send_check_condition_and_sense(cmd
,
1866 cmd
->scsi_sense_reason
, 0);
1867 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1871 transport_lun_remove_cmd(cmd
);
1872 if (!transport_cmd_check_stop_to_fabric(cmd
))
1877 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1878 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1881 static inline u32
transport_lba_21(unsigned char *cdb
)
1883 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
1886 static inline u32
transport_lba_32(unsigned char *cdb
)
1888 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
1891 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
1893 unsigned int __v1
, __v2
;
1895 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
1896 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
1898 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
1902 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1904 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
1906 unsigned int __v1
, __v2
;
1908 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
1909 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
1911 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
1914 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
1916 unsigned long flags
;
1918 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
1919 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1920 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
1923 static inline int transport_tcq_window_closed(struct se_device
*dev
)
1925 if (dev
->dev_tcq_window_closed
++ <
1926 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
1927 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
1929 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
1931 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
1936 * Called from Fabric Module context from transport_execute_tasks()
1938 * The return of this function determins if the tasks from struct se_cmd
1939 * get added to the execution queue in transport_execute_tasks(),
1940 * or are added to the delayed or ordered lists here.
1942 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
1944 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1947 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1948 * to allow the passed struct se_cmd list of tasks to the front of the list.
1950 if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
1951 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1952 " 0x%02x, se_ordered_id: %u\n",
1954 cmd
->se_ordered_id
);
1956 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
1957 atomic_inc(&cmd
->se_dev
->dev_ordered_sync
);
1958 smp_mb__after_atomic_inc();
1960 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1961 " list, se_ordered_id: %u\n",
1963 cmd
->se_ordered_id
);
1965 * Add ORDERED command to tail of execution queue if
1966 * no other older commands exist that need to be
1969 if (!atomic_read(&cmd
->se_dev
->simple_cmds
))
1973 * For SIMPLE and UNTAGGED Task Attribute commands
1975 atomic_inc(&cmd
->se_dev
->simple_cmds
);
1976 smp_mb__after_atomic_inc();
1979 * Otherwise if one or more outstanding ORDERED task attribute exist,
1980 * add the dormant task(s) built for the passed struct se_cmd to the
1981 * execution queue and become in Active state for this struct se_device.
1983 if (atomic_read(&cmd
->se_dev
->dev_ordered_sync
) != 0) {
1985 * Otherwise, add cmd w/ tasks to delayed cmd queue that
1986 * will be drained upon completion of HEAD_OF_QUEUE task.
1988 spin_lock(&cmd
->se_dev
->delayed_cmd_lock
);
1989 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
1990 list_add_tail(&cmd
->se_delayed_node
,
1991 &cmd
->se_dev
->delayed_cmd_list
);
1992 spin_unlock(&cmd
->se_dev
->delayed_cmd_lock
);
1994 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1995 " delayed CMD list, se_ordered_id: %u\n",
1996 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
1997 cmd
->se_ordered_id
);
1999 * Return zero to let transport_execute_tasks() know
2000 * not to add the delayed tasks to the execution list.
2005 * Otherwise, no ORDERED task attributes exist..
2011 * Called from fabric module context in transport_generic_new_cmd() and
2012 * transport_generic_process_write()
2014 static int transport_execute_tasks(struct se_cmd
*cmd
)
2018 if (se_dev_check_online(cmd
->se_dev
) != 0) {
2019 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2020 transport_generic_request_failure(cmd
);
2025 * Call transport_cmd_check_stop() to see if a fabric exception
2026 * has occurred that prevents execution.
2028 if (!transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
)) {
2030 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2031 * attribute for the tasks of the received struct se_cmd CDB
2033 add_tasks
= transport_execute_task_attr(cmd
);
2037 * This calls transport_add_tasks_from_cmd() to handle
2038 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2039 * (if enabled) in __transport_add_task_to_execute_queue() and
2040 * transport_add_task_check_sam_attr().
2042 transport_add_tasks_from_cmd(cmd
);
2045 * Kick the execution queue for the cmd associated struct se_device
2049 __transport_execute_tasks(cmd
->se_dev
);
2054 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2055 * from struct se_device->execute_task_list and
2057 * Called from transport_processing_thread()
2059 static int __transport_execute_tasks(struct se_device
*dev
)
2062 struct se_cmd
*cmd
= NULL
;
2063 struct se_task
*task
= NULL
;
2064 unsigned long flags
;
2067 * Check if there is enough room in the device and HBA queue to send
2068 * struct se_tasks to the selected transport.
2071 if (!atomic_read(&dev
->depth_left
))
2072 return transport_tcq_window_closed(dev
);
2074 dev
->dev_tcq_window_closed
= 0;
2076 spin_lock_irq(&dev
->execute_task_lock
);
2077 if (list_empty(&dev
->execute_task_list
)) {
2078 spin_unlock_irq(&dev
->execute_task_lock
);
2081 task
= list_first_entry(&dev
->execute_task_list
,
2082 struct se_task
, t_execute_list
);
2083 __transport_remove_task_from_execute_queue(task
, dev
);
2084 spin_unlock_irq(&dev
->execute_task_lock
);
2086 atomic_dec(&dev
->depth_left
);
2088 cmd
= task
->task_se_cmd
;
2090 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2091 task
->task_flags
|= (TF_ACTIVE
| TF_SENT
);
2092 atomic_inc(&cmd
->t_task_cdbs_sent
);
2094 if (atomic_read(&cmd
->t_task_cdbs_sent
) ==
2095 cmd
->t_task_list_num
)
2096 atomic_set(&cmd
->t_transport_sent
, 1);
2098 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2100 if (cmd
->execute_task
)
2101 error
= cmd
->execute_task(task
);
2103 error
= dev
->transport
->do_task(task
);
2105 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2106 task
->task_flags
&= ~TF_ACTIVE
;
2107 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2108 atomic_set(&cmd
->t_transport_sent
, 0);
2109 transport_stop_tasks_for_cmd(cmd
);
2110 atomic_inc(&dev
->depth_left
);
2111 transport_generic_request_failure(cmd
);
2119 static inline u32
transport_get_sectors_6(
2124 struct se_device
*dev
= cmd
->se_dev
;
2127 * Assume TYPE_DISK for non struct se_device objects.
2128 * Use 8-bit sector value.
2134 * Use 24-bit allocation length for TYPE_TAPE.
2136 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2137 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2140 * Everything else assume TYPE_DISK Sector CDB location.
2141 * Use 8-bit sector value. SBC-3 says:
2143 * A TRANSFER LENGTH field set to zero specifies that 256
2144 * logical blocks shall be written. Any other value
2145 * specifies the number of logical blocks that shall be
2149 return cdb
[4] ? : 256;
2152 static inline u32
transport_get_sectors_10(
2157 struct se_device
*dev
= cmd
->se_dev
;
2160 * Assume TYPE_DISK for non struct se_device objects.
2161 * Use 16-bit sector value.
2167 * XXX_10 is not defined in SSC, throw an exception
2169 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2175 * Everything else assume TYPE_DISK Sector CDB location.
2176 * Use 16-bit sector value.
2179 return (u32
)(cdb
[7] << 8) + cdb
[8];
2182 static inline u32
transport_get_sectors_12(
2187 struct se_device
*dev
= cmd
->se_dev
;
2190 * Assume TYPE_DISK for non struct se_device objects.
2191 * Use 32-bit sector value.
2197 * XXX_12 is not defined in SSC, throw an exception
2199 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2205 * Everything else assume TYPE_DISK Sector CDB location.
2206 * Use 32-bit sector value.
2209 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2212 static inline u32
transport_get_sectors_16(
2217 struct se_device
*dev
= cmd
->se_dev
;
2220 * Assume TYPE_DISK for non struct se_device objects.
2221 * Use 32-bit sector value.
2227 * Use 24-bit allocation length for TYPE_TAPE.
2229 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2230 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2233 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2234 (cdb
[12] << 8) + cdb
[13];
2238 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2240 static inline u32
transport_get_sectors_32(
2246 * Assume TYPE_DISK for non struct se_device objects.
2247 * Use 32-bit sector value.
2249 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2250 (cdb
[30] << 8) + cdb
[31];
2254 static inline u32
transport_get_size(
2259 struct se_device
*dev
= cmd
->se_dev
;
2261 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2262 if (cdb
[1] & 1) { /* sectors */
2263 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2268 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2269 " %s object\n", dev
->se_sub_dev
->se_dev_attrib
.block_size
, sectors
,
2270 dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
,
2271 dev
->transport
->name
);
2273 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2276 static void transport_xor_callback(struct se_cmd
*cmd
)
2278 unsigned char *buf
, *addr
;
2279 struct scatterlist
*sg
;
2280 unsigned int offset
;
2284 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2286 * 1) read the specified logical block(s);
2287 * 2) transfer logical blocks from the data-out buffer;
2288 * 3) XOR the logical blocks transferred from the data-out buffer with
2289 * the logical blocks read, storing the resulting XOR data in a buffer;
2290 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2291 * blocks transferred from the data-out buffer; and
2292 * 5) transfer the resulting XOR data to the data-in buffer.
2294 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2296 pr_err("Unable to allocate xor_callback buf\n");
2300 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2301 * into the locally allocated *buf
2303 sg_copy_to_buffer(cmd
->t_data_sg
,
2309 * Now perform the XOR against the BIDI read memory located at
2310 * cmd->t_mem_bidi_list
2314 for_each_sg(cmd
->t_bidi_data_sg
, sg
, cmd
->t_bidi_data_nents
, count
) {
2315 addr
= kmap_atomic(sg_page(sg
), KM_USER0
);
2319 for (i
= 0; i
< sg
->length
; i
++)
2320 *(addr
+ sg
->offset
+ i
) ^= *(buf
+ offset
+ i
);
2322 offset
+= sg
->length
;
2323 kunmap_atomic(addr
, KM_USER0
);
2331 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2333 static int transport_get_sense_data(struct se_cmd
*cmd
)
2335 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2336 struct se_device
*dev
= cmd
->se_dev
;
2337 struct se_task
*task
= NULL
, *task_tmp
;
2338 unsigned long flags
;
2341 WARN_ON(!cmd
->se_lun
);
2346 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2347 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2348 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2352 list_for_each_entry_safe(task
, task_tmp
,
2353 &cmd
->t_task_list
, t_list
) {
2354 if (!task
->task_sense
)
2357 if (!dev
->transport
->get_sense_buffer
) {
2358 pr_err("dev->transport->get_sense_buffer"
2363 sense_buffer
= dev
->transport
->get_sense_buffer(task
);
2364 if (!sense_buffer
) {
2365 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2366 " sense buffer for task with sense\n",
2367 cmd
->se_tfo
->get_task_tag(cmd
), task
);
2370 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2372 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
2373 TRANSPORT_SENSE_BUFFER
);
2375 memcpy(&buffer
[offset
], sense_buffer
,
2376 TRANSPORT_SENSE_BUFFER
);
2377 cmd
->scsi_status
= task
->task_scsi_status
;
2378 /* Automatically padded */
2379 cmd
->scsi_sense_length
=
2380 (TRANSPORT_SENSE_BUFFER
+ offset
);
2382 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2384 dev
->se_hba
->hba_id
, dev
->transport
->name
,
2388 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2393 static inline long long transport_dev_end_lba(struct se_device
*dev
)
2395 return dev
->transport
->get_blocks(dev
) + 1;
2398 static int transport_cmd_get_valid_sectors(struct se_cmd
*cmd
)
2400 struct se_device
*dev
= cmd
->se_dev
;
2403 if (dev
->transport
->get_device_type(dev
) != TYPE_DISK
)
2406 sectors
= (cmd
->data_length
/ dev
->se_sub_dev
->se_dev_attrib
.block_size
);
2408 if ((cmd
->t_task_lba
+ sectors
) > transport_dev_end_lba(dev
)) {
2409 pr_err("LBA: %llu Sectors: %u exceeds"
2410 " transport_dev_end_lba(): %llu\n",
2411 cmd
->t_task_lba
, sectors
,
2412 transport_dev_end_lba(dev
));
2419 static int target_check_write_same_discard(unsigned char *flags
, struct se_device
*dev
)
2422 * Determine if the received WRITE_SAME is used to for direct
2423 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2424 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2425 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2427 int passthrough
= (dev
->transport
->transport_type
==
2428 TRANSPORT_PLUGIN_PHBA_PDEV
);
2431 if ((flags
[0] & 0x04) || (flags
[0] & 0x02)) {
2432 pr_err("WRITE_SAME PBDATA and LBDATA"
2433 " bits not supported for Block Discard"
2438 * Currently for the emulated case we only accept
2439 * tpws with the UNMAP=1 bit set.
2441 if (!(flags
[0] & 0x08)) {
2442 pr_err("WRITE_SAME w/o UNMAP bit not"
2443 " supported for Block Discard Emulation\n");
2451 /* transport_generic_cmd_sequencer():
2453 * Generic Command Sequencer that should work for most DAS transport
2456 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2459 * FIXME: Need to support other SCSI OPCODES where as well.
2461 static int transport_generic_cmd_sequencer(
2465 struct se_device
*dev
= cmd
->se_dev
;
2466 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
2467 int ret
= 0, sector_ret
= 0, passthrough
;
2468 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
2472 * Check for an existing UNIT ATTENTION condition
2474 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
2475 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2476 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
2480 * Check status of Asymmetric Logical Unit Assignment port
2482 ret
= su_dev
->t10_alua
.alua_state_check(cmd
, cdb
, &alua_ascq
);
2485 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2486 * The ALUA additional sense code qualifier (ASCQ) is determined
2487 * by the ALUA primary or secondary access state..
2491 pr_debug("[%s]: ALUA TG Port not available,"
2492 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2493 cmd
->se_tfo
->get_fabric_name(), alua_ascq
);
2495 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
2496 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2497 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
2500 goto out_invalid_cdb_field
;
2503 * Check status for SPC-3 Persistent Reservations
2505 if (su_dev
->t10_pr
.pr_ops
.t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
2506 if (su_dev
->t10_pr
.pr_ops
.t10_seq_non_holder(
2507 cmd
, cdb
, pr_reg_type
) != 0) {
2508 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2509 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
2510 cmd
->scsi_sense_reason
= TCM_RESERVATION_CONFLICT
;
2514 * This means the CDB is allowed for the SCSI Initiator port
2515 * when said port is *NOT* holding the legacy SPC-2 or
2516 * SPC-3 Persistent Reservation.
2521 * If we operate in passthrough mode we skip most CDB emulation and
2522 * instead hand the commands down to the physical SCSI device.
2525 (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
);
2529 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2531 goto out_unsupported_cdb
;
2532 size
= transport_get_size(sectors
, cdb
, cmd
);
2533 cmd
->t_task_lba
= transport_lba_21(cdb
);
2534 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2537 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2539 goto out_unsupported_cdb
;
2540 size
= transport_get_size(sectors
, cdb
, cmd
);
2541 cmd
->t_task_lba
= transport_lba_32(cdb
);
2542 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2545 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2547 goto out_unsupported_cdb
;
2548 size
= transport_get_size(sectors
, cdb
, cmd
);
2549 cmd
->t_task_lba
= transport_lba_32(cdb
);
2550 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2553 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2555 goto out_unsupported_cdb
;
2556 size
= transport_get_size(sectors
, cdb
, cmd
);
2557 cmd
->t_task_lba
= transport_lba_64(cdb
);
2558 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2561 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2563 goto out_unsupported_cdb
;
2564 size
= transport_get_size(sectors
, cdb
, cmd
);
2565 cmd
->t_task_lba
= transport_lba_21(cdb
);
2566 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2569 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2571 goto out_unsupported_cdb
;
2572 size
= transport_get_size(sectors
, cdb
, cmd
);
2573 cmd
->t_task_lba
= transport_lba_32(cdb
);
2575 cmd
->se_cmd_flags
|= SCF_FUA
;
2576 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2579 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2581 goto out_unsupported_cdb
;
2582 size
= transport_get_size(sectors
, cdb
, cmd
);
2583 cmd
->t_task_lba
= transport_lba_32(cdb
);
2585 cmd
->se_cmd_flags
|= SCF_FUA
;
2586 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2589 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2591 goto out_unsupported_cdb
;
2592 size
= transport_get_size(sectors
, cdb
, cmd
);
2593 cmd
->t_task_lba
= transport_lba_64(cdb
);
2595 cmd
->se_cmd_flags
|= SCF_FUA
;
2596 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2598 case XDWRITEREAD_10
:
2599 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
2600 !(cmd
->se_cmd_flags
& SCF_BIDI
))
2601 goto out_invalid_cdb_field
;
2602 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2604 goto out_unsupported_cdb
;
2605 size
= transport_get_size(sectors
, cdb
, cmd
);
2606 cmd
->t_task_lba
= transport_lba_32(cdb
);
2607 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2610 * Do now allow BIDI commands for passthrough mode.
2613 goto out_unsupported_cdb
;
2616 * Setup BIDI XOR callback to be run after I/O completion.
2618 cmd
->transport_complete_callback
= &transport_xor_callback
;
2620 cmd
->se_cmd_flags
|= SCF_FUA
;
2622 case VARIABLE_LENGTH_CMD
:
2623 service_action
= get_unaligned_be16(&cdb
[8]);
2624 switch (service_action
) {
2625 case XDWRITEREAD_32
:
2626 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
2628 goto out_unsupported_cdb
;
2629 size
= transport_get_size(sectors
, cdb
, cmd
);
2631 * Use WRITE_32 and READ_32 opcodes for the emulated
2632 * XDWRITE_READ_32 logic.
2634 cmd
->t_task_lba
= transport_lba_64_ext(cdb
);
2635 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2638 * Do now allow BIDI commands for passthrough mode.
2641 goto out_unsupported_cdb
;
2644 * Setup BIDI XOR callback to be run during after I/O
2647 cmd
->transport_complete_callback
= &transport_xor_callback
;
2649 cmd
->se_cmd_flags
|= SCF_FUA
;
2652 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
2654 goto out_unsupported_cdb
;
2657 size
= transport_get_size(1, cdb
, cmd
);
2659 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2661 goto out_invalid_cdb_field
;
2664 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[12]);
2665 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2667 if (target_check_write_same_discard(&cdb
[10], dev
) < 0)
2668 goto out_invalid_cdb_field
;
2670 cmd
->execute_task
= target_emulate_write_same
;
2673 pr_err("VARIABLE_LENGTH_CMD service action"
2674 " 0x%04x not supported\n", service_action
);
2675 goto out_unsupported_cdb
;
2678 case MAINTENANCE_IN
:
2679 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
2680 /* MAINTENANCE_IN from SCC-2 */
2682 * Check for emulated MI_REPORT_TARGET_PGS.
2684 if (cdb
[1] == MI_REPORT_TARGET_PGS
&&
2685 su_dev
->t10_alua
.alua_type
== SPC3_ALUA_EMULATED
) {
2687 target_emulate_report_target_port_groups
;
2689 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
2690 (cdb
[8] << 8) | cdb
[9];
2692 /* GPCMD_SEND_KEY from multi media commands */
2693 size
= (cdb
[8] << 8) + cdb
[9];
2695 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2699 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2701 case MODE_SELECT_10
:
2702 size
= (cdb
[7] << 8) + cdb
[8];
2703 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2707 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2709 cmd
->execute_task
= target_emulate_modesense
;
2712 size
= (cdb
[7] << 8) + cdb
[8];
2713 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2715 cmd
->execute_task
= target_emulate_modesense
;
2717 case GPCMD_READ_BUFFER_CAPACITY
:
2718 case GPCMD_SEND_OPC
:
2721 size
= (cdb
[7] << 8) + cdb
[8];
2722 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2724 case READ_BLOCK_LIMITS
:
2725 size
= READ_BLOCK_LEN
;
2726 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2728 case GPCMD_GET_CONFIGURATION
:
2729 case GPCMD_READ_FORMAT_CAPACITIES
:
2730 case GPCMD_READ_DISC_INFO
:
2731 case GPCMD_READ_TRACK_RZONE_INFO
:
2732 size
= (cdb
[7] << 8) + cdb
[8];
2733 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2735 case PERSISTENT_RESERVE_IN
:
2736 if (su_dev
->t10_pr
.res_type
== SPC3_PERSISTENT_RESERVATIONS
)
2737 cmd
->execute_task
= target_scsi3_emulate_pr_in
;
2738 size
= (cdb
[7] << 8) + cdb
[8];
2739 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2741 case PERSISTENT_RESERVE_OUT
:
2742 if (su_dev
->t10_pr
.res_type
== SPC3_PERSISTENT_RESERVATIONS
)
2743 cmd
->execute_task
= target_scsi3_emulate_pr_out
;
2744 size
= (cdb
[7] << 8) + cdb
[8];
2745 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2747 case GPCMD_MECHANISM_STATUS
:
2748 case GPCMD_READ_DVD_STRUCTURE
:
2749 size
= (cdb
[8] << 8) + cdb
[9];
2750 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2753 size
= READ_POSITION_LEN
;
2754 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2756 case MAINTENANCE_OUT
:
2757 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
2758 /* MAINTENANCE_OUT from SCC-2
2760 * Check for emulated MO_SET_TARGET_PGS.
2762 if (cdb
[1] == MO_SET_TARGET_PGS
&&
2763 su_dev
->t10_alua
.alua_type
== SPC3_ALUA_EMULATED
) {
2765 target_emulate_set_target_port_groups
;
2768 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
2769 (cdb
[8] << 8) | cdb
[9];
2771 /* GPCMD_REPORT_KEY from multi media commands */
2772 size
= (cdb
[8] << 8) + cdb
[9];
2774 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2777 size
= (cdb
[3] << 8) + cdb
[4];
2779 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2780 * See spc4r17 section 5.3
2782 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
2783 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
2784 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2786 cmd
->execute_task
= target_emulate_inquiry
;
2789 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2790 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2793 size
= READ_CAP_LEN
;
2794 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2796 cmd
->execute_task
= target_emulate_readcapacity
;
2798 case READ_MEDIA_SERIAL_NUMBER
:
2799 case SECURITY_PROTOCOL_IN
:
2800 case SECURITY_PROTOCOL_OUT
:
2801 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2802 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2804 case SERVICE_ACTION_IN
:
2805 switch (cmd
->t_task_cdb
[1] & 0x1f) {
2806 case SAI_READ_CAPACITY_16
:
2809 target_emulate_readcapacity_16
;
2815 pr_err("Unsupported SA: 0x%02x\n",
2816 cmd
->t_task_cdb
[1] & 0x1f);
2817 goto out_unsupported_cdb
;
2820 case ACCESS_CONTROL_IN
:
2821 case ACCESS_CONTROL_OUT
:
2823 case READ_ATTRIBUTE
:
2824 case RECEIVE_COPY_RESULTS
:
2825 case WRITE_ATTRIBUTE
:
2826 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
2827 (cdb
[12] << 8) | cdb
[13];
2828 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2830 case RECEIVE_DIAGNOSTIC
:
2831 case SEND_DIAGNOSTIC
:
2832 size
= (cdb
[3] << 8) | cdb
[4];
2833 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2835 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2838 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2839 size
= (2336 * sectors
);
2840 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2845 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2849 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2851 cmd
->execute_task
= target_emulate_request_sense
;
2853 case READ_ELEMENT_STATUS
:
2854 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
2855 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2858 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2859 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2864 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2865 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2867 if (cdb
[0] == RESERVE_10
)
2868 size
= (cdb
[7] << 8) | cdb
[8];
2870 size
= cmd
->data_length
;
2873 * Setup the legacy emulated handler for SPC-2 and
2874 * >= SPC-3 compatible reservation handling (CRH=1)
2875 * Otherwise, we assume the underlying SCSI logic is
2876 * is running in SPC_PASSTHROUGH, and wants reservations
2877 * emulation disabled.
2879 if (su_dev
->t10_pr
.res_type
!= SPC_PASSTHROUGH
)
2880 cmd
->execute_task
= target_scsi2_reservation_reserve
;
2881 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2886 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2887 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2889 if (cdb
[0] == RELEASE_10
)
2890 size
= (cdb
[7] << 8) | cdb
[8];
2892 size
= cmd
->data_length
;
2894 if (su_dev
->t10_pr
.res_type
!= SPC_PASSTHROUGH
)
2895 cmd
->execute_task
= target_scsi2_reservation_release
;
2896 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2898 case SYNCHRONIZE_CACHE
:
2899 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2901 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2903 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
2904 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2905 cmd
->t_task_lba
= transport_lba_32(cdb
);
2907 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2908 cmd
->t_task_lba
= transport_lba_64(cdb
);
2911 goto out_unsupported_cdb
;
2913 size
= transport_get_size(sectors
, cdb
, cmd
);
2914 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2920 * Check to ensure that LBA + Range does not exceed past end of
2921 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2923 if ((cmd
->t_task_lba
!= 0) || (sectors
!= 0)) {
2924 if (transport_cmd_get_valid_sectors(cmd
) < 0)
2925 goto out_invalid_cdb_field
;
2927 cmd
->execute_task
= target_emulate_synchronize_cache
;
2930 size
= get_unaligned_be16(&cdb
[7]);
2931 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2933 cmd
->execute_task
= target_emulate_unmap
;
2936 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2938 goto out_unsupported_cdb
;
2941 size
= transport_get_size(1, cdb
, cmd
);
2943 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2944 goto out_invalid_cdb_field
;
2947 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[2]);
2948 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2950 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
2951 goto out_invalid_cdb_field
;
2953 cmd
->execute_task
= target_emulate_write_same
;
2956 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2958 goto out_unsupported_cdb
;
2961 size
= transport_get_size(1, cdb
, cmd
);
2963 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2964 goto out_invalid_cdb_field
;
2967 cmd
->t_task_lba
= get_unaligned_be32(&cdb
[2]);
2968 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2970 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2971 * of byte 1 bit 3 UNMAP instead of original reserved field
2973 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
2974 goto out_invalid_cdb_field
;
2976 cmd
->execute_task
= target_emulate_write_same
;
2978 case ALLOW_MEDIUM_REMOVAL
:
2984 case TEST_UNIT_READY
:
2986 case WRITE_FILEMARKS
:
2987 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2989 cmd
->execute_task
= target_emulate_noop
;
2991 case GPCMD_CLOSE_TRACK
:
2992 case INITIALIZE_ELEMENT_STATUS
:
2993 case GPCMD_LOAD_UNLOAD
:
2994 case GPCMD_SET_SPEED
:
2996 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2999 cmd
->execute_task
= target_report_luns
;
3000 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3002 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3003 * See spc4r17 section 5.3
3005 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3006 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3007 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3010 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3011 " 0x%02x, sending CHECK_CONDITION.\n",
3012 cmd
->se_tfo
->get_fabric_name(), cdb
[0]);
3013 goto out_unsupported_cdb
;
3016 if (size
!= cmd
->data_length
) {
3017 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3018 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3019 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
3020 cmd
->data_length
, size
, cdb
[0]);
3022 cmd
->cmd_spdtl
= size
;
3024 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3025 pr_err("Rejecting underflow/overflow"
3027 goto out_invalid_cdb_field
;
3030 * Reject READ_* or WRITE_* with overflow/underflow for
3031 * type SCF_SCSI_DATA_SG_IO_CDB.
3033 if (!ret
&& (dev
->se_sub_dev
->se_dev_attrib
.block_size
!= 512)) {
3034 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3035 " CDB on non 512-byte sector setup subsystem"
3036 " plugin: %s\n", dev
->transport
->name
);
3037 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3038 goto out_invalid_cdb_field
;
3041 if (size
> cmd
->data_length
) {
3042 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3043 cmd
->residual_count
= (size
- cmd
->data_length
);
3045 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3046 cmd
->residual_count
= (cmd
->data_length
- size
);
3048 cmd
->data_length
= size
;
3051 /* reject any command that we don't have a handler for */
3052 if (!(passthrough
|| cmd
->execute_task
||
3053 (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
3054 goto out_unsupported_cdb
;
3056 /* Let's limit control cdbs to a page, for simplicity's sake. */
3057 if ((cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) &&
3059 goto out_invalid_cdb_field
;
3061 transport_set_supported_SAM_opcode(cmd
);
3064 out_unsupported_cdb
:
3065 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3066 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3068 out_invalid_cdb_field
:
3069 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3070 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3075 * Called from I/O completion to determine which dormant/delayed
3076 * and ordered cmds need to have their tasks added to the execution queue.
3078 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3080 struct se_device
*dev
= cmd
->se_dev
;
3081 struct se_cmd
*cmd_p
, *cmd_tmp
;
3082 int new_active_tasks
= 0;
3084 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
3085 atomic_dec(&dev
->simple_cmds
);
3086 smp_mb__after_atomic_dec();
3087 dev
->dev_cur_ordered_id
++;
3088 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3089 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3090 cmd
->se_ordered_id
);
3091 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
3092 dev
->dev_cur_ordered_id
++;
3093 pr_debug("Incremented dev_cur_ordered_id: %u for"
3094 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3095 cmd
->se_ordered_id
);
3096 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
3097 atomic_dec(&dev
->dev_ordered_sync
);
3098 smp_mb__after_atomic_dec();
3100 dev
->dev_cur_ordered_id
++;
3101 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3102 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3105 * Process all commands up to the last received
3106 * ORDERED task attribute which requires another blocking
3109 spin_lock(&dev
->delayed_cmd_lock
);
3110 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3111 &dev
->delayed_cmd_list
, se_delayed_node
) {
3113 list_del(&cmd_p
->se_delayed_node
);
3114 spin_unlock(&dev
->delayed_cmd_lock
);
3116 pr_debug("Calling add_tasks() for"
3117 " cmd_p: 0x%02x Task Attr: 0x%02x"
3118 " Dormant -> Active, se_ordered_id: %u\n",
3119 cmd_p
->t_task_cdb
[0],
3120 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3122 transport_add_tasks_from_cmd(cmd_p
);
3125 spin_lock(&dev
->delayed_cmd_lock
);
3126 if (cmd_p
->sam_task_attr
== MSG_ORDERED_TAG
)
3129 spin_unlock(&dev
->delayed_cmd_lock
);
3131 * If new tasks have become active, wake up the transport thread
3132 * to do the processing of the Active tasks.
3134 if (new_active_tasks
!= 0)
3135 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
3138 static void transport_complete_qf(struct se_cmd
*cmd
)
3142 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3143 transport_complete_task_attr(cmd
);
3145 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3146 ret
= cmd
->se_tfo
->queue_status(cmd
);
3151 switch (cmd
->data_direction
) {
3152 case DMA_FROM_DEVICE
:
3153 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3156 if (cmd
->t_bidi_data_sg
) {
3157 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3161 /* Fall through for DMA_TO_DEVICE */
3163 ret
= cmd
->se_tfo
->queue_status(cmd
);
3171 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3174 transport_lun_remove_cmd(cmd
);
3175 transport_cmd_check_stop_to_fabric(cmd
);
3178 static void transport_handle_queue_full(
3180 struct se_device
*dev
)
3182 spin_lock_irq(&dev
->qf_cmd_lock
);
3183 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
3184 atomic_inc(&dev
->dev_qf_count
);
3185 smp_mb__after_atomic_inc();
3186 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
3188 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3191 static void target_complete_ok_work(struct work_struct
*work
)
3193 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3194 int reason
= 0, ret
;
3197 * Check if we need to move delayed/dormant tasks from cmds on the
3198 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3201 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3202 transport_complete_task_attr(cmd
);
3204 * Check to schedule QUEUE_FULL work, or execute an existing
3205 * cmd->transport_qf_callback()
3207 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
3208 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3211 * Check if we need to retrieve a sense buffer from
3212 * the struct se_cmd in question.
3214 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3215 if (transport_get_sense_data(cmd
) < 0)
3216 reason
= TCM_NON_EXISTENT_LUN
;
3219 * Only set when an struct se_task->task_scsi_status returned
3220 * a non GOOD status.
3222 if (cmd
->scsi_status
) {
3223 ret
= transport_send_check_condition_and_sense(
3225 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3228 transport_lun_remove_cmd(cmd
);
3229 transport_cmd_check_stop_to_fabric(cmd
);
3234 * Check for a callback, used by amongst other things
3235 * XDWRITE_READ_10 emulation.
3237 if (cmd
->transport_complete_callback
)
3238 cmd
->transport_complete_callback(cmd
);
3240 switch (cmd
->data_direction
) {
3241 case DMA_FROM_DEVICE
:
3242 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3243 if (cmd
->se_lun
->lun_sep
) {
3244 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3247 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3249 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3250 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3254 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3255 if (cmd
->se_lun
->lun_sep
) {
3256 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
3259 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3261 * Check if we need to send READ payload for BIDI-COMMAND
3263 if (cmd
->t_bidi_data_sg
) {
3264 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3265 if (cmd
->se_lun
->lun_sep
) {
3266 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3269 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3270 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3271 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3275 /* Fall through for DMA_TO_DEVICE */
3277 ret
= cmd
->se_tfo
->queue_status(cmd
);
3278 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3285 transport_lun_remove_cmd(cmd
);
3286 transport_cmd_check_stop_to_fabric(cmd
);
3290 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3291 " data_direction: %d\n", cmd
, cmd
->data_direction
);
3292 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
3293 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3296 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3298 struct se_task
*task
, *task_tmp
;
3299 unsigned long flags
;
3300 LIST_HEAD(dispose_list
);
3302 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3303 list_for_each_entry_safe(task
, task_tmp
,
3304 &cmd
->t_task_list
, t_list
) {
3305 if (!(task
->task_flags
& TF_ACTIVE
))
3306 list_move_tail(&task
->t_list
, &dispose_list
);
3308 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3310 while (!list_empty(&dispose_list
)) {
3311 task
= list_first_entry(&dispose_list
, struct se_task
, t_list
);
3313 if (task
->task_sg
!= cmd
->t_data_sg
&&
3314 task
->task_sg
!= cmd
->t_bidi_data_sg
)
3315 kfree(task
->task_sg
);
3317 list_del(&task
->t_list
);
3319 cmd
->se_dev
->transport
->free_task(task
);
3323 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
3325 struct scatterlist
*sg
;
3328 for_each_sg(sgl
, sg
, nents
, count
)
3329 __free_page(sg_page(sg
));
3334 static inline void transport_free_pages(struct se_cmd
*cmd
)
3336 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3339 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
3340 cmd
->t_data_sg
= NULL
;
3341 cmd
->t_data_nents
= 0;
3343 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
3344 cmd
->t_bidi_data_sg
= NULL
;
3345 cmd
->t_bidi_data_nents
= 0;
3349 * transport_put_cmd - release a reference to a command
3350 * @cmd: command to release
3352 * This routine releases our reference to the command and frees it if possible.
3354 static void transport_put_cmd(struct se_cmd
*cmd
)
3356 unsigned long flags
;
3359 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3360 if (atomic_read(&cmd
->t_fe_count
)) {
3361 if (!atomic_dec_and_test(&cmd
->t_fe_count
))
3365 if (atomic_read(&cmd
->t_se_count
)) {
3366 if (!atomic_dec_and_test(&cmd
->t_se_count
))
3370 if (atomic_read(&cmd
->transport_dev_active
)) {
3371 atomic_set(&cmd
->transport_dev_active
, 0);
3372 transport_all_task_dev_remove_state(cmd
);
3375 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3377 if (free_tasks
!= 0)
3378 transport_free_dev_tasks(cmd
);
3380 transport_free_pages(cmd
);
3381 transport_release_cmd(cmd
);
3384 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3388 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3389 * allocating in the core.
3390 * @cmd: Associated se_cmd descriptor
3391 * @mem: SGL style memory for TCM WRITE / READ
3392 * @sg_mem_num: Number of SGL elements
3393 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3394 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3396 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3399 int transport_generic_map_mem_to_cmd(
3401 struct scatterlist
*sgl
,
3403 struct scatterlist
*sgl_bidi
,
3406 if (!sgl
|| !sgl_count
)
3409 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3410 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
3412 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3413 * scatterlists already have been set to follow what the fabric
3414 * passes for the original expected data transfer length.
3416 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
3417 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3418 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3419 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3420 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3424 cmd
->t_data_sg
= sgl
;
3425 cmd
->t_data_nents
= sgl_count
;
3427 if (sgl_bidi
&& sgl_bidi_count
) {
3428 cmd
->t_bidi_data_sg
= sgl_bidi
;
3429 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
3431 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
3436 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
3438 void *transport_kmap_first_data_page(struct se_cmd
*cmd
)
3440 struct scatterlist
*sg
= cmd
->t_data_sg
;
3444 * We need to take into account a possible offset here for fabrics like
3445 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3446 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3448 return kmap(sg_page(sg
)) + sg
->offset
;
3450 EXPORT_SYMBOL(transport_kmap_first_data_page
);
3452 void transport_kunmap_first_data_page(struct se_cmd
*cmd
)
3454 kunmap(sg_page(cmd
->t_data_sg
));
3456 EXPORT_SYMBOL(transport_kunmap_first_data_page
);
3459 transport_generic_get_mem(struct se_cmd
*cmd
)
3461 u32 length
= cmd
->data_length
;
3466 nents
= DIV_ROUND_UP(length
, PAGE_SIZE
);
3467 cmd
->t_data_sg
= kmalloc(sizeof(struct scatterlist
) * nents
, GFP_KERNEL
);
3468 if (!cmd
->t_data_sg
)
3471 cmd
->t_data_nents
= nents
;
3472 sg_init_table(cmd
->t_data_sg
, nents
);
3475 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
3476 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3480 sg_set_page(&cmd
->t_data_sg
[i
], page
, page_len
, 0);
3488 __free_page(sg_page(&cmd
->t_data_sg
[i
]));
3491 kfree(cmd
->t_data_sg
);
3492 cmd
->t_data_sg
= NULL
;
3496 /* Reduce sectors if they are too long for the device */
3497 static inline sector_t
transport_limit_task_sectors(
3498 struct se_device
*dev
,
3499 unsigned long long lba
,
3502 sectors
= min_t(sector_t
, sectors
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
3504 if (dev
->transport
->get_device_type(dev
) == TYPE_DISK
)
3505 if ((lba
+ sectors
) > transport_dev_end_lba(dev
))
3506 sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
3513 * This function can be used by HW target mode drivers to create a linked
3514 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3515 * This is intended to be called during the completion path by TCM Core
3516 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3518 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
3520 struct scatterlist
*sg_first
= NULL
;
3521 struct scatterlist
*sg_prev
= NULL
;
3522 int sg_prev_nents
= 0;
3523 struct scatterlist
*sg
;
3524 struct se_task
*task
;
3525 u32 chained_nents
= 0;
3528 BUG_ON(!cmd
->se_tfo
->task_sg_chaining
);
3531 * Walk the struct se_task list and setup scatterlist chains
3532 * for each contiguously allocated struct se_task->task_sg[].
3534 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
3539 sg_first
= task
->task_sg
;
3540 chained_nents
= task
->task_sg_nents
;
3542 sg_chain(sg_prev
, sg_prev_nents
, task
->task_sg
);
3543 chained_nents
+= task
->task_sg_nents
;
3546 * For the padded tasks, use the extra SGL vector allocated
3547 * in transport_allocate_data_tasks() for the sg_prev_nents
3548 * offset into sg_chain() above.
3550 * We do not need the padding for the last task (or a single
3551 * task), but in that case we will never use the sg_prev_nents
3552 * value below which would be incorrect.
3554 sg_prev_nents
= (task
->task_sg_nents
+ 1);
3555 sg_prev
= task
->task_sg
;
3558 * Setup the starting pointer and total t_tasks_sg_linked_no including
3559 * padding SGs for linking and to mark the end.
3561 cmd
->t_tasks_sg_chained
= sg_first
;
3562 cmd
->t_tasks_sg_chained_no
= chained_nents
;
3564 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3565 " t_tasks_sg_chained_no: %u\n", cmd
, cmd
->t_tasks_sg_chained
,
3566 cmd
->t_tasks_sg_chained_no
);
3568 for_each_sg(cmd
->t_tasks_sg_chained
, sg
,
3569 cmd
->t_tasks_sg_chained_no
, i
) {
3571 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3572 i
, sg
, sg_page(sg
), sg
->length
, sg
->offset
);
3573 if (sg_is_chain(sg
))
3574 pr_debug("SG: %p sg_is_chain=1\n", sg
);
3576 pr_debug("SG: %p sg_is_last=1\n", sg
);
3579 EXPORT_SYMBOL(transport_do_task_sg_chain
);
3582 * Break up cmd into chunks transport can handle
3585 transport_allocate_data_tasks(struct se_cmd
*cmd
,
3586 enum dma_data_direction data_direction
,
3587 struct scatterlist
*cmd_sg
, unsigned int sgl_nents
)
3589 struct se_device
*dev
= cmd
->se_dev
;
3591 unsigned long long lba
;
3592 sector_t sectors
, dev_max_sectors
;
3595 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3598 dev_max_sectors
= dev
->se_sub_dev
->se_dev_attrib
.max_sectors
;
3599 sector_size
= dev
->se_sub_dev
->se_dev_attrib
.block_size
;
3601 WARN_ON(cmd
->data_length
% sector_size
);
3603 lba
= cmd
->t_task_lba
;
3604 sectors
= DIV_ROUND_UP(cmd
->data_length
, sector_size
);
3605 task_count
= DIV_ROUND_UP_SECTOR_T(sectors
, dev_max_sectors
);
3608 * If we need just a single task reuse the SG list in the command
3609 * and avoid a lot of work.
3611 if (task_count
== 1) {
3612 struct se_task
*task
;
3613 unsigned long flags
;
3615 task
= transport_generic_get_task(cmd
, data_direction
);
3619 task
->task_sg
= cmd_sg
;
3620 task
->task_sg_nents
= sgl_nents
;
3622 task
->task_lba
= lba
;
3623 task
->task_sectors
= sectors
;
3624 task
->task_size
= task
->task_sectors
* sector_size
;
3626 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3627 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3628 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3633 for (i
= 0; i
< task_count
; i
++) {
3634 struct se_task
*task
;
3635 unsigned int task_size
, task_sg_nents_padded
;
3636 struct scatterlist
*sg
;
3637 unsigned long flags
;
3640 task
= transport_generic_get_task(cmd
, data_direction
);
3644 task
->task_lba
= lba
;
3645 task
->task_sectors
= min(sectors
, dev_max_sectors
);
3646 task
->task_size
= task
->task_sectors
* sector_size
;
3649 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3650 * in order to calculate the number per task SGL entries
3652 task
->task_sg_nents
= DIV_ROUND_UP(task
->task_size
, PAGE_SIZE
);
3654 * Check if the fabric module driver is requesting that all
3655 * struct se_task->task_sg[] be chained together.. If so,
3656 * then allocate an extra padding SG entry for linking and
3657 * marking the end of the chained SGL for every task except
3658 * the last one for (task_count > 1) operation, or skipping
3659 * the extra padding for the (task_count == 1) case.
3661 if (cmd
->se_tfo
->task_sg_chaining
&& (i
< (task_count
- 1))) {
3662 task_sg_nents_padded
= (task
->task_sg_nents
+ 1);
3664 task_sg_nents_padded
= task
->task_sg_nents
;
3666 task
->task_sg
= kmalloc(sizeof(struct scatterlist
) *
3667 task_sg_nents_padded
, GFP_KERNEL
);
3668 if (!task
->task_sg
) {
3669 cmd
->se_dev
->transport
->free_task(task
);
3673 sg_init_table(task
->task_sg
, task_sg_nents_padded
);
3675 task_size
= task
->task_size
;
3677 /* Build new sgl, only up to task_size */
3678 for_each_sg(task
->task_sg
, sg
, task
->task_sg_nents
, count
) {
3679 if (cmd_sg
->length
> task_size
)
3683 task_size
-= cmd_sg
->length
;
3684 cmd_sg
= sg_next(cmd_sg
);
3687 lba
+= task
->task_sectors
;
3688 sectors
-= task
->task_sectors
;
3690 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3691 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3692 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3699 transport_allocate_control_task(struct se_cmd
*cmd
)
3701 struct se_task
*task
;
3702 unsigned long flags
;
3704 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
3708 task
->task_sg
= cmd
->t_data_sg
;
3709 task
->task_size
= cmd
->data_length
;
3710 task
->task_sg_nents
= cmd
->t_data_nents
;
3712 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3713 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3714 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3716 /* Success! Return number of tasks allocated */
3721 * Allocate any required ressources to execute the command, and either place
3722 * it on the execution queue if possible. For writes we might not have the
3723 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3725 int transport_generic_new_cmd(struct se_cmd
*cmd
)
3727 struct se_device
*dev
= cmd
->se_dev
;
3728 int task_cdbs
, task_cdbs_bidi
= 0;
3733 * Determine is the TCM fabric module has already allocated physical
3734 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3737 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
3739 ret
= transport_generic_get_mem(cmd
);
3745 * For BIDI command set up the read tasks first.
3747 if (cmd
->t_bidi_data_sg
&&
3748 dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
3749 BUG_ON(!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
));
3751 task_cdbs_bidi
= transport_allocate_data_tasks(cmd
,
3752 DMA_FROM_DEVICE
, cmd
->t_bidi_data_sg
,
3753 cmd
->t_bidi_data_nents
);
3754 if (task_cdbs_bidi
<= 0)
3757 atomic_inc(&cmd
->t_fe_count
);
3758 atomic_inc(&cmd
->t_se_count
);
3762 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
3763 task_cdbs
= transport_allocate_data_tasks(cmd
,
3764 cmd
->data_direction
, cmd
->t_data_sg
,
3767 task_cdbs
= transport_allocate_control_task(cmd
);
3772 else if (!task_cdbs
&& (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)) {
3773 cmd
->t_state
= TRANSPORT_COMPLETE
;
3774 atomic_set(&cmd
->t_transport_active
, 1);
3775 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
3776 queue_work(target_completion_wq
, &cmd
->work
);
3781 atomic_inc(&cmd
->t_fe_count
);
3782 atomic_inc(&cmd
->t_se_count
);
3785 cmd
->t_task_list_num
= (task_cdbs
+ task_cdbs_bidi
);
3786 atomic_set(&cmd
->t_task_cdbs_left
, cmd
->t_task_list_num
);
3787 atomic_set(&cmd
->t_task_cdbs_ex_left
, cmd
->t_task_list_num
);
3790 * For WRITEs, let the fabric know its buffer is ready..
3791 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3792 * will be added to the struct se_device execution queue after its WRITE
3793 * data has arrived. (ie: It gets handled by the transport processing
3794 * thread a second time)
3796 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3797 transport_add_tasks_to_state_queue(cmd
);
3798 return transport_generic_write_pending(cmd
);
3801 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3802 * to the execution queue.
3804 transport_execute_tasks(cmd
);
3808 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3809 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
3812 EXPORT_SYMBOL(transport_generic_new_cmd
);
3814 /* transport_generic_process_write():
3818 void transport_generic_process_write(struct se_cmd
*cmd
)
3820 transport_execute_tasks(cmd
);
3822 EXPORT_SYMBOL(transport_generic_process_write
);
3824 static void transport_write_pending_qf(struct se_cmd
*cmd
)
3828 ret
= cmd
->se_tfo
->write_pending(cmd
);
3829 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
3830 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3832 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3836 static int transport_generic_write_pending(struct se_cmd
*cmd
)
3838 unsigned long flags
;
3841 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3842 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
3843 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3846 * Clear the se_cmd for WRITE_PENDING status in order to set
3847 * cmd->t_transport_active=0 so that transport_generic_handle_data
3848 * can be called from HW target mode interrupt code. This is safe
3849 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3850 * because the se_cmd->se_lun pointer is not being cleared.
3852 transport_cmd_check_stop(cmd
, 1, 0);
3855 * Call the fabric write_pending function here to let the
3856 * frontend know that WRITE buffers are ready.
3858 ret
= cmd
->se_tfo
->write_pending(cmd
);
3859 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3867 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
3868 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
3869 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3874 * transport_release_cmd - free a command
3875 * @cmd: command to free
3877 * This routine unconditionally frees a command, and reference counting
3878 * or list removal must be done in the caller.
3880 void transport_release_cmd(struct se_cmd
*cmd
)
3882 BUG_ON(!cmd
->se_tfo
);
3884 if (cmd
->se_tmr_req
)
3885 core_tmr_release_req(cmd
->se_tmr_req
);
3886 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
3887 kfree(cmd
->t_task_cdb
);
3889 * Check if target_wait_for_sess_cmds() is expecting to
3890 * release se_cmd directly here..
3892 if (cmd
->check_release
!= 0 && cmd
->se_tfo
->check_release_cmd
)
3893 if (cmd
->se_tfo
->check_release_cmd(cmd
) != 0)
3896 cmd
->se_tfo
->release_cmd(cmd
);
3898 EXPORT_SYMBOL(transport_release_cmd
);
3900 void transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
3902 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
3903 if (wait_for_tasks
&& cmd
->se_tmr_req
)
3904 transport_wait_for_tasks(cmd
);
3906 transport_release_cmd(cmd
);
3909 transport_wait_for_tasks(cmd
);
3911 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
3914 transport_lun_remove_cmd(cmd
);
3916 transport_free_dev_tasks(cmd
);
3918 transport_put_cmd(cmd
);
3921 EXPORT_SYMBOL(transport_generic_free_cmd
);
3923 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3924 * @se_sess: session to reference
3925 * @se_cmd: command descriptor to add
3927 void target_get_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
3929 unsigned long flags
;
3931 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
3932 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
3933 se_cmd
->check_release
= 1;
3934 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
3936 EXPORT_SYMBOL(target_get_sess_cmd
);
3938 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3939 * @se_sess: session to reference
3940 * @se_cmd: command descriptor to drop
3942 int target_put_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
3944 unsigned long flags
;
3946 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
3947 if (list_empty(&se_cmd
->se_cmd_list
)) {
3948 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
3953 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
3954 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
3955 complete(&se_cmd
->cmd_wait_comp
);
3958 list_del(&se_cmd
->se_cmd_list
);
3959 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
3963 EXPORT_SYMBOL(target_put_sess_cmd
);
3965 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3966 * @se_sess: session to split
3968 void target_splice_sess_cmd_list(struct se_session
*se_sess
)
3970 struct se_cmd
*se_cmd
;
3971 unsigned long flags
;
3973 WARN_ON(!list_empty(&se_sess
->sess_wait_list
));
3974 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
3976 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
3977 se_sess
->sess_tearing_down
= 1;
3979 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
3981 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
3982 se_cmd
->cmd_wait_set
= 1;
3984 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
3986 EXPORT_SYMBOL(target_splice_sess_cmd_list
);
3988 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
3989 * @se_sess: session to wait for active I/O
3990 * @wait_for_tasks: Make extra transport_wait_for_tasks call
3992 void target_wait_for_sess_cmds(
3993 struct se_session
*se_sess
,
3996 struct se_cmd
*se_cmd
, *tmp_cmd
;
3999 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
4000 &se_sess
->sess_wait_list
, se_cmd_list
) {
4001 list_del(&se_cmd
->se_cmd_list
);
4003 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4004 " %d\n", se_cmd
, se_cmd
->t_state
,
4005 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4007 if (wait_for_tasks
) {
4008 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4009 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4010 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4012 rc
= transport_wait_for_tasks(se_cmd
);
4014 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4015 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4016 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4020 wait_for_completion(&se_cmd
->cmd_wait_comp
);
4021 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4022 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4023 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4026 se_cmd
->se_tfo
->release_cmd(se_cmd
);
4029 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
4031 /* transport_lun_wait_for_tasks():
4033 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4034 * an struct se_lun to be successfully shutdown.
4036 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
4038 unsigned long flags
;
4041 * If the frontend has already requested this struct se_cmd to
4042 * be stopped, we can safely ignore this struct se_cmd.
4044 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4045 if (atomic_read(&cmd
->t_transport_stop
)) {
4046 atomic_set(&cmd
->transport_lun_stop
, 0);
4047 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4048 " TRUE, skipping\n", cmd
->se_tfo
->get_task_tag(cmd
));
4049 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4050 transport_cmd_check_stop(cmd
, 1, 0);
4053 atomic_set(&cmd
->transport_lun_fe_stop
, 1);
4054 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4056 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4058 ret
= transport_stop_tasks_for_cmd(cmd
);
4060 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4061 " %d\n", cmd
, cmd
->t_task_list_num
, ret
);
4063 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4064 cmd
->se_tfo
->get_task_tag(cmd
));
4065 wait_for_completion(&cmd
->transport_lun_stop_comp
);
4066 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4067 cmd
->se_tfo
->get_task_tag(cmd
));
4069 transport_remove_cmd_from_queue(cmd
);
4074 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
4076 struct se_cmd
*cmd
= NULL
;
4077 unsigned long lun_flags
, cmd_flags
;
4079 * Do exception processing and return CHECK_CONDITION status to the
4082 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4083 while (!list_empty(&lun
->lun_cmd_list
)) {
4084 cmd
= list_first_entry(&lun
->lun_cmd_list
,
4085 struct se_cmd
, se_lun_node
);
4086 list_del(&cmd
->se_lun_node
);
4088 atomic_set(&cmd
->transport_lun_active
, 0);
4090 * This will notify iscsi_target_transport.c:
4091 * transport_cmd_check_stop() that a LUN shutdown is in
4092 * progress for the iscsi_cmd_t.
4094 spin_lock(&cmd
->t_state_lock
);
4095 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4096 "_lun_stop for ITT: 0x%08x\n",
4097 cmd
->se_lun
->unpacked_lun
,
4098 cmd
->se_tfo
->get_task_tag(cmd
));
4099 atomic_set(&cmd
->transport_lun_stop
, 1);
4100 spin_unlock(&cmd
->t_state_lock
);
4102 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4105 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4106 cmd
->se_tfo
->get_task_tag(cmd
),
4107 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4111 * If the Storage engine still owns the iscsi_cmd_t, determine
4112 * and/or stop its context.
4114 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4115 "_lun_wait_for_tasks()\n", cmd
->se_lun
->unpacked_lun
,
4116 cmd
->se_tfo
->get_task_tag(cmd
));
4118 if (transport_lun_wait_for_tasks(cmd
, cmd
->se_lun
) < 0) {
4119 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4123 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4124 "_wait_for_tasks(): SUCCESS\n",
4125 cmd
->se_lun
->unpacked_lun
,
4126 cmd
->se_tfo
->get_task_tag(cmd
));
4128 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4129 if (!atomic_read(&cmd
->transport_dev_active
)) {
4130 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4133 atomic_set(&cmd
->transport_dev_active
, 0);
4134 transport_all_task_dev_remove_state(cmd
);
4135 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4137 transport_free_dev_tasks(cmd
);
4139 * The Storage engine stopped this struct se_cmd before it was
4140 * send to the fabric frontend for delivery back to the
4141 * Initiator Node. Return this SCSI CDB back with an
4142 * CHECK_CONDITION status.
4145 transport_send_check_condition_and_sense(cmd
,
4146 TCM_NON_EXISTENT_LUN
, 0);
4148 * If the fabric frontend is waiting for this iscsi_cmd_t to
4149 * be released, notify the waiting thread now that LU has
4150 * finished accessing it.
4152 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4153 if (atomic_read(&cmd
->transport_lun_fe_stop
)) {
4154 pr_debug("SE_LUN[%d] - Detected FE stop for"
4155 " struct se_cmd: %p ITT: 0x%08x\n",
4157 cmd
, cmd
->se_tfo
->get_task_tag(cmd
));
4159 spin_unlock_irqrestore(&cmd
->t_state_lock
,
4161 transport_cmd_check_stop(cmd
, 1, 0);
4162 complete(&cmd
->transport_lun_fe_stop_comp
);
4163 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4166 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4167 lun
->unpacked_lun
, cmd
->se_tfo
->get_task_tag(cmd
));
4169 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4170 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4172 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4175 static int transport_clear_lun_thread(void *p
)
4177 struct se_lun
*lun
= (struct se_lun
*)p
;
4179 __transport_clear_lun_from_sessions(lun
);
4180 complete(&lun
->lun_shutdown_comp
);
4185 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
4187 struct task_struct
*kt
;
4189 kt
= kthread_run(transport_clear_lun_thread
, lun
,
4190 "tcm_cl_%u", lun
->unpacked_lun
);
4192 pr_err("Unable to start clear_lun thread\n");
4195 wait_for_completion(&lun
->lun_shutdown_comp
);
4201 * transport_wait_for_tasks - wait for completion to occur
4202 * @cmd: command to wait
4204 * Called from frontend fabric context to wait for storage engine
4205 * to pause and/or release frontend generated struct se_cmd.
4207 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
4209 unsigned long flags
;
4211 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4212 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
)) {
4213 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4217 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4218 * has been set in transport_set_supported_SAM_opcode().
4220 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) && !cmd
->se_tmr_req
) {
4221 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4225 * If we are already stopped due to an external event (ie: LUN shutdown)
4226 * sleep until the connection can have the passed struct se_cmd back.
4227 * The cmd->transport_lun_stopped_sem will be upped by
4228 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4229 * has completed its operation on the struct se_cmd.
4231 if (atomic_read(&cmd
->transport_lun_stop
)) {
4233 pr_debug("wait_for_tasks: Stopping"
4234 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4235 "_stop_comp); for ITT: 0x%08x\n",
4236 cmd
->se_tfo
->get_task_tag(cmd
));
4238 * There is a special case for WRITES where a FE exception +
4239 * LUN shutdown means ConfigFS context is still sleeping on
4240 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4241 * We go ahead and up transport_lun_stop_comp just to be sure
4244 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4245 complete(&cmd
->transport_lun_stop_comp
);
4246 wait_for_completion(&cmd
->transport_lun_fe_stop_comp
);
4247 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4249 transport_all_task_dev_remove_state(cmd
);
4251 * At this point, the frontend who was the originator of this
4252 * struct se_cmd, now owns the structure and can be released through
4253 * normal means below.
4255 pr_debug("wait_for_tasks: Stopped"
4256 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4257 "stop_comp); for ITT: 0x%08x\n",
4258 cmd
->se_tfo
->get_task_tag(cmd
));
4260 atomic_set(&cmd
->transport_lun_stop
, 0);
4262 if (!atomic_read(&cmd
->t_transport_active
) ||
4263 atomic_read(&cmd
->t_transport_aborted
)) {
4264 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4268 atomic_set(&cmd
->t_transport_stop
, 1);
4270 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4271 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4272 cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
4273 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4275 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4277 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4279 wait_for_completion(&cmd
->t_transport_stop_comp
);
4281 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4282 atomic_set(&cmd
->t_transport_active
, 0);
4283 atomic_set(&cmd
->t_transport_stop
, 0);
4285 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4286 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4287 cmd
->se_tfo
->get_task_tag(cmd
));
4289 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4293 EXPORT_SYMBOL(transport_wait_for_tasks
);
4295 static int transport_get_sense_codes(
4300 *asc
= cmd
->scsi_asc
;
4301 *ascq
= cmd
->scsi_ascq
;
4306 static int transport_set_sense_codes(
4311 cmd
->scsi_asc
= asc
;
4312 cmd
->scsi_ascq
= ascq
;
4317 int transport_send_check_condition_and_sense(
4322 unsigned char *buffer
= cmd
->sense_buffer
;
4323 unsigned long flags
;
4325 u8 asc
= 0, ascq
= 0;
4327 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4328 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4329 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4332 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
4333 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4335 if (!reason
&& from_transport
)
4338 if (!from_transport
)
4339 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
4341 * Data Segment and SenseLength of the fabric response PDU.
4343 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4344 * from include/scsi/scsi_cmnd.h
4346 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
4347 TRANSPORT_SENSE_BUFFER
);
4349 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4350 * SENSE KEY values from include/scsi/scsi.h
4353 case TCM_NON_EXISTENT_LUN
:
4355 buffer
[offset
] = 0x70;
4356 /* ILLEGAL REQUEST */
4357 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4358 /* LOGICAL UNIT NOT SUPPORTED */
4359 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x25;
4361 case TCM_UNSUPPORTED_SCSI_OPCODE
:
4362 case TCM_SECTOR_COUNT_TOO_MANY
:
4364 buffer
[offset
] = 0x70;
4365 /* ILLEGAL REQUEST */
4366 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4367 /* INVALID COMMAND OPERATION CODE */
4368 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
4370 case TCM_UNKNOWN_MODE_PAGE
:
4372 buffer
[offset
] = 0x70;
4373 /* ILLEGAL REQUEST */
4374 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4375 /* INVALID FIELD IN CDB */
4376 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4378 case TCM_CHECK_CONDITION_ABORT_CMD
:
4380 buffer
[offset
] = 0x70;
4381 /* ABORTED COMMAND */
4382 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4383 /* BUS DEVICE RESET FUNCTION OCCURRED */
4384 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
4385 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
4387 case TCM_INCORRECT_AMOUNT_OF_DATA
:
4389 buffer
[offset
] = 0x70;
4390 /* ABORTED COMMAND */
4391 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4393 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4394 /* NOT ENOUGH UNSOLICITED DATA */
4395 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
4397 case TCM_INVALID_CDB_FIELD
:
4399 buffer
[offset
] = 0x70;
4400 /* ABORTED COMMAND */
4401 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4402 /* INVALID FIELD IN CDB */
4403 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4405 case TCM_INVALID_PARAMETER_LIST
:
4407 buffer
[offset
] = 0x70;
4408 /* ABORTED COMMAND */
4409 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4410 /* INVALID FIELD IN PARAMETER LIST */
4411 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
4413 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
4415 buffer
[offset
] = 0x70;
4416 /* ABORTED COMMAND */
4417 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4419 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4420 /* UNEXPECTED_UNSOLICITED_DATA */
4421 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
4423 case TCM_SERVICE_CRC_ERROR
:
4425 buffer
[offset
] = 0x70;
4426 /* ABORTED COMMAND */
4427 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4428 /* PROTOCOL SERVICE CRC ERROR */
4429 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
4431 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
4433 case TCM_SNACK_REJECTED
:
4435 buffer
[offset
] = 0x70;
4436 /* ABORTED COMMAND */
4437 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4439 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
4440 /* FAILED RETRANSMISSION REQUEST */
4441 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
4443 case TCM_WRITE_PROTECTED
:
4445 buffer
[offset
] = 0x70;
4447 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
4448 /* WRITE PROTECTED */
4449 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
4451 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
4453 buffer
[offset
] = 0x70;
4454 /* UNIT ATTENTION */
4455 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
4456 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
4457 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4458 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4460 case TCM_CHECK_CONDITION_NOT_READY
:
4462 buffer
[offset
] = 0x70;
4464 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
4465 transport_get_sense_codes(cmd
, &asc
, &ascq
);
4466 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4467 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4469 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
4472 buffer
[offset
] = 0x70;
4473 /* ILLEGAL REQUEST */
4474 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4475 /* LOGICAL UNIT COMMUNICATION FAILURE */
4476 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
4480 * This code uses linux/include/scsi/scsi.h SAM status codes!
4482 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
4484 * Automatically padded, this value is encoded in the fabric's
4485 * data_length response PDU containing the SCSI defined sense data.
4487 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
4490 return cmd
->se_tfo
->queue_status(cmd
);
4492 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
4494 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
4498 if (atomic_read(&cmd
->t_transport_aborted
) != 0) {
4500 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
4503 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4504 " status for CDB: 0x%02x ITT: 0x%08x\n",
4506 cmd
->se_tfo
->get_task_tag(cmd
));
4508 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
4509 cmd
->se_tfo
->queue_status(cmd
);
4514 EXPORT_SYMBOL(transport_check_aborted_status
);
4516 void transport_send_task_abort(struct se_cmd
*cmd
)
4518 unsigned long flags
;
4520 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4521 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4522 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4525 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4528 * If there are still expected incoming fabric WRITEs, we wait
4529 * until until they have completed before sending a TASK_ABORTED
4530 * response. This response with TASK_ABORTED status will be
4531 * queued back to fabric module by transport_check_aborted_status().
4533 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4534 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
4535 atomic_inc(&cmd
->t_transport_aborted
);
4536 smp_mb__after_atomic_inc();
4539 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4541 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4542 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
4543 cmd
->se_tfo
->get_task_tag(cmd
));
4545 cmd
->se_tfo
->queue_status(cmd
);
4548 /* transport_generic_do_tmr():
4552 int transport_generic_do_tmr(struct se_cmd
*cmd
)
4554 struct se_device
*dev
= cmd
->se_dev
;
4555 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
4558 switch (tmr
->function
) {
4559 case TMR_ABORT_TASK
:
4560 tmr
->response
= TMR_FUNCTION_REJECTED
;
4562 case TMR_ABORT_TASK_SET
:
4564 case TMR_CLEAR_TASK_SET
:
4565 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
4568 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
4569 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
4570 TMR_FUNCTION_REJECTED
;
4572 case TMR_TARGET_WARM_RESET
:
4573 tmr
->response
= TMR_FUNCTION_REJECTED
;
4575 case TMR_TARGET_COLD_RESET
:
4576 tmr
->response
= TMR_FUNCTION_REJECTED
;
4579 pr_err("Uknown TMR function: 0x%02x.\n",
4581 tmr
->response
= TMR_FUNCTION_REJECTED
;
4585 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
4586 cmd
->se_tfo
->queue_tm_rsp(cmd
);
4588 transport_cmd_check_stop_to_fabric(cmd
);
4592 /* transport_processing_thread():
4596 static int transport_processing_thread(void *param
)
4600 struct se_device
*dev
= (struct se_device
*) param
;
4602 while (!kthread_should_stop()) {
4603 ret
= wait_event_interruptible(dev
->dev_queue_obj
.thread_wq
,
4604 atomic_read(&dev
->dev_queue_obj
.queue_cnt
) ||
4605 kthread_should_stop());
4610 __transport_execute_tasks(dev
);
4612 cmd
= transport_get_cmd_from_queue(&dev
->dev_queue_obj
);
4616 switch (cmd
->t_state
) {
4617 case TRANSPORT_NEW_CMD
:
4620 case TRANSPORT_NEW_CMD_MAP
:
4621 if (!cmd
->se_tfo
->new_cmd_map
) {
4622 pr_err("cmd->se_tfo->new_cmd_map is"
4623 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4626 ret
= cmd
->se_tfo
->new_cmd_map(cmd
);
4628 transport_generic_request_failure(cmd
);
4631 ret
= transport_generic_new_cmd(cmd
);
4633 transport_generic_request_failure(cmd
);
4637 case TRANSPORT_PROCESS_WRITE
:
4638 transport_generic_process_write(cmd
);
4640 case TRANSPORT_PROCESS_TMR
:
4641 transport_generic_do_tmr(cmd
);
4643 case TRANSPORT_COMPLETE_QF_WP
:
4644 transport_write_pending_qf(cmd
);
4646 case TRANSPORT_COMPLETE_QF_OK
:
4647 transport_complete_qf(cmd
);
4650 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4651 "i_state: %d on SE LUN: %u\n",
4653 cmd
->se_tfo
->get_task_tag(cmd
),
4654 cmd
->se_tfo
->get_cmd_state(cmd
),
4655 cmd
->se_lun
->unpacked_lun
);
4663 WARN_ON(!list_empty(&dev
->state_task_list
));
4664 WARN_ON(!list_empty(&dev
->dev_queue_obj
.qobj_list
));
4665 dev
->process_thread
= NULL
;