2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
51 #define CREATE_TRACE_POINTS
54 #include <asm/debugreg.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68 #define emul_to_vcpu(ctxt) \
69 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
72 * - enable syscall per default because its emulated by KVM
73 * - enable LME and LMA per default on 64 bit KVM
77 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
79 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
86 static void process_nmi(struct kvm_vcpu
*vcpu
);
88 struct kvm_x86_ops
*kvm_x86_ops
;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
91 static bool ignore_msrs
= 0;
92 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
94 bool kvm_has_tsc_control
;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
96 u32 kvm_max_guest_tsc_khz
;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
99 #define KVM_NR_SHARED_MSRS 16
101 struct kvm_shared_msrs_global
{
103 u32 msrs
[KVM_NR_SHARED_MSRS
];
106 struct kvm_shared_msrs
{
107 struct user_return_notifier urn
;
109 struct kvm_shared_msr_values
{
112 } values
[KVM_NR_SHARED_MSRS
];
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
118 struct kvm_stats_debugfs_item debugfs_entries
[] = {
119 { "pf_fixed", VCPU_STAT(pf_fixed
) },
120 { "pf_guest", VCPU_STAT(pf_guest
) },
121 { "tlb_flush", VCPU_STAT(tlb_flush
) },
122 { "invlpg", VCPU_STAT(invlpg
) },
123 { "exits", VCPU_STAT(exits
) },
124 { "io_exits", VCPU_STAT(io_exits
) },
125 { "mmio_exits", VCPU_STAT(mmio_exits
) },
126 { "signal_exits", VCPU_STAT(signal_exits
) },
127 { "irq_window", VCPU_STAT(irq_window_exits
) },
128 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
129 { "halt_exits", VCPU_STAT(halt_exits
) },
130 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
131 { "hypercalls", VCPU_STAT(hypercalls
) },
132 { "request_irq", VCPU_STAT(request_irq_exits
) },
133 { "irq_exits", VCPU_STAT(irq_exits
) },
134 { "host_state_reload", VCPU_STAT(host_state_reload
) },
135 { "efer_reload", VCPU_STAT(efer_reload
) },
136 { "fpu_reload", VCPU_STAT(fpu_reload
) },
137 { "insn_emulation", VCPU_STAT(insn_emulation
) },
138 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
139 { "irq_injections", VCPU_STAT(irq_injections
) },
140 { "nmi_injections", VCPU_STAT(nmi_injections
) },
141 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
142 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
143 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
144 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
145 { "mmu_flooded", VM_STAT(mmu_flooded
) },
146 { "mmu_recycled", VM_STAT(mmu_recycled
) },
147 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
148 { "mmu_unsync", VM_STAT(mmu_unsync
) },
149 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
150 { "largepages", VM_STAT(lpages
) },
154 u64 __read_mostly host_xcr0
;
156 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
158 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
161 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
162 vcpu
->arch
.apf
.gfns
[i
] = ~0;
165 static void kvm_on_user_return(struct user_return_notifier
*urn
)
168 struct kvm_shared_msrs
*locals
169 = container_of(urn
, struct kvm_shared_msrs
, urn
);
170 struct kvm_shared_msr_values
*values
;
172 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
173 values
= &locals
->values
[slot
];
174 if (values
->host
!= values
->curr
) {
175 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
176 values
->curr
= values
->host
;
179 locals
->registered
= false;
180 user_return_notifier_unregister(urn
);
183 static void shared_msr_update(unsigned slot
, u32 msr
)
185 struct kvm_shared_msrs
*smsr
;
188 smsr
= &__get_cpu_var(shared_msrs
);
189 /* only read, and nobody should modify it at this time,
190 * so don't need lock */
191 if (slot
>= shared_msrs_global
.nr
) {
192 printk(KERN_ERR
"kvm: invalid MSR slot!");
195 rdmsrl_safe(msr
, &value
);
196 smsr
->values
[slot
].host
= value
;
197 smsr
->values
[slot
].curr
= value
;
200 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
202 if (slot
>= shared_msrs_global
.nr
)
203 shared_msrs_global
.nr
= slot
+ 1;
204 shared_msrs_global
.msrs
[slot
] = msr
;
205 /* we need ensured the shared_msr_global have been updated */
208 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
210 static void kvm_shared_msr_cpu_online(void)
214 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
215 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
218 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
220 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
222 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
224 smsr
->values
[slot
].curr
= value
;
225 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
226 if (!smsr
->registered
) {
227 smsr
->urn
.on_user_return
= kvm_on_user_return
;
228 user_return_notifier_register(&smsr
->urn
);
229 smsr
->registered
= true;
232 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
234 static void drop_user_return_notifiers(void *ignore
)
236 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
238 if (smsr
->registered
)
239 kvm_on_user_return(&smsr
->urn
);
242 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
244 if (irqchip_in_kernel(vcpu
->kvm
))
245 return vcpu
->arch
.apic_base
;
247 return vcpu
->arch
.apic_base
;
249 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
251 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
253 /* TODO: reserve bits check */
254 if (irqchip_in_kernel(vcpu
->kvm
))
255 kvm_lapic_set_base(vcpu
, data
);
257 vcpu
->arch
.apic_base
= data
;
259 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
261 #define EXCPT_BENIGN 0
262 #define EXCPT_CONTRIBUTORY 1
265 static int exception_class(int vector
)
275 return EXCPT_CONTRIBUTORY
;
282 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
283 unsigned nr
, bool has_error
, u32 error_code
,
289 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
291 if (!vcpu
->arch
.exception
.pending
) {
293 vcpu
->arch
.exception
.pending
= true;
294 vcpu
->arch
.exception
.has_error_code
= has_error
;
295 vcpu
->arch
.exception
.nr
= nr
;
296 vcpu
->arch
.exception
.error_code
= error_code
;
297 vcpu
->arch
.exception
.reinject
= reinject
;
301 /* to check exception */
302 prev_nr
= vcpu
->arch
.exception
.nr
;
303 if (prev_nr
== DF_VECTOR
) {
304 /* triple fault -> shutdown */
305 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
308 class1
= exception_class(prev_nr
);
309 class2
= exception_class(nr
);
310 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
311 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
312 /* generate double fault per SDM Table 5-5 */
313 vcpu
->arch
.exception
.pending
= true;
314 vcpu
->arch
.exception
.has_error_code
= true;
315 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
316 vcpu
->arch
.exception
.error_code
= 0;
318 /* replace previous exception with a new one in a hope
319 that instruction re-execution will regenerate lost
324 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
326 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
328 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
330 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
332 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
334 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
336 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
339 kvm_inject_gp(vcpu
, 0);
341 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
343 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
345 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
347 ++vcpu
->stat
.pf_guest
;
348 vcpu
->arch
.cr2
= fault
->address
;
349 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
351 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
353 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
355 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
356 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
358 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
361 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
363 atomic_inc(&vcpu
->arch
.nmi_queued
);
364 kvm_make_request(KVM_REQ_NMI
, vcpu
);
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
368 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
370 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
374 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
376 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
381 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
382 * a #GP and return false.
384 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
386 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
388 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
391 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
394 * This function will be used to read from the physical memory of the currently
395 * running guest. The difference to kvm_read_guest_page is that this function
396 * can read from guest physical or from the guest's guest physical memory.
398 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
399 gfn_t ngfn
, void *data
, int offset
, int len
,
405 ngpa
= gfn_to_gpa(ngfn
);
406 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
407 if (real_gfn
== UNMAPPED_GVA
)
410 real_gfn
= gpa_to_gfn(real_gfn
);
412 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
416 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
417 void *data
, int offset
, int len
, u32 access
)
419 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
420 data
, offset
, len
, access
);
424 * Load the pae pdptrs. Return true is they are all valid.
426 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
428 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
429 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
432 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
434 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
435 offset
* sizeof(u64
), sizeof(pdpte
),
436 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
441 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
442 if (is_present_gpte(pdpte
[i
]) &&
443 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
450 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
451 __set_bit(VCPU_EXREG_PDPTR
,
452 (unsigned long *)&vcpu
->arch
.regs_avail
);
453 __set_bit(VCPU_EXREG_PDPTR
,
454 (unsigned long *)&vcpu
->arch
.regs_dirty
);
459 EXPORT_SYMBOL_GPL(load_pdptrs
);
461 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
463 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
469 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
472 if (!test_bit(VCPU_EXREG_PDPTR
,
473 (unsigned long *)&vcpu
->arch
.regs_avail
))
476 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
477 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
478 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
479 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
482 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
488 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
490 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
491 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
492 X86_CR0_CD
| X86_CR0_NW
;
497 if (cr0
& 0xffffffff00000000UL
)
501 cr0
&= ~CR0_RESERVED_BITS
;
503 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
506 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
509 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
511 if ((vcpu
->arch
.efer
& EFER_LME
)) {
516 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
521 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
526 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
528 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
529 kvm_clear_async_pf_completion_queue(vcpu
);
530 kvm_async_pf_hash_reset(vcpu
);
533 if ((cr0
^ old_cr0
) & update_bits
)
534 kvm_mmu_reset_context(vcpu
);
537 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
539 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
541 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
543 EXPORT_SYMBOL_GPL(kvm_lmsw
);
545 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
549 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
550 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
553 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
555 if (!(xcr0
& XSTATE_FP
))
557 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
559 if (xcr0
& ~host_xcr0
)
561 vcpu
->arch
.xcr0
= xcr0
;
562 vcpu
->guest_xcr0_loaded
= 0;
566 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
568 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
569 kvm_inject_gp(vcpu
, 0);
574 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
576 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
578 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
579 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
580 X86_CR4_PAE
| X86_CR4_SMEP
;
581 if (cr4
& CR4_RESERVED_BITS
)
584 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
587 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
590 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_RDWRGSFS
))
593 if (is_long_mode(vcpu
)) {
594 if (!(cr4
& X86_CR4_PAE
))
596 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
597 && ((cr4
^ old_cr4
) & pdptr_bits
)
598 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
602 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
605 if ((cr4
^ old_cr4
) & pdptr_bits
)
606 kvm_mmu_reset_context(vcpu
);
608 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
609 kvm_update_cpuid(vcpu
);
613 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
615 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
617 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
618 kvm_mmu_sync_roots(vcpu
);
619 kvm_mmu_flush_tlb(vcpu
);
623 if (is_long_mode(vcpu
)) {
624 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
628 if (cr3
& CR3_PAE_RESERVED_BITS
)
630 if (is_paging(vcpu
) &&
631 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
635 * We don't check reserved bits in nonpae mode, because
636 * this isn't enforced, and VMware depends on this.
641 * Does the new cr3 value map to physical memory? (Note, we
642 * catch an invalid cr3 even in real-mode, because it would
643 * cause trouble later on when we turn on paging anyway.)
645 * A real CPU would silently accept an invalid cr3 and would
646 * attempt to use it - with largely undefined (and often hard
647 * to debug) behavior on the guest side.
649 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
651 vcpu
->arch
.cr3
= cr3
;
652 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
653 vcpu
->arch
.mmu
.new_cr3(vcpu
);
656 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
658 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
660 if (cr8
& CR8_RESERVED_BITS
)
662 if (irqchip_in_kernel(vcpu
->kvm
))
663 kvm_lapic_set_tpr(vcpu
, cr8
);
665 vcpu
->arch
.cr8
= cr8
;
668 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
670 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
672 if (irqchip_in_kernel(vcpu
->kvm
))
673 return kvm_lapic_get_cr8(vcpu
);
675 return vcpu
->arch
.cr8
;
677 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
679 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
683 vcpu
->arch
.db
[dr
] = val
;
684 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
685 vcpu
->arch
.eff_db
[dr
] = val
;
688 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
692 if (val
& 0xffffffff00000000ULL
)
694 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
697 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
701 if (val
& 0xffffffff00000000ULL
)
703 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
704 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
705 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
706 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
714 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
718 res
= __kvm_set_dr(vcpu
, dr
, val
);
720 kvm_queue_exception(vcpu
, UD_VECTOR
);
722 kvm_inject_gp(vcpu
, 0);
726 EXPORT_SYMBOL_GPL(kvm_set_dr
);
728 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
732 *val
= vcpu
->arch
.db
[dr
];
735 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
739 *val
= vcpu
->arch
.dr6
;
742 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
746 *val
= vcpu
->arch
.dr7
;
753 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
755 if (_kvm_get_dr(vcpu
, dr
, val
)) {
756 kvm_queue_exception(vcpu
, UD_VECTOR
);
761 EXPORT_SYMBOL_GPL(kvm_get_dr
);
763 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
765 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
769 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
772 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
773 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
776 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
779 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
780 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
782 * This list is modified at module load time to reflect the
783 * capabilities of the host cpu. This capabilities test skips MSRs that are
784 * kvm-specific. Those are put in the beginning of the list.
787 #define KVM_SAVE_MSRS_BEGIN 9
788 static u32 msrs_to_save
[] = {
789 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
790 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
791 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
792 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
793 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
796 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
798 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
801 static unsigned num_msrs_to_save
;
803 static u32 emulated_msrs
[] = {
804 MSR_IA32_TSCDEADLINE
,
805 MSR_IA32_MISC_ENABLE
,
810 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
812 u64 old_efer
= vcpu
->arch
.efer
;
814 if (efer
& efer_reserved_bits
)
818 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
821 if (efer
& EFER_FFXSR
) {
822 struct kvm_cpuid_entry2
*feat
;
824 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
825 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
829 if (efer
& EFER_SVME
) {
830 struct kvm_cpuid_entry2
*feat
;
832 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
833 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
838 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
840 kvm_x86_ops
->set_efer(vcpu
, efer
);
842 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
844 /* Update reserved bits */
845 if ((efer
^ old_efer
) & EFER_NX
)
846 kvm_mmu_reset_context(vcpu
);
851 void kvm_enable_efer_bits(u64 mask
)
853 efer_reserved_bits
&= ~mask
;
855 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
859 * Writes msr value into into the appropriate "register".
860 * Returns 0 on success, non-0 otherwise.
861 * Assumes vcpu_load() was already called.
863 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
865 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
869 * Adapt set_msr() to msr_io()'s calling convention
871 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
873 return kvm_set_msr(vcpu
, index
, *data
);
876 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
880 struct pvclock_wall_clock wc
;
881 struct timespec boot
;
886 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
891 ++version
; /* first time write, random junk */
895 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
898 * The guest calculates current wall clock time by adding
899 * system time (updated by kvm_guest_time_update below) to the
900 * wall clock specified here. guest system time equals host
901 * system time for us, thus we must fill in host boot time here.
905 wc
.sec
= boot
.tv_sec
;
906 wc
.nsec
= boot
.tv_nsec
;
907 wc
.version
= version
;
909 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
912 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
915 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
917 uint32_t quotient
, remainder
;
919 /* Don't try to replace with do_div(), this one calculates
920 * "(dividend << 32) / divisor" */
922 : "=a" (quotient
), "=d" (remainder
)
923 : "0" (0), "1" (dividend
), "r" (divisor
) );
927 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
928 s8
*pshift
, u32
*pmultiplier
)
935 tps64
= base_khz
* 1000LL;
936 scaled64
= scaled_khz
* 1000LL;
937 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
942 tps32
= (uint32_t)tps64
;
943 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
944 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
952 *pmultiplier
= div_frac(scaled64
, tps32
);
954 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
955 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
958 static inline u64
get_kernel_ns(void)
962 WARN_ON(preemptible());
964 monotonic_to_bootbased(&ts
);
965 return timespec_to_ns(&ts
);
968 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
969 unsigned long max_tsc_khz
;
971 static inline int kvm_tsc_changes_freq(void)
974 int ret
= !boot_cpu_has(X86_FEATURE_CONSTANT_TSC
) &&
975 cpufreq_quick_get(cpu
) != 0;
980 u64
vcpu_tsc_khz(struct kvm_vcpu
*vcpu
)
982 if (vcpu
->arch
.virtual_tsc_khz
)
983 return vcpu
->arch
.virtual_tsc_khz
;
985 return __this_cpu_read(cpu_tsc_khz
);
988 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
992 WARN_ON(preemptible());
993 if (kvm_tsc_changes_freq())
994 printk_once(KERN_WARNING
995 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
996 ret
= nsec
* vcpu_tsc_khz(vcpu
);
997 do_div(ret
, USEC_PER_SEC
);
1001 static void kvm_init_tsc_catchup(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1003 /* Compute a scale to convert nanoseconds in TSC cycles */
1004 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1005 &vcpu
->arch
.tsc_catchup_shift
,
1006 &vcpu
->arch
.tsc_catchup_mult
);
1009 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1011 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.last_tsc_nsec
,
1012 vcpu
->arch
.tsc_catchup_mult
,
1013 vcpu
->arch
.tsc_catchup_shift
);
1014 tsc
+= vcpu
->arch
.last_tsc_write
;
1018 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, u64 data
)
1020 struct kvm
*kvm
= vcpu
->kvm
;
1021 u64 offset
, ns
, elapsed
;
1022 unsigned long flags
;
1025 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1026 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1027 ns
= get_kernel_ns();
1028 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1029 sdiff
= data
- kvm
->arch
.last_tsc_write
;
1034 * Special case: close write to TSC within 5 seconds of
1035 * another CPU is interpreted as an attempt to synchronize
1036 * The 5 seconds is to accommodate host load / swapping as
1037 * well as any reset of TSC during the boot process.
1039 * In that case, for a reliable TSC, we can match TSC offsets,
1040 * or make a best guest using elapsed value.
1042 if (sdiff
< nsec_to_cycles(vcpu
, 5ULL * NSEC_PER_SEC
) &&
1043 elapsed
< 5ULL * NSEC_PER_SEC
) {
1044 if (!check_tsc_unstable()) {
1045 offset
= kvm
->arch
.last_tsc_offset
;
1046 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1048 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1050 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1052 ns
= kvm
->arch
.last_tsc_nsec
;
1054 kvm
->arch
.last_tsc_nsec
= ns
;
1055 kvm
->arch
.last_tsc_write
= data
;
1056 kvm
->arch
.last_tsc_offset
= offset
;
1057 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1058 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1060 /* Reset of TSC must disable overshoot protection below */
1061 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1062 vcpu
->arch
.last_tsc_write
= data
;
1063 vcpu
->arch
.last_tsc_nsec
= ns
;
1065 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1067 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1069 unsigned long flags
;
1070 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1072 unsigned long this_tsc_khz
;
1073 s64 kernel_ns
, max_kernel_ns
;
1076 /* Keep irq disabled to prevent changes to the clock */
1077 local_irq_save(flags
);
1078 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
);
1079 kernel_ns
= get_kernel_ns();
1080 this_tsc_khz
= vcpu_tsc_khz(v
);
1081 if (unlikely(this_tsc_khz
== 0)) {
1082 local_irq_restore(flags
);
1083 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1088 * We may have to catch up the TSC to match elapsed wall clock
1089 * time for two reasons, even if kvmclock is used.
1090 * 1) CPU could have been running below the maximum TSC rate
1091 * 2) Broken TSC compensation resets the base at each VCPU
1092 * entry to avoid unknown leaps of TSC even when running
1093 * again on the same CPU. This may cause apparent elapsed
1094 * time to disappear, and the guest to stand still or run
1097 if (vcpu
->tsc_catchup
) {
1098 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1099 if (tsc
> tsc_timestamp
) {
1100 kvm_x86_ops
->adjust_tsc_offset(v
, tsc
- tsc_timestamp
);
1101 tsc_timestamp
= tsc
;
1105 local_irq_restore(flags
);
1107 if (!vcpu
->time_page
)
1111 * Time as measured by the TSC may go backwards when resetting the base
1112 * tsc_timestamp. The reason for this is that the TSC resolution is
1113 * higher than the resolution of the other clock scales. Thus, many
1114 * possible measurments of the TSC correspond to one measurement of any
1115 * other clock, and so a spread of values is possible. This is not a
1116 * problem for the computation of the nanosecond clock; with TSC rates
1117 * around 1GHZ, there can only be a few cycles which correspond to one
1118 * nanosecond value, and any path through this code will inevitably
1119 * take longer than that. However, with the kernel_ns value itself,
1120 * the precision may be much lower, down to HZ granularity. If the
1121 * first sampling of TSC against kernel_ns ends in the low part of the
1122 * range, and the second in the high end of the range, we can get:
1124 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1126 * As the sampling errors potentially range in the thousands of cycles,
1127 * it is possible such a time value has already been observed by the
1128 * guest. To protect against this, we must compute the system time as
1129 * observed by the guest and ensure the new system time is greater.
1132 if (vcpu
->hv_clock
.tsc_timestamp
&& vcpu
->last_guest_tsc
) {
1133 max_kernel_ns
= vcpu
->last_guest_tsc
-
1134 vcpu
->hv_clock
.tsc_timestamp
;
1135 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1136 vcpu
->hv_clock
.tsc_to_system_mul
,
1137 vcpu
->hv_clock
.tsc_shift
);
1138 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1141 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1142 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1143 &vcpu
->hv_clock
.tsc_shift
,
1144 &vcpu
->hv_clock
.tsc_to_system_mul
);
1145 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1148 if (max_kernel_ns
> kernel_ns
)
1149 kernel_ns
= max_kernel_ns
;
1151 /* With all the info we got, fill in the values */
1152 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1153 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1154 vcpu
->last_kernel_ns
= kernel_ns
;
1155 vcpu
->last_guest_tsc
= tsc_timestamp
;
1156 vcpu
->hv_clock
.flags
= 0;
1159 * The interface expects us to write an even number signaling that the
1160 * update is finished. Since the guest won't see the intermediate
1161 * state, we just increase by 2 at the end.
1163 vcpu
->hv_clock
.version
+= 2;
1165 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
1167 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1168 sizeof(vcpu
->hv_clock
));
1170 kunmap_atomic(shared_kaddr
, KM_USER0
);
1172 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1176 static bool msr_mtrr_valid(unsigned msr
)
1179 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1180 case MSR_MTRRfix64K_00000
:
1181 case MSR_MTRRfix16K_80000
:
1182 case MSR_MTRRfix16K_A0000
:
1183 case MSR_MTRRfix4K_C0000
:
1184 case MSR_MTRRfix4K_C8000
:
1185 case MSR_MTRRfix4K_D0000
:
1186 case MSR_MTRRfix4K_D8000
:
1187 case MSR_MTRRfix4K_E0000
:
1188 case MSR_MTRRfix4K_E8000
:
1189 case MSR_MTRRfix4K_F0000
:
1190 case MSR_MTRRfix4K_F8000
:
1191 case MSR_MTRRdefType
:
1192 case MSR_IA32_CR_PAT
:
1200 static bool valid_pat_type(unsigned t
)
1202 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1205 static bool valid_mtrr_type(unsigned t
)
1207 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1210 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1214 if (!msr_mtrr_valid(msr
))
1217 if (msr
== MSR_IA32_CR_PAT
) {
1218 for (i
= 0; i
< 8; i
++)
1219 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1222 } else if (msr
== MSR_MTRRdefType
) {
1225 return valid_mtrr_type(data
& 0xff);
1226 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1227 for (i
= 0; i
< 8 ; i
++)
1228 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1233 /* variable MTRRs */
1234 return valid_mtrr_type(data
& 0xff);
1237 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1239 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1241 if (!mtrr_valid(vcpu
, msr
, data
))
1244 if (msr
== MSR_MTRRdefType
) {
1245 vcpu
->arch
.mtrr_state
.def_type
= data
;
1246 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1247 } else if (msr
== MSR_MTRRfix64K_00000
)
1249 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1250 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1251 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1252 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1253 else if (msr
== MSR_IA32_CR_PAT
)
1254 vcpu
->arch
.pat
= data
;
1255 else { /* Variable MTRRs */
1256 int idx
, is_mtrr_mask
;
1259 idx
= (msr
- 0x200) / 2;
1260 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1263 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1266 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1270 kvm_mmu_reset_context(vcpu
);
1274 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1276 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1277 unsigned bank_num
= mcg_cap
& 0xff;
1280 case MSR_IA32_MCG_STATUS
:
1281 vcpu
->arch
.mcg_status
= data
;
1283 case MSR_IA32_MCG_CTL
:
1284 if (!(mcg_cap
& MCG_CTL_P
))
1286 if (data
!= 0 && data
!= ~(u64
)0)
1288 vcpu
->arch
.mcg_ctl
= data
;
1291 if (msr
>= MSR_IA32_MC0_CTL
&&
1292 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1293 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1294 /* only 0 or all 1s can be written to IA32_MCi_CTL
1295 * some Linux kernels though clear bit 10 in bank 4 to
1296 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1297 * this to avoid an uncatched #GP in the guest
1299 if ((offset
& 0x3) == 0 &&
1300 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1302 vcpu
->arch
.mce_banks
[offset
] = data
;
1310 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1312 struct kvm
*kvm
= vcpu
->kvm
;
1313 int lm
= is_long_mode(vcpu
);
1314 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1315 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1316 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1317 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1318 u32 page_num
= data
& ~PAGE_MASK
;
1319 u64 page_addr
= data
& PAGE_MASK
;
1324 if (page_num
>= blob_size
)
1327 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1332 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1341 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1343 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1346 static bool kvm_hv_msr_partition_wide(u32 msr
)
1350 case HV_X64_MSR_GUEST_OS_ID
:
1351 case HV_X64_MSR_HYPERCALL
:
1359 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1361 struct kvm
*kvm
= vcpu
->kvm
;
1364 case HV_X64_MSR_GUEST_OS_ID
:
1365 kvm
->arch
.hv_guest_os_id
= data
;
1366 /* setting guest os id to zero disables hypercall page */
1367 if (!kvm
->arch
.hv_guest_os_id
)
1368 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1370 case HV_X64_MSR_HYPERCALL
: {
1375 /* if guest os id is not set hypercall should remain disabled */
1376 if (!kvm
->arch
.hv_guest_os_id
)
1378 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1379 kvm
->arch
.hv_hypercall
= data
;
1382 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1383 addr
= gfn_to_hva(kvm
, gfn
);
1384 if (kvm_is_error_hva(addr
))
1386 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1387 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1388 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1390 kvm
->arch
.hv_hypercall
= data
;
1394 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1395 "data 0x%llx\n", msr
, data
);
1401 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1404 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1407 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1408 vcpu
->arch
.hv_vapic
= data
;
1411 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1412 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1413 if (kvm_is_error_hva(addr
))
1415 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1417 vcpu
->arch
.hv_vapic
= data
;
1420 case HV_X64_MSR_EOI
:
1421 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1422 case HV_X64_MSR_ICR
:
1423 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1424 case HV_X64_MSR_TPR
:
1425 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1427 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1428 "data 0x%llx\n", msr
, data
);
1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1437 gpa_t gpa
= data
& ~0x3f;
1439 /* Bits 2:5 are resrved, Should be zero */
1443 vcpu
->arch
.apf
.msr_val
= data
;
1445 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1446 kvm_clear_async_pf_completion_queue(vcpu
);
1447 kvm_async_pf_hash_reset(vcpu
);
1451 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1454 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1455 kvm_async_pf_wakeup_all(vcpu
);
1459 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1461 if (vcpu
->arch
.time_page
) {
1462 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1463 vcpu
->arch
.time_page
= NULL
;
1467 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1471 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1474 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1475 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1476 vcpu
->arch
.st
.accum_steal
= delta
;
1479 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1481 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1484 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1485 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1488 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1489 vcpu
->arch
.st
.steal
.version
+= 2;
1490 vcpu
->arch
.st
.accum_steal
= 0;
1492 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1493 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1496 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1502 return set_efer(vcpu
, data
);
1504 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1505 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1507 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1512 case MSR_FAM10H_MMIO_CONF_BASE
:
1514 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1519 case MSR_AMD64_NB_CFG
:
1521 case MSR_IA32_DEBUGCTLMSR
:
1523 /* We support the non-activated case already */
1525 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1526 /* Values other than LBR and BTF are vendor-specific,
1527 thus reserved and should throw a #GP */
1530 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1533 case MSR_IA32_UCODE_REV
:
1534 case MSR_IA32_UCODE_WRITE
:
1535 case MSR_VM_HSAVE_PA
:
1536 case MSR_AMD64_PATCH_LOADER
:
1538 case 0x200 ... 0x2ff:
1539 return set_msr_mtrr(vcpu
, msr
, data
);
1540 case MSR_IA32_APICBASE
:
1541 kvm_set_apic_base(vcpu
, data
);
1543 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1544 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1545 case MSR_IA32_TSCDEADLINE
:
1546 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
1548 case MSR_IA32_MISC_ENABLE
:
1549 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1551 case MSR_KVM_WALL_CLOCK_NEW
:
1552 case MSR_KVM_WALL_CLOCK
:
1553 vcpu
->kvm
->arch
.wall_clock
= data
;
1554 kvm_write_wall_clock(vcpu
->kvm
, data
);
1556 case MSR_KVM_SYSTEM_TIME_NEW
:
1557 case MSR_KVM_SYSTEM_TIME
: {
1558 kvmclock_reset(vcpu
);
1560 vcpu
->arch
.time
= data
;
1561 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1563 /* we verify if the enable bit is set... */
1567 /* ...but clean it before doing the actual write */
1568 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1570 vcpu
->arch
.time_page
=
1571 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1573 if (is_error_page(vcpu
->arch
.time_page
)) {
1574 kvm_release_page_clean(vcpu
->arch
.time_page
);
1575 vcpu
->arch
.time_page
= NULL
;
1579 case MSR_KVM_ASYNC_PF_EN
:
1580 if (kvm_pv_enable_async_pf(vcpu
, data
))
1583 case MSR_KVM_STEAL_TIME
:
1585 if (unlikely(!sched_info_on()))
1588 if (data
& KVM_STEAL_RESERVED_MASK
)
1591 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1592 data
& KVM_STEAL_VALID_BITS
))
1595 vcpu
->arch
.st
.msr_val
= data
;
1597 if (!(data
& KVM_MSR_ENABLED
))
1600 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1603 accumulate_steal_time(vcpu
);
1606 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
1610 case MSR_IA32_MCG_CTL
:
1611 case MSR_IA32_MCG_STATUS
:
1612 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1613 return set_msr_mce(vcpu
, msr
, data
);
1615 /* Performance counters are not protected by a CPUID bit,
1616 * so we should check all of them in the generic path for the sake of
1617 * cross vendor migration.
1618 * Writing a zero into the event select MSRs disables them,
1619 * which we perfectly emulate ;-). Any other value should be at least
1620 * reported, some guests depend on them.
1622 case MSR_K7_EVNTSEL0
:
1623 case MSR_K7_EVNTSEL1
:
1624 case MSR_K7_EVNTSEL2
:
1625 case MSR_K7_EVNTSEL3
:
1627 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1628 "0x%x data 0x%llx\n", msr
, data
);
1630 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1631 * so we ignore writes to make it happy.
1633 case MSR_K7_PERFCTR0
:
1634 case MSR_K7_PERFCTR1
:
1635 case MSR_K7_PERFCTR2
:
1636 case MSR_K7_PERFCTR3
:
1637 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1638 "0x%x data 0x%llx\n", msr
, data
);
1640 case MSR_P6_PERFCTR0
:
1641 case MSR_P6_PERFCTR1
:
1643 case MSR_P6_EVNTSEL0
:
1644 case MSR_P6_EVNTSEL1
:
1645 if (kvm_pmu_msr(vcpu
, msr
))
1646 return kvm_pmu_set_msr(vcpu
, msr
, data
);
1648 if (pr
|| data
!= 0)
1649 pr_unimpl(vcpu
, "disabled perfctr wrmsr: "
1650 "0x%x data 0x%llx\n", msr
, data
);
1652 case MSR_K7_CLK_CTL
:
1654 * Ignore all writes to this no longer documented MSR.
1655 * Writes are only relevant for old K7 processors,
1656 * all pre-dating SVM, but a recommended workaround from
1657 * AMD for these chips. It is possible to speicify the
1658 * affected processor models on the command line, hence
1659 * the need to ignore the workaround.
1662 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1663 if (kvm_hv_msr_partition_wide(msr
)) {
1665 mutex_lock(&vcpu
->kvm
->lock
);
1666 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1667 mutex_unlock(&vcpu
->kvm
->lock
);
1670 return set_msr_hyperv(vcpu
, msr
, data
);
1672 case MSR_IA32_BBL_CR_CTL3
:
1673 /* Drop writes to this legacy MSR -- see rdmsr
1674 * counterpart for further detail.
1676 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
1679 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1680 return xen_hvm_config(vcpu
, data
);
1681 if (kvm_pmu_msr(vcpu
, msr
))
1682 return kvm_pmu_set_msr(vcpu
, msr
, data
);
1684 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1688 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1695 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1699 * Reads an msr value (of 'msr_index') into 'pdata'.
1700 * Returns 0 on success, non-0 otherwise.
1701 * Assumes vcpu_load() was already called.
1703 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1705 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1708 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1710 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1712 if (!msr_mtrr_valid(msr
))
1715 if (msr
== MSR_MTRRdefType
)
1716 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1717 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1718 else if (msr
== MSR_MTRRfix64K_00000
)
1720 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1721 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1722 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1723 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1724 else if (msr
== MSR_IA32_CR_PAT
)
1725 *pdata
= vcpu
->arch
.pat
;
1726 else { /* Variable MTRRs */
1727 int idx
, is_mtrr_mask
;
1730 idx
= (msr
- 0x200) / 2;
1731 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1734 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1737 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1744 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1747 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1748 unsigned bank_num
= mcg_cap
& 0xff;
1751 case MSR_IA32_P5_MC_ADDR
:
1752 case MSR_IA32_P5_MC_TYPE
:
1755 case MSR_IA32_MCG_CAP
:
1756 data
= vcpu
->arch
.mcg_cap
;
1758 case MSR_IA32_MCG_CTL
:
1759 if (!(mcg_cap
& MCG_CTL_P
))
1761 data
= vcpu
->arch
.mcg_ctl
;
1763 case MSR_IA32_MCG_STATUS
:
1764 data
= vcpu
->arch
.mcg_status
;
1767 if (msr
>= MSR_IA32_MC0_CTL
&&
1768 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1769 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1770 data
= vcpu
->arch
.mce_banks
[offset
];
1779 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1782 struct kvm
*kvm
= vcpu
->kvm
;
1785 case HV_X64_MSR_GUEST_OS_ID
:
1786 data
= kvm
->arch
.hv_guest_os_id
;
1788 case HV_X64_MSR_HYPERCALL
:
1789 data
= kvm
->arch
.hv_hypercall
;
1792 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1800 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1805 case HV_X64_MSR_VP_INDEX
: {
1808 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1813 case HV_X64_MSR_EOI
:
1814 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1815 case HV_X64_MSR_ICR
:
1816 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1817 case HV_X64_MSR_TPR
:
1818 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1819 case HV_X64_MSR_APIC_ASSIST_PAGE
:
1820 data
= vcpu
->arch
.hv_vapic
;
1823 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1830 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1835 case MSR_IA32_PLATFORM_ID
:
1836 case MSR_IA32_EBL_CR_POWERON
:
1837 case MSR_IA32_DEBUGCTLMSR
:
1838 case MSR_IA32_LASTBRANCHFROMIP
:
1839 case MSR_IA32_LASTBRANCHTOIP
:
1840 case MSR_IA32_LASTINTFROMIP
:
1841 case MSR_IA32_LASTINTTOIP
:
1844 case MSR_VM_HSAVE_PA
:
1845 case MSR_K7_EVNTSEL0
:
1846 case MSR_K7_PERFCTR0
:
1847 case MSR_K8_INT_PENDING_MSG
:
1848 case MSR_AMD64_NB_CFG
:
1849 case MSR_FAM10H_MMIO_CONF_BASE
:
1852 case MSR_P6_PERFCTR0
:
1853 case MSR_P6_PERFCTR1
:
1854 case MSR_P6_EVNTSEL0
:
1855 case MSR_P6_EVNTSEL1
:
1856 if (kvm_pmu_msr(vcpu
, msr
))
1857 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
1860 case MSR_IA32_UCODE_REV
:
1861 data
= 0x100000000ULL
;
1864 data
= 0x500 | KVM_NR_VAR_MTRR
;
1866 case 0x200 ... 0x2ff:
1867 return get_msr_mtrr(vcpu
, msr
, pdata
);
1868 case 0xcd: /* fsb frequency */
1872 * MSR_EBC_FREQUENCY_ID
1873 * Conservative value valid for even the basic CPU models.
1874 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1875 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1876 * and 266MHz for model 3, or 4. Set Core Clock
1877 * Frequency to System Bus Frequency Ratio to 1 (bits
1878 * 31:24) even though these are only valid for CPU
1879 * models > 2, however guests may end up dividing or
1880 * multiplying by zero otherwise.
1882 case MSR_EBC_FREQUENCY_ID
:
1885 case MSR_IA32_APICBASE
:
1886 data
= kvm_get_apic_base(vcpu
);
1888 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1889 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1891 case MSR_IA32_TSCDEADLINE
:
1892 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
1894 case MSR_IA32_MISC_ENABLE
:
1895 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1897 case MSR_IA32_PERF_STATUS
:
1898 /* TSC increment by tick */
1900 /* CPU multiplier */
1901 data
|= (((uint64_t)4ULL) << 40);
1904 data
= vcpu
->arch
.efer
;
1906 case MSR_KVM_WALL_CLOCK
:
1907 case MSR_KVM_WALL_CLOCK_NEW
:
1908 data
= vcpu
->kvm
->arch
.wall_clock
;
1910 case MSR_KVM_SYSTEM_TIME
:
1911 case MSR_KVM_SYSTEM_TIME_NEW
:
1912 data
= vcpu
->arch
.time
;
1914 case MSR_KVM_ASYNC_PF_EN
:
1915 data
= vcpu
->arch
.apf
.msr_val
;
1917 case MSR_KVM_STEAL_TIME
:
1918 data
= vcpu
->arch
.st
.msr_val
;
1920 case MSR_IA32_P5_MC_ADDR
:
1921 case MSR_IA32_P5_MC_TYPE
:
1922 case MSR_IA32_MCG_CAP
:
1923 case MSR_IA32_MCG_CTL
:
1924 case MSR_IA32_MCG_STATUS
:
1925 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1926 return get_msr_mce(vcpu
, msr
, pdata
);
1927 case MSR_K7_CLK_CTL
:
1929 * Provide expected ramp-up count for K7. All other
1930 * are set to zero, indicating minimum divisors for
1933 * This prevents guest kernels on AMD host with CPU
1934 * type 6, model 8 and higher from exploding due to
1935 * the rdmsr failing.
1939 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1940 if (kvm_hv_msr_partition_wide(msr
)) {
1942 mutex_lock(&vcpu
->kvm
->lock
);
1943 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
1944 mutex_unlock(&vcpu
->kvm
->lock
);
1947 return get_msr_hyperv(vcpu
, msr
, pdata
);
1949 case MSR_IA32_BBL_CR_CTL3
:
1950 /* This legacy MSR exists but isn't fully documented in current
1951 * silicon. It is however accessed by winxp in very narrow
1952 * scenarios where it sets bit #19, itself documented as
1953 * a "reserved" bit. Best effort attempt to source coherent
1954 * read data here should the balance of the register be
1955 * interpreted by the guest:
1957 * L2 cache control register 3: 64GB range, 256KB size,
1958 * enabled, latency 0x1, configured
1963 if (kvm_pmu_msr(vcpu
, msr
))
1964 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
1966 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1969 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1977 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1980 * Read or write a bunch of msrs. All parameters are kernel addresses.
1982 * @return number of msrs set successfully.
1984 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
1985 struct kvm_msr_entry
*entries
,
1986 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
1987 unsigned index
, u64
*data
))
1991 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1992 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
1993 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
1995 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2001 * Read or write a bunch of msrs. Parameters are user addresses.
2003 * @return number of msrs set successfully.
2005 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2006 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2007 unsigned index
, u64
*data
),
2010 struct kvm_msrs msrs
;
2011 struct kvm_msr_entry
*entries
;
2016 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2020 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2023 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2024 entries
= memdup_user(user_msrs
->entries
, size
);
2025 if (IS_ERR(entries
)) {
2026 r
= PTR_ERR(entries
);
2030 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2035 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2046 int kvm_dev_ioctl_check_extension(long ext
)
2051 case KVM_CAP_IRQCHIP
:
2053 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2054 case KVM_CAP_SET_TSS_ADDR
:
2055 case KVM_CAP_EXT_CPUID
:
2056 case KVM_CAP_CLOCKSOURCE
:
2058 case KVM_CAP_NOP_IO_DELAY
:
2059 case KVM_CAP_MP_STATE
:
2060 case KVM_CAP_SYNC_MMU
:
2061 case KVM_CAP_USER_NMI
:
2062 case KVM_CAP_REINJECT_CONTROL
:
2063 case KVM_CAP_IRQ_INJECT_STATUS
:
2064 case KVM_CAP_ASSIGN_DEV_IRQ
:
2066 case KVM_CAP_IOEVENTFD
:
2068 case KVM_CAP_PIT_STATE2
:
2069 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2070 case KVM_CAP_XEN_HVM
:
2071 case KVM_CAP_ADJUST_CLOCK
:
2072 case KVM_CAP_VCPU_EVENTS
:
2073 case KVM_CAP_HYPERV
:
2074 case KVM_CAP_HYPERV_VAPIC
:
2075 case KVM_CAP_HYPERV_SPIN
:
2076 case KVM_CAP_PCI_SEGMENT
:
2077 case KVM_CAP_DEBUGREGS
:
2078 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2080 case KVM_CAP_ASYNC_PF
:
2081 case KVM_CAP_GET_TSC_KHZ
:
2084 case KVM_CAP_COALESCED_MMIO
:
2085 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2088 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2090 case KVM_CAP_NR_VCPUS
:
2091 r
= KVM_SOFT_MAX_VCPUS
;
2093 case KVM_CAP_MAX_VCPUS
:
2096 case KVM_CAP_NR_MEMSLOTS
:
2097 r
= KVM_MEMORY_SLOTS
;
2099 case KVM_CAP_PV_MMU
: /* obsolete */
2103 r
= iommu_present(&pci_bus_type
);
2106 r
= KVM_MAX_MCE_BANKS
;
2111 case KVM_CAP_TSC_CONTROL
:
2112 r
= kvm_has_tsc_control
;
2114 case KVM_CAP_TSC_DEADLINE_TIMER
:
2115 r
= boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER
);
2125 long kvm_arch_dev_ioctl(struct file
*filp
,
2126 unsigned int ioctl
, unsigned long arg
)
2128 void __user
*argp
= (void __user
*)arg
;
2132 case KVM_GET_MSR_INDEX_LIST
: {
2133 struct kvm_msr_list __user
*user_msr_list
= argp
;
2134 struct kvm_msr_list msr_list
;
2138 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2141 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2142 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2145 if (n
< msr_list
.nmsrs
)
2148 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2149 num_msrs_to_save
* sizeof(u32
)))
2151 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2153 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2158 case KVM_GET_SUPPORTED_CPUID
: {
2159 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2160 struct kvm_cpuid2 cpuid
;
2163 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2165 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2166 cpuid_arg
->entries
);
2171 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2176 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2179 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2181 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2193 static void wbinvd_ipi(void *garbage
)
2198 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2200 return vcpu
->kvm
->arch
.iommu_domain
&&
2201 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2204 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2206 /* Address WBINVD may be executed by guest */
2207 if (need_emulate_wbinvd(vcpu
)) {
2208 if (kvm_x86_ops
->has_wbinvd_exit())
2209 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2210 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2211 smp_call_function_single(vcpu
->cpu
,
2212 wbinvd_ipi
, NULL
, 1);
2215 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2216 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2217 /* Make sure TSC doesn't go backwards */
2221 tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
2222 tsc_delta
= !vcpu
->arch
.last_guest_tsc
? 0 :
2223 tsc
- vcpu
->arch
.last_guest_tsc
;
2226 mark_tsc_unstable("KVM discovered backwards TSC");
2227 if (check_tsc_unstable()) {
2228 kvm_x86_ops
->adjust_tsc_offset(vcpu
, -tsc_delta
);
2229 vcpu
->arch
.tsc_catchup
= 1;
2231 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2232 if (vcpu
->cpu
!= cpu
)
2233 kvm_migrate_timers(vcpu
);
2237 accumulate_steal_time(vcpu
);
2238 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2241 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2243 kvm_x86_ops
->vcpu_put(vcpu
);
2244 kvm_put_guest_fpu(vcpu
);
2245 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
2248 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2249 struct kvm_lapic_state
*s
)
2251 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2256 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2257 struct kvm_lapic_state
*s
)
2259 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
2260 kvm_apic_post_state_restore(vcpu
);
2261 update_cr8_intercept(vcpu
);
2266 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2267 struct kvm_interrupt
*irq
)
2269 if (irq
->irq
< 0 || irq
->irq
>= 256)
2271 if (irqchip_in_kernel(vcpu
->kvm
))
2274 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2275 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2280 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2282 kvm_inject_nmi(vcpu
);
2287 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2288 struct kvm_tpr_access_ctl
*tac
)
2292 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2296 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2300 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2303 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2305 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2308 vcpu
->arch
.mcg_cap
= mcg_cap
;
2309 /* Init IA32_MCG_CTL to all 1s */
2310 if (mcg_cap
& MCG_CTL_P
)
2311 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2312 /* Init IA32_MCi_CTL to all 1s */
2313 for (bank
= 0; bank
< bank_num
; bank
++)
2314 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2319 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2320 struct kvm_x86_mce
*mce
)
2322 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2323 unsigned bank_num
= mcg_cap
& 0xff;
2324 u64
*banks
= vcpu
->arch
.mce_banks
;
2326 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2329 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2330 * reporting is disabled
2332 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2333 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2335 banks
+= 4 * mce
->bank
;
2337 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2338 * reporting is disabled for the bank
2340 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2342 if (mce
->status
& MCI_STATUS_UC
) {
2343 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2344 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2345 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2348 if (banks
[1] & MCI_STATUS_VAL
)
2349 mce
->status
|= MCI_STATUS_OVER
;
2350 banks
[2] = mce
->addr
;
2351 banks
[3] = mce
->misc
;
2352 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2353 banks
[1] = mce
->status
;
2354 kvm_queue_exception(vcpu
, MC_VECTOR
);
2355 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2356 || !(banks
[1] & MCI_STATUS_UC
)) {
2357 if (banks
[1] & MCI_STATUS_VAL
)
2358 mce
->status
|= MCI_STATUS_OVER
;
2359 banks
[2] = mce
->addr
;
2360 banks
[3] = mce
->misc
;
2361 banks
[1] = mce
->status
;
2363 banks
[1] |= MCI_STATUS_OVER
;
2367 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2368 struct kvm_vcpu_events
*events
)
2371 events
->exception
.injected
=
2372 vcpu
->arch
.exception
.pending
&&
2373 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2374 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2375 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2376 events
->exception
.pad
= 0;
2377 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2379 events
->interrupt
.injected
=
2380 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2381 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2382 events
->interrupt
.soft
= 0;
2383 events
->interrupt
.shadow
=
2384 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2385 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2387 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2388 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2389 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2390 events
->nmi
.pad
= 0;
2392 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2394 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2395 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2396 | KVM_VCPUEVENT_VALID_SHADOW
);
2397 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2400 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2401 struct kvm_vcpu_events
*events
)
2403 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2404 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2405 | KVM_VCPUEVENT_VALID_SHADOW
))
2409 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2410 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2411 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2412 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2414 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2415 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2416 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2417 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2418 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2419 events
->interrupt
.shadow
);
2421 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2422 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2423 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2424 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2426 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2427 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2429 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2434 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2435 struct kvm_debugregs
*dbgregs
)
2437 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2438 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2439 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2441 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2444 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2445 struct kvm_debugregs
*dbgregs
)
2450 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2451 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2452 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2457 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2458 struct kvm_xsave
*guest_xsave
)
2461 memcpy(guest_xsave
->region
,
2462 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2465 memcpy(guest_xsave
->region
,
2466 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2467 sizeof(struct i387_fxsave_struct
));
2468 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2473 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2474 struct kvm_xsave
*guest_xsave
)
2477 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2480 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2481 guest_xsave
->region
, xstate_size
);
2483 if (xstate_bv
& ~XSTATE_FPSSE
)
2485 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2486 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2491 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2492 struct kvm_xcrs
*guest_xcrs
)
2494 if (!cpu_has_xsave
) {
2495 guest_xcrs
->nr_xcrs
= 0;
2499 guest_xcrs
->nr_xcrs
= 1;
2500 guest_xcrs
->flags
= 0;
2501 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2502 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2505 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2506 struct kvm_xcrs
*guest_xcrs
)
2513 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2516 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2517 /* Only support XCR0 currently */
2518 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
2519 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
2520 guest_xcrs
->xcrs
[0].value
);
2528 long kvm_arch_vcpu_ioctl(struct file
*filp
,
2529 unsigned int ioctl
, unsigned long arg
)
2531 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2532 void __user
*argp
= (void __user
*)arg
;
2535 struct kvm_lapic_state
*lapic
;
2536 struct kvm_xsave
*xsave
;
2537 struct kvm_xcrs
*xcrs
;
2543 case KVM_GET_LAPIC
: {
2545 if (!vcpu
->arch
.apic
)
2547 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
2552 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
2556 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
2561 case KVM_SET_LAPIC
: {
2563 if (!vcpu
->arch
.apic
)
2565 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
2566 if (IS_ERR(u
.lapic
)) {
2567 r
= PTR_ERR(u
.lapic
);
2571 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
2577 case KVM_INTERRUPT
: {
2578 struct kvm_interrupt irq
;
2581 if (copy_from_user(&irq
, argp
, sizeof irq
))
2583 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2590 r
= kvm_vcpu_ioctl_nmi(vcpu
);
2596 case KVM_SET_CPUID
: {
2597 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2598 struct kvm_cpuid cpuid
;
2601 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2603 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2608 case KVM_SET_CPUID2
: {
2609 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2610 struct kvm_cpuid2 cpuid
;
2613 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2615 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
2616 cpuid_arg
->entries
);
2621 case KVM_GET_CPUID2
: {
2622 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2623 struct kvm_cpuid2 cpuid
;
2626 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2628 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
2629 cpuid_arg
->entries
);
2633 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2639 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2642 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2644 case KVM_TPR_ACCESS_REPORTING
: {
2645 struct kvm_tpr_access_ctl tac
;
2648 if (copy_from_user(&tac
, argp
, sizeof tac
))
2650 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
2654 if (copy_to_user(argp
, &tac
, sizeof tac
))
2659 case KVM_SET_VAPIC_ADDR
: {
2660 struct kvm_vapic_addr va
;
2663 if (!irqchip_in_kernel(vcpu
->kvm
))
2666 if (copy_from_user(&va
, argp
, sizeof va
))
2669 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
2672 case KVM_X86_SETUP_MCE
: {
2676 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
2678 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
2681 case KVM_X86_SET_MCE
: {
2682 struct kvm_x86_mce mce
;
2685 if (copy_from_user(&mce
, argp
, sizeof mce
))
2687 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
2690 case KVM_GET_VCPU_EVENTS
: {
2691 struct kvm_vcpu_events events
;
2693 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
2696 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
2701 case KVM_SET_VCPU_EVENTS
: {
2702 struct kvm_vcpu_events events
;
2705 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
2708 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
2711 case KVM_GET_DEBUGREGS
: {
2712 struct kvm_debugregs dbgregs
;
2714 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
2717 if (copy_to_user(argp
, &dbgregs
,
2718 sizeof(struct kvm_debugregs
)))
2723 case KVM_SET_DEBUGREGS
: {
2724 struct kvm_debugregs dbgregs
;
2727 if (copy_from_user(&dbgregs
, argp
,
2728 sizeof(struct kvm_debugregs
)))
2731 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
2734 case KVM_GET_XSAVE
: {
2735 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
2740 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
2743 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
2748 case KVM_SET_XSAVE
: {
2749 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
2750 if (IS_ERR(u
.xsave
)) {
2751 r
= PTR_ERR(u
.xsave
);
2755 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
2758 case KVM_GET_XCRS
: {
2759 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
2764 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
2767 if (copy_to_user(argp
, u
.xcrs
,
2768 sizeof(struct kvm_xcrs
)))
2773 case KVM_SET_XCRS
: {
2774 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
2775 if (IS_ERR(u
.xcrs
)) {
2776 r
= PTR_ERR(u
.xcrs
);
2780 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
2783 case KVM_SET_TSC_KHZ
: {
2787 if (!kvm_has_tsc_control
)
2790 user_tsc_khz
= (u32
)arg
;
2792 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
2795 kvm_x86_ops
->set_tsc_khz(vcpu
, user_tsc_khz
);
2800 case KVM_GET_TSC_KHZ
: {
2802 if (check_tsc_unstable())
2805 r
= vcpu_tsc_khz(vcpu
);
2817 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
2821 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
2823 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
2827 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
2830 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
2834 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
2835 u32 kvm_nr_mmu_pages
)
2837 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
2840 mutex_lock(&kvm
->slots_lock
);
2841 spin_lock(&kvm
->mmu_lock
);
2843 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
2844 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
2846 spin_unlock(&kvm
->mmu_lock
);
2847 mutex_unlock(&kvm
->slots_lock
);
2851 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
2853 return kvm
->arch
.n_max_mmu_pages
;
2856 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2861 switch (chip
->chip_id
) {
2862 case KVM_IRQCHIP_PIC_MASTER
:
2863 memcpy(&chip
->chip
.pic
,
2864 &pic_irqchip(kvm
)->pics
[0],
2865 sizeof(struct kvm_pic_state
));
2867 case KVM_IRQCHIP_PIC_SLAVE
:
2868 memcpy(&chip
->chip
.pic
,
2869 &pic_irqchip(kvm
)->pics
[1],
2870 sizeof(struct kvm_pic_state
));
2872 case KVM_IRQCHIP_IOAPIC
:
2873 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
2882 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
2887 switch (chip
->chip_id
) {
2888 case KVM_IRQCHIP_PIC_MASTER
:
2889 spin_lock(&pic_irqchip(kvm
)->lock
);
2890 memcpy(&pic_irqchip(kvm
)->pics
[0],
2892 sizeof(struct kvm_pic_state
));
2893 spin_unlock(&pic_irqchip(kvm
)->lock
);
2895 case KVM_IRQCHIP_PIC_SLAVE
:
2896 spin_lock(&pic_irqchip(kvm
)->lock
);
2897 memcpy(&pic_irqchip(kvm
)->pics
[1],
2899 sizeof(struct kvm_pic_state
));
2900 spin_unlock(&pic_irqchip(kvm
)->lock
);
2902 case KVM_IRQCHIP_IOAPIC
:
2903 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
2909 kvm_pic_update_irq(pic_irqchip(kvm
));
2913 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2917 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2918 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
2919 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2923 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
2927 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2928 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
2929 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
2930 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2934 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2938 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2939 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
2940 sizeof(ps
->channels
));
2941 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
2942 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2943 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
2947 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
2949 int r
= 0, start
= 0;
2950 u32 prev_legacy
, cur_legacy
;
2951 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2952 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2953 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
2954 if (!prev_legacy
&& cur_legacy
)
2956 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
2957 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
2958 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
2959 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
2960 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2964 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
2965 struct kvm_reinject_control
*control
)
2967 if (!kvm
->arch
.vpit
)
2969 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
2970 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
2971 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
2976 * write_protect_slot - write protect a slot for dirty logging
2977 * @kvm: the kvm instance
2978 * @memslot: the slot we protect
2979 * @dirty_bitmap: the bitmap indicating which pages are dirty
2980 * @nr_dirty_pages: the number of dirty pages
2982 * We have two ways to find all sptes to protect:
2983 * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
2984 * checks ones that have a spte mapping a page in the slot.
2985 * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
2987 * Generally speaking, if there are not so many dirty pages compared to the
2988 * number of shadow pages, we should use the latter.
2990 * Note that letting others write into a page marked dirty in the old bitmap
2991 * by using the remaining tlb entry is not a problem. That page will become
2992 * write protected again when we flush the tlb and then be reported dirty to
2993 * the user space by copying the old bitmap.
2995 static void write_protect_slot(struct kvm
*kvm
,
2996 struct kvm_memory_slot
*memslot
,
2997 unsigned long *dirty_bitmap
,
2998 unsigned long nr_dirty_pages
)
3000 spin_lock(&kvm
->mmu_lock
);
3002 /* Not many dirty pages compared to # of shadow pages. */
3003 if (nr_dirty_pages
< kvm
->arch
.n_used_mmu_pages
) {
3004 unsigned long gfn_offset
;
3006 for_each_set_bit(gfn_offset
, dirty_bitmap
, memslot
->npages
) {
3007 unsigned long gfn
= memslot
->base_gfn
+ gfn_offset
;
3009 kvm_mmu_rmap_write_protect(kvm
, gfn
, memslot
);
3011 kvm_flush_remote_tlbs(kvm
);
3013 kvm_mmu_slot_remove_write_access(kvm
, memslot
->id
);
3015 spin_unlock(&kvm
->mmu_lock
);
3019 * Get (and clear) the dirty memory log for a memory slot.
3021 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
3022 struct kvm_dirty_log
*log
)
3025 struct kvm_memory_slot
*memslot
;
3026 unsigned long n
, nr_dirty_pages
;
3028 mutex_lock(&kvm
->slots_lock
);
3031 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3034 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
3036 if (!memslot
->dirty_bitmap
)
3039 n
= kvm_dirty_bitmap_bytes(memslot
);
3040 nr_dirty_pages
= memslot
->nr_dirty_pages
;
3042 /* If nothing is dirty, don't bother messing with page tables. */
3043 if (nr_dirty_pages
) {
3044 struct kvm_memslots
*slots
, *old_slots
;
3045 unsigned long *dirty_bitmap
, *dirty_bitmap_head
;
3047 dirty_bitmap
= memslot
->dirty_bitmap
;
3048 dirty_bitmap_head
= memslot
->dirty_bitmap_head
;
3049 if (dirty_bitmap
== dirty_bitmap_head
)
3050 dirty_bitmap_head
+= n
/ sizeof(long);
3051 memset(dirty_bitmap_head
, 0, n
);
3054 slots
= kmemdup(kvm
->memslots
, sizeof(*kvm
->memslots
), GFP_KERNEL
);
3058 memslot
= id_to_memslot(slots
, log
->slot
);
3059 memslot
->nr_dirty_pages
= 0;
3060 memslot
->dirty_bitmap
= dirty_bitmap_head
;
3061 update_memslots(slots
, NULL
);
3063 old_slots
= kvm
->memslots
;
3064 rcu_assign_pointer(kvm
->memslots
, slots
);
3065 synchronize_srcu_expedited(&kvm
->srcu
);
3068 write_protect_slot(kvm
, memslot
, dirty_bitmap
, nr_dirty_pages
);
3071 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap
, n
))
3075 if (clear_user(log
->dirty_bitmap
, n
))
3081 mutex_unlock(&kvm
->slots_lock
);
3085 long kvm_arch_vm_ioctl(struct file
*filp
,
3086 unsigned int ioctl
, unsigned long arg
)
3088 struct kvm
*kvm
= filp
->private_data
;
3089 void __user
*argp
= (void __user
*)arg
;
3092 * This union makes it completely explicit to gcc-3.x
3093 * that these two variables' stack usage should be
3094 * combined, not added together.
3097 struct kvm_pit_state ps
;
3098 struct kvm_pit_state2 ps2
;
3099 struct kvm_pit_config pit_config
;
3103 case KVM_SET_TSS_ADDR
:
3104 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3108 case KVM_SET_IDENTITY_MAP_ADDR
: {
3112 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3114 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3119 case KVM_SET_NR_MMU_PAGES
:
3120 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3124 case KVM_GET_NR_MMU_PAGES
:
3125 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3127 case KVM_CREATE_IRQCHIP
: {
3128 struct kvm_pic
*vpic
;
3130 mutex_lock(&kvm
->lock
);
3133 goto create_irqchip_unlock
;
3135 if (atomic_read(&kvm
->online_vcpus
))
3136 goto create_irqchip_unlock
;
3138 vpic
= kvm_create_pic(kvm
);
3140 r
= kvm_ioapic_init(kvm
);
3142 mutex_lock(&kvm
->slots_lock
);
3143 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3145 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3147 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3149 mutex_unlock(&kvm
->slots_lock
);
3151 goto create_irqchip_unlock
;
3154 goto create_irqchip_unlock
;
3156 kvm
->arch
.vpic
= vpic
;
3158 r
= kvm_setup_default_irq_routing(kvm
);
3160 mutex_lock(&kvm
->slots_lock
);
3161 mutex_lock(&kvm
->irq_lock
);
3162 kvm_ioapic_destroy(kvm
);
3163 kvm_destroy_pic(kvm
);
3164 mutex_unlock(&kvm
->irq_lock
);
3165 mutex_unlock(&kvm
->slots_lock
);
3167 create_irqchip_unlock
:
3168 mutex_unlock(&kvm
->lock
);
3171 case KVM_CREATE_PIT
:
3172 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3174 case KVM_CREATE_PIT2
:
3176 if (copy_from_user(&u
.pit_config
, argp
,
3177 sizeof(struct kvm_pit_config
)))
3180 mutex_lock(&kvm
->slots_lock
);
3183 goto create_pit_unlock
;
3185 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3189 mutex_unlock(&kvm
->slots_lock
);
3191 case KVM_IRQ_LINE_STATUS
:
3192 case KVM_IRQ_LINE
: {
3193 struct kvm_irq_level irq_event
;
3196 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3199 if (irqchip_in_kernel(kvm
)) {
3201 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3202 irq_event
.irq
, irq_event
.level
);
3203 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3205 irq_event
.status
= status
;
3206 if (copy_to_user(argp
, &irq_event
,
3214 case KVM_GET_IRQCHIP
: {
3215 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3216 struct kvm_irqchip
*chip
;
3218 chip
= memdup_user(argp
, sizeof(*chip
));
3225 if (!irqchip_in_kernel(kvm
))
3226 goto get_irqchip_out
;
3227 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3229 goto get_irqchip_out
;
3231 if (copy_to_user(argp
, chip
, sizeof *chip
))
3232 goto get_irqchip_out
;
3240 case KVM_SET_IRQCHIP
: {
3241 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3242 struct kvm_irqchip
*chip
;
3244 chip
= memdup_user(argp
, sizeof(*chip
));
3251 if (!irqchip_in_kernel(kvm
))
3252 goto set_irqchip_out
;
3253 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3255 goto set_irqchip_out
;
3265 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3268 if (!kvm
->arch
.vpit
)
3270 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3274 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3281 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3284 if (!kvm
->arch
.vpit
)
3286 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3292 case KVM_GET_PIT2
: {
3294 if (!kvm
->arch
.vpit
)
3296 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3300 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3305 case KVM_SET_PIT2
: {
3307 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3310 if (!kvm
->arch
.vpit
)
3312 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3318 case KVM_REINJECT_CONTROL
: {
3319 struct kvm_reinject_control control
;
3321 if (copy_from_user(&control
, argp
, sizeof(control
)))
3323 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3329 case KVM_XEN_HVM_CONFIG
: {
3331 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3332 sizeof(struct kvm_xen_hvm_config
)))
3335 if (kvm
->arch
.xen_hvm_config
.flags
)
3340 case KVM_SET_CLOCK
: {
3341 struct kvm_clock_data user_ns
;
3346 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3354 local_irq_disable();
3355 now_ns
= get_kernel_ns();
3356 delta
= user_ns
.clock
- now_ns
;
3358 kvm
->arch
.kvmclock_offset
= delta
;
3361 case KVM_GET_CLOCK
: {
3362 struct kvm_clock_data user_ns
;
3365 local_irq_disable();
3366 now_ns
= get_kernel_ns();
3367 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3370 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3373 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3386 static void kvm_init_msr_list(void)
3391 /* skip the first msrs in the list. KVM-specific */
3392 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3393 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3396 msrs_to_save
[j
] = msrs_to_save
[i
];
3399 num_msrs_to_save
= j
;
3402 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3410 if (!(vcpu
->arch
.apic
&&
3411 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3412 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3423 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3430 if (!(vcpu
->arch
.apic
&&
3431 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3432 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3434 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3444 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3445 struct kvm_segment
*var
, int seg
)
3447 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3450 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3451 struct kvm_segment
*var
, int seg
)
3453 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3456 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3459 struct x86_exception exception
;
3461 BUG_ON(!mmu_is_nested(vcpu
));
3463 /* NPT walks are always user-walks */
3464 access
|= PFERR_USER_MASK
;
3465 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3470 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3471 struct x86_exception
*exception
)
3473 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3474 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3477 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3478 struct x86_exception
*exception
)
3480 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3481 access
|= PFERR_FETCH_MASK
;
3482 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3485 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3486 struct x86_exception
*exception
)
3488 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3489 access
|= PFERR_WRITE_MASK
;
3490 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3493 /* uses this to access any guest's mapped memory without checking CPL */
3494 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3495 struct x86_exception
*exception
)
3497 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3500 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3501 struct kvm_vcpu
*vcpu
, u32 access
,
3502 struct x86_exception
*exception
)
3505 int r
= X86EMUL_CONTINUE
;
3508 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3510 unsigned offset
= addr
& (PAGE_SIZE
-1);
3511 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3514 if (gpa
== UNMAPPED_GVA
)
3515 return X86EMUL_PROPAGATE_FAULT
;
3516 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3518 r
= X86EMUL_IO_NEEDED
;
3530 /* used for instruction fetching */
3531 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3532 gva_t addr
, void *val
, unsigned int bytes
,
3533 struct x86_exception
*exception
)
3535 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3536 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3538 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3539 access
| PFERR_FETCH_MASK
,
3543 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3544 gva_t addr
, void *val
, unsigned int bytes
,
3545 struct x86_exception
*exception
)
3547 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3548 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3550 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
3553 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
3555 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3556 gva_t addr
, void *val
, unsigned int bytes
,
3557 struct x86_exception
*exception
)
3559 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3560 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
3563 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
3564 gva_t addr
, void *val
,
3566 struct x86_exception
*exception
)
3568 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3570 int r
= X86EMUL_CONTINUE
;
3573 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
3576 unsigned offset
= addr
& (PAGE_SIZE
-1);
3577 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3580 if (gpa
== UNMAPPED_GVA
)
3581 return X86EMUL_PROPAGATE_FAULT
;
3582 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
3584 r
= X86EMUL_IO_NEEDED
;
3595 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
3597 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
3598 gpa_t
*gpa
, struct x86_exception
*exception
,
3601 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3603 if (vcpu_match_mmio_gva(vcpu
, gva
) &&
3604 check_write_user_access(vcpu
, write
, access
,
3605 vcpu
->arch
.access
)) {
3606 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
3607 (gva
& (PAGE_SIZE
- 1));
3608 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
3613 access
|= PFERR_WRITE_MASK
;
3615 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3617 if (*gpa
== UNMAPPED_GVA
)
3620 /* For APIC access vmexit */
3621 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3624 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
3625 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
3632 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3633 const void *val
, int bytes
)
3637 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3640 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
3644 struct read_write_emulator_ops
{
3645 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
3647 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3648 void *val
, int bytes
);
3649 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3650 int bytes
, void *val
);
3651 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3652 void *val
, int bytes
);
3656 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
3658 if (vcpu
->mmio_read_completed
) {
3659 memcpy(val
, vcpu
->mmio_data
, bytes
);
3660 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
3661 vcpu
->mmio_phys_addr
, *(u64
*)val
);
3662 vcpu
->mmio_read_completed
= 0;
3669 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3670 void *val
, int bytes
)
3672 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
3675 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3676 void *val
, int bytes
)
3678 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
3681 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
3683 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
3684 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
3687 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3688 void *val
, int bytes
)
3690 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
3691 return X86EMUL_IO_NEEDED
;
3694 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3695 void *val
, int bytes
)
3697 memcpy(vcpu
->mmio_data
, val
, bytes
);
3698 memcpy(vcpu
->run
->mmio
.data
, vcpu
->mmio_data
, 8);
3699 return X86EMUL_CONTINUE
;
3702 static struct read_write_emulator_ops read_emultor
= {
3703 .read_write_prepare
= read_prepare
,
3704 .read_write_emulate
= read_emulate
,
3705 .read_write_mmio
= vcpu_mmio_read
,
3706 .read_write_exit_mmio
= read_exit_mmio
,
3709 static struct read_write_emulator_ops write_emultor
= {
3710 .read_write_emulate
= write_emulate
,
3711 .read_write_mmio
= write_mmio
,
3712 .read_write_exit_mmio
= write_exit_mmio
,
3716 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
3718 struct x86_exception
*exception
,
3719 struct kvm_vcpu
*vcpu
,
3720 struct read_write_emulator_ops
*ops
)
3724 bool write
= ops
->write
;
3726 if (ops
->read_write_prepare
&&
3727 ops
->read_write_prepare(vcpu
, val
, bytes
))
3728 return X86EMUL_CONTINUE
;
3730 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
3733 return X86EMUL_PROPAGATE_FAULT
;
3735 /* For APIC access vmexit */
3739 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
3740 return X86EMUL_CONTINUE
;
3744 * Is this MMIO handled locally?
3746 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
3747 if (handled
== bytes
)
3748 return X86EMUL_CONTINUE
;
3754 vcpu
->mmio_needed
= 1;
3755 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
3756 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
3757 vcpu
->mmio_size
= bytes
;
3758 vcpu
->run
->mmio
.len
= min(vcpu
->mmio_size
, 8);
3759 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= write
;
3760 vcpu
->mmio_index
= 0;
3762 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
3765 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
3766 void *val
, unsigned int bytes
,
3767 struct x86_exception
*exception
,
3768 struct read_write_emulator_ops
*ops
)
3770 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3772 /* Crossing a page boundary? */
3773 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
3776 now
= -addr
& ~PAGE_MASK
;
3777 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
3780 if (rc
!= X86EMUL_CONTINUE
)
3787 return emulator_read_write_onepage(addr
, val
, bytes
, exception
,
3791 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
3795 struct x86_exception
*exception
)
3797 return emulator_read_write(ctxt
, addr
, val
, bytes
,
3798 exception
, &read_emultor
);
3801 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
3805 struct x86_exception
*exception
)
3807 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
3808 exception
, &write_emultor
);
3811 #define CMPXCHG_TYPE(t, ptr, old, new) \
3812 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3814 #ifdef CONFIG_X86_64
3815 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3817 # define CMPXCHG64(ptr, old, new) \
3818 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3821 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
3826 struct x86_exception
*exception
)
3828 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3834 /* guests cmpxchg8b have to be emulated atomically */
3835 if (bytes
> 8 || (bytes
& (bytes
- 1)))
3838 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
3840 if (gpa
== UNMAPPED_GVA
||
3841 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
3844 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
3847 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3848 if (is_error_page(page
)) {
3849 kvm_release_page_clean(page
);
3853 kaddr
= kmap_atomic(page
, KM_USER0
);
3854 kaddr
+= offset_in_page(gpa
);
3857 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
3860 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
3863 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
3866 exchanged
= CMPXCHG64(kaddr
, old
, new);
3871 kunmap_atomic(kaddr
, KM_USER0
);
3872 kvm_release_page_dirty(page
);
3875 return X86EMUL_CMPXCHG_FAILED
;
3877 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
3879 return X86EMUL_CONTINUE
;
3882 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
3884 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
3887 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
3889 /* TODO: String I/O for in kernel device */
3892 if (vcpu
->arch
.pio
.in
)
3893 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
3894 vcpu
->arch
.pio
.size
, pd
);
3896 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
3897 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
3902 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
3903 unsigned short port
, void *val
,
3904 unsigned int count
, bool in
)
3906 trace_kvm_pio(!in
, port
, size
, count
);
3908 vcpu
->arch
.pio
.port
= port
;
3909 vcpu
->arch
.pio
.in
= in
;
3910 vcpu
->arch
.pio
.count
= count
;
3911 vcpu
->arch
.pio
.size
= size
;
3913 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
3914 vcpu
->arch
.pio
.count
= 0;
3918 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
3919 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
3920 vcpu
->run
->io
.size
= size
;
3921 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
3922 vcpu
->run
->io
.count
= count
;
3923 vcpu
->run
->io
.port
= port
;
3928 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
3929 int size
, unsigned short port
, void *val
,
3932 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3935 if (vcpu
->arch
.pio
.count
)
3938 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
3941 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
3942 vcpu
->arch
.pio
.count
= 0;
3949 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
3950 int size
, unsigned short port
,
3951 const void *val
, unsigned int count
)
3953 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3955 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
3956 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
3959 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3961 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
3964 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
3966 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
3969 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
3971 if (!need_emulate_wbinvd(vcpu
))
3972 return X86EMUL_CONTINUE
;
3974 if (kvm_x86_ops
->has_wbinvd_exit()) {
3975 int cpu
= get_cpu();
3977 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
3978 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
3979 wbinvd_ipi
, NULL
, 1);
3981 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
3984 return X86EMUL_CONTINUE
;
3986 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
3988 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
3990 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
3993 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
3995 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
3998 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4001 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4004 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4006 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4009 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4011 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4012 unsigned long value
;
4016 value
= kvm_read_cr0(vcpu
);
4019 value
= vcpu
->arch
.cr2
;
4022 value
= kvm_read_cr3(vcpu
);
4025 value
= kvm_read_cr4(vcpu
);
4028 value
= kvm_get_cr8(vcpu
);
4031 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4038 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4040 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4045 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4048 vcpu
->arch
.cr2
= val
;
4051 res
= kvm_set_cr3(vcpu
, val
);
4054 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4057 res
= kvm_set_cr8(vcpu
, val
);
4060 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4067 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4069 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4072 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4074 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4077 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4079 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4082 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4084 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4087 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4089 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4092 static unsigned long emulator_get_cached_segment_base(
4093 struct x86_emulate_ctxt
*ctxt
, int seg
)
4095 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4098 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4099 struct desc_struct
*desc
, u32
*base3
,
4102 struct kvm_segment var
;
4104 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4105 *selector
= var
.selector
;
4112 set_desc_limit(desc
, var
.limit
);
4113 set_desc_base(desc
, (unsigned long)var
.base
);
4114 #ifdef CONFIG_X86_64
4116 *base3
= var
.base
>> 32;
4118 desc
->type
= var
.type
;
4120 desc
->dpl
= var
.dpl
;
4121 desc
->p
= var
.present
;
4122 desc
->avl
= var
.avl
;
4130 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4131 struct desc_struct
*desc
, u32 base3
,
4134 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4135 struct kvm_segment var
;
4137 var
.selector
= selector
;
4138 var
.base
= get_desc_base(desc
);
4139 #ifdef CONFIG_X86_64
4140 var
.base
|= ((u64
)base3
) << 32;
4142 var
.limit
= get_desc_limit(desc
);
4144 var
.limit
= (var
.limit
<< 12) | 0xfff;
4145 var
.type
= desc
->type
;
4146 var
.present
= desc
->p
;
4147 var
.dpl
= desc
->dpl
;
4152 var
.avl
= desc
->avl
;
4153 var
.present
= desc
->p
;
4154 var
.unusable
= !var
.present
;
4157 kvm_set_segment(vcpu
, &var
, seg
);
4161 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4162 u32 msr_index
, u64
*pdata
)
4164 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4167 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4168 u32 msr_index
, u64 data
)
4170 return kvm_set_msr(emul_to_vcpu(ctxt
), msr_index
, data
);
4173 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4174 u32 pmc
, u64
*pdata
)
4176 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4179 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4181 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4184 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4187 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4189 * CR0.TS may reference the host fpu state, not the guest fpu state,
4190 * so it may be clear at this point.
4195 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4200 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4201 struct x86_instruction_info
*info
,
4202 enum x86_intercept_stage stage
)
4204 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4207 static bool emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4208 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4210 struct kvm_cpuid_entry2
*cpuid
= NULL
;
4213 cpuid
= kvm_find_cpuid_entry(emul_to_vcpu(ctxt
),
4229 static struct x86_emulate_ops emulate_ops
= {
4230 .read_std
= kvm_read_guest_virt_system
,
4231 .write_std
= kvm_write_guest_virt_system
,
4232 .fetch
= kvm_fetch_guest_virt
,
4233 .read_emulated
= emulator_read_emulated
,
4234 .write_emulated
= emulator_write_emulated
,
4235 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4236 .invlpg
= emulator_invlpg
,
4237 .pio_in_emulated
= emulator_pio_in_emulated
,
4238 .pio_out_emulated
= emulator_pio_out_emulated
,
4239 .get_segment
= emulator_get_segment
,
4240 .set_segment
= emulator_set_segment
,
4241 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4242 .get_gdt
= emulator_get_gdt
,
4243 .get_idt
= emulator_get_idt
,
4244 .set_gdt
= emulator_set_gdt
,
4245 .set_idt
= emulator_set_idt
,
4246 .get_cr
= emulator_get_cr
,
4247 .set_cr
= emulator_set_cr
,
4248 .cpl
= emulator_get_cpl
,
4249 .get_dr
= emulator_get_dr
,
4250 .set_dr
= emulator_set_dr
,
4251 .set_msr
= emulator_set_msr
,
4252 .get_msr
= emulator_get_msr
,
4253 .read_pmc
= emulator_read_pmc
,
4254 .halt
= emulator_halt
,
4255 .wbinvd
= emulator_wbinvd
,
4256 .fix_hypercall
= emulator_fix_hypercall
,
4257 .get_fpu
= emulator_get_fpu
,
4258 .put_fpu
= emulator_put_fpu
,
4259 .intercept
= emulator_intercept
,
4260 .get_cpuid
= emulator_get_cpuid
,
4263 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
4265 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4266 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4267 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
4268 vcpu
->arch
.regs_dirty
= ~0;
4271 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4273 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4275 * an sti; sti; sequence only disable interrupts for the first
4276 * instruction. So, if the last instruction, be it emulated or
4277 * not, left the system with the INT_STI flag enabled, it
4278 * means that the last instruction is an sti. We should not
4279 * leave the flag on in this case. The same goes for mov ss
4281 if (!(int_shadow
& mask
))
4282 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4285 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4287 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4288 if (ctxt
->exception
.vector
== PF_VECTOR
)
4289 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4290 else if (ctxt
->exception
.error_code_valid
)
4291 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4292 ctxt
->exception
.error_code
);
4294 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4297 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
,
4298 const unsigned long *regs
)
4300 memset(&ctxt
->twobyte
, 0,
4301 (void *)&ctxt
->regs
- (void *)&ctxt
->twobyte
);
4302 memcpy(ctxt
->regs
, regs
, sizeof(ctxt
->regs
));
4304 ctxt
->fetch
.start
= 0;
4305 ctxt
->fetch
.end
= 0;
4306 ctxt
->io_read
.pos
= 0;
4307 ctxt
->io_read
.end
= 0;
4308 ctxt
->mem_read
.pos
= 0;
4309 ctxt
->mem_read
.end
= 0;
4312 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4314 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4318 * TODO: fix emulate.c to use guest_read/write_register
4319 * instead of direct ->regs accesses, can save hundred cycles
4320 * on Intel for instructions that don't read/change RSP, for
4323 cache_all_regs(vcpu
);
4325 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4327 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4328 ctxt
->eip
= kvm_rip_read(vcpu
);
4329 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4330 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4331 cs_l
? X86EMUL_MODE_PROT64
:
4332 cs_db
? X86EMUL_MODE_PROT32
:
4333 X86EMUL_MODE_PROT16
;
4334 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4336 init_decode_cache(ctxt
, vcpu
->arch
.regs
);
4337 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4340 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4342 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4345 init_emulate_ctxt(vcpu
);
4349 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4350 ret
= emulate_int_real(ctxt
, irq
);
4352 if (ret
!= X86EMUL_CONTINUE
)
4353 return EMULATE_FAIL
;
4355 ctxt
->eip
= ctxt
->_eip
;
4356 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4357 kvm_rip_write(vcpu
, ctxt
->eip
);
4358 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4360 if (irq
== NMI_VECTOR
)
4361 vcpu
->arch
.nmi_pending
= 0;
4363 vcpu
->arch
.interrupt
.pending
= false;
4365 return EMULATE_DONE
;
4367 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4369 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4371 int r
= EMULATE_DONE
;
4373 ++vcpu
->stat
.insn_emulation_fail
;
4374 trace_kvm_emulate_insn_failed(vcpu
);
4375 if (!is_guest_mode(vcpu
)) {
4376 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4377 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4378 vcpu
->run
->internal
.ndata
= 0;
4381 kvm_queue_exception(vcpu
, UD_VECTOR
);
4386 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4394 * if emulation was due to access to shadowed page table
4395 * and it failed try to unshadow page and re-entetr the
4396 * guest to let CPU execute the instruction.
4398 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4401 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4403 if (gpa
== UNMAPPED_GVA
)
4404 return true; /* let cpu generate fault */
4406 if (!kvm_is_error_hva(gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
)))
4412 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
4413 unsigned long cr2
, int emulation_type
)
4415 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4416 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
4418 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
4419 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
4422 * If the emulation is caused by #PF and it is non-page_table
4423 * writing instruction, it means the VM-EXIT is caused by shadow
4424 * page protected, we can zap the shadow page and retry this
4425 * instruction directly.
4427 * Note: if the guest uses a non-page-table modifying instruction
4428 * on the PDE that points to the instruction, then we will unmap
4429 * the instruction and go to an infinite loop. So, we cache the
4430 * last retried eip and the last fault address, if we meet the eip
4431 * and the address again, we can break out of the potential infinite
4434 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
4436 if (!(emulation_type
& EMULTYPE_RETRY
))
4439 if (x86_page_table_writing_insn(ctxt
))
4442 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
4445 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
4446 vcpu
->arch
.last_retry_addr
= cr2
;
4448 if (!vcpu
->arch
.mmu
.direct_map
)
4449 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
4451 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4456 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
4463 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4464 bool writeback
= true;
4466 kvm_clear_exception_queue(vcpu
);
4468 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4469 init_emulate_ctxt(vcpu
);
4470 ctxt
->interruptibility
= 0;
4471 ctxt
->have_exception
= false;
4472 ctxt
->perm_ok
= false;
4474 ctxt
->only_vendor_specific_insn
4475 = emulation_type
& EMULTYPE_TRAP_UD
;
4477 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
4479 trace_kvm_emulate_insn_start(vcpu
);
4480 ++vcpu
->stat
.insn_emulation
;
4481 if (r
!= EMULATION_OK
) {
4482 if (emulation_type
& EMULTYPE_TRAP_UD
)
4483 return EMULATE_FAIL
;
4484 if (reexecute_instruction(vcpu
, cr2
))
4485 return EMULATE_DONE
;
4486 if (emulation_type
& EMULTYPE_SKIP
)
4487 return EMULATE_FAIL
;
4488 return handle_emulation_failure(vcpu
);
4492 if (emulation_type
& EMULTYPE_SKIP
) {
4493 kvm_rip_write(vcpu
, ctxt
->_eip
);
4494 return EMULATE_DONE
;
4497 if (retry_instruction(ctxt
, cr2
, emulation_type
))
4498 return EMULATE_DONE
;
4500 /* this is needed for vmware backdoor interface to work since it
4501 changes registers values during IO operation */
4502 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
4503 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4504 memcpy(ctxt
->regs
, vcpu
->arch
.regs
, sizeof ctxt
->regs
);
4508 r
= x86_emulate_insn(ctxt
);
4510 if (r
== EMULATION_INTERCEPTED
)
4511 return EMULATE_DONE
;
4513 if (r
== EMULATION_FAILED
) {
4514 if (reexecute_instruction(vcpu
, cr2
))
4515 return EMULATE_DONE
;
4517 return handle_emulation_failure(vcpu
);
4520 if (ctxt
->have_exception
) {
4521 inject_emulated_exception(vcpu
);
4523 } else if (vcpu
->arch
.pio
.count
) {
4524 if (!vcpu
->arch
.pio
.in
)
4525 vcpu
->arch
.pio
.count
= 0;
4528 r
= EMULATE_DO_MMIO
;
4529 } else if (vcpu
->mmio_needed
) {
4530 if (!vcpu
->mmio_is_write
)
4532 r
= EMULATE_DO_MMIO
;
4533 } else if (r
== EMULATION_RESTART
)
4539 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
4540 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4541 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4542 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4543 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
4544 kvm_rip_write(vcpu
, ctxt
->eip
);
4546 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
4550 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
4552 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4554 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4555 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
4556 size
, port
, &val
, 1);
4557 /* do not return to emulator after return from userspace */
4558 vcpu
->arch
.pio
.count
= 0;
4561 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4563 static void tsc_bad(void *info
)
4565 __this_cpu_write(cpu_tsc_khz
, 0);
4568 static void tsc_khz_changed(void *data
)
4570 struct cpufreq_freqs
*freq
= data
;
4571 unsigned long khz
= 0;
4575 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4576 khz
= cpufreq_quick_get(raw_smp_processor_id());
4579 __this_cpu_write(cpu_tsc_khz
, khz
);
4582 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4585 struct cpufreq_freqs
*freq
= data
;
4587 struct kvm_vcpu
*vcpu
;
4588 int i
, send_ipi
= 0;
4591 * We allow guests to temporarily run on slowing clocks,
4592 * provided we notify them after, or to run on accelerating
4593 * clocks, provided we notify them before. Thus time never
4596 * However, we have a problem. We can't atomically update
4597 * the frequency of a given CPU from this function; it is
4598 * merely a notifier, which can be called from any CPU.
4599 * Changing the TSC frequency at arbitrary points in time
4600 * requires a recomputation of local variables related to
4601 * the TSC for each VCPU. We must flag these local variables
4602 * to be updated and be sure the update takes place with the
4603 * new frequency before any guests proceed.
4605 * Unfortunately, the combination of hotplug CPU and frequency
4606 * change creates an intractable locking scenario; the order
4607 * of when these callouts happen is undefined with respect to
4608 * CPU hotplug, and they can race with each other. As such,
4609 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4610 * undefined; you can actually have a CPU frequency change take
4611 * place in between the computation of X and the setting of the
4612 * variable. To protect against this problem, all updates of
4613 * the per_cpu tsc_khz variable are done in an interrupt
4614 * protected IPI, and all callers wishing to update the value
4615 * must wait for a synchronous IPI to complete (which is trivial
4616 * if the caller is on the CPU already). This establishes the
4617 * necessary total order on variable updates.
4619 * Note that because a guest time update may take place
4620 * anytime after the setting of the VCPU's request bit, the
4621 * correct TSC value must be set before the request. However,
4622 * to ensure the update actually makes it to any guest which
4623 * starts running in hardware virtualization between the set
4624 * and the acquisition of the spinlock, we must also ping the
4625 * CPU after setting the request bit.
4629 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
4631 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
4634 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4636 raw_spin_lock(&kvm_lock
);
4637 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4638 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4639 if (vcpu
->cpu
!= freq
->cpu
)
4641 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
4642 if (vcpu
->cpu
!= smp_processor_id())
4646 raw_spin_unlock(&kvm_lock
);
4648 if (freq
->old
< freq
->new && send_ipi
) {
4650 * We upscale the frequency. Must make the guest
4651 * doesn't see old kvmclock values while running with
4652 * the new frequency, otherwise we risk the guest sees
4653 * time go backwards.
4655 * In case we update the frequency for another cpu
4656 * (which might be in guest context) send an interrupt
4657 * to kick the cpu out of guest context. Next time
4658 * guest context is entered kvmclock will be updated,
4659 * so the guest will not see stale values.
4661 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
4666 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
4667 .notifier_call
= kvmclock_cpufreq_notifier
4670 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
4671 unsigned long action
, void *hcpu
)
4673 unsigned int cpu
= (unsigned long)hcpu
;
4677 case CPU_DOWN_FAILED
:
4678 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4680 case CPU_DOWN_PREPARE
:
4681 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
4687 static struct notifier_block kvmclock_cpu_notifier_block
= {
4688 .notifier_call
= kvmclock_cpu_notifier
,
4689 .priority
= -INT_MAX
4692 static void kvm_timer_init(void)
4696 max_tsc_khz
= tsc_khz
;
4697 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4698 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
4699 #ifdef CONFIG_CPU_FREQ
4700 struct cpufreq_policy policy
;
4701 memset(&policy
, 0, sizeof(policy
));
4703 cpufreq_get_policy(&policy
, cpu
);
4704 if (policy
.cpuinfo
.max_freq
)
4705 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
4708 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
4709 CPUFREQ_TRANSITION_NOTIFIER
);
4711 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
4712 for_each_online_cpu(cpu
)
4713 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
4716 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
4718 int kvm_is_in_guest(void)
4720 return __this_cpu_read(current_vcpu
) != NULL
;
4723 static int kvm_is_user_mode(void)
4727 if (__this_cpu_read(current_vcpu
))
4728 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
4730 return user_mode
!= 0;
4733 static unsigned long kvm_get_guest_ip(void)
4735 unsigned long ip
= 0;
4737 if (__this_cpu_read(current_vcpu
))
4738 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
4743 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
4744 .is_in_guest
= kvm_is_in_guest
,
4745 .is_user_mode
= kvm_is_user_mode
,
4746 .get_guest_ip
= kvm_get_guest_ip
,
4749 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
4751 __this_cpu_write(current_vcpu
, vcpu
);
4753 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
4755 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
4757 __this_cpu_write(current_vcpu
, NULL
);
4759 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
4761 static void kvm_set_mmio_spte_mask(void)
4764 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
4767 * Set the reserved bits and the present bit of an paging-structure
4768 * entry to generate page fault with PFER.RSV = 1.
4770 mask
= ((1ull << (62 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
4773 #ifdef CONFIG_X86_64
4775 * If reserved bit is not supported, clear the present bit to disable
4778 if (maxphyaddr
== 52)
4782 kvm_mmu_set_mmio_spte_mask(mask
);
4785 int kvm_arch_init(void *opaque
)
4788 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
4791 printk(KERN_ERR
"kvm: already loaded the other module\n");
4796 if (!ops
->cpu_has_kvm_support()) {
4797 printk(KERN_ERR
"kvm: no hardware support\n");
4801 if (ops
->disabled_by_bios()) {
4802 printk(KERN_ERR
"kvm: disabled by bios\n");
4807 r
= kvm_mmu_module_init();
4811 kvm_set_mmio_spte_mask();
4812 kvm_init_msr_list();
4815 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
4816 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
4820 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
4823 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
4831 void kvm_arch_exit(void)
4833 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
4835 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4836 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
4837 CPUFREQ_TRANSITION_NOTIFIER
);
4838 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
4840 kvm_mmu_module_exit();
4843 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
4845 ++vcpu
->stat
.halt_exits
;
4846 if (irqchip_in_kernel(vcpu
->kvm
)) {
4847 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
4850 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
4854 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
4856 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
4858 u64 param
, ingpa
, outgpa
, ret
;
4859 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
4860 bool fast
, longmode
;
4864 * hypercall generates UD from non zero cpl and real mode
4867 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
4868 kvm_queue_exception(vcpu
, UD_VECTOR
);
4872 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4873 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
4876 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
4877 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
4878 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
4879 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
4880 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
4881 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
4883 #ifdef CONFIG_X86_64
4885 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4886 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4887 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
4891 code
= param
& 0xffff;
4892 fast
= (param
>> 16) & 0x1;
4893 rep_cnt
= (param
>> 32) & 0xfff;
4894 rep_idx
= (param
>> 48) & 0xfff;
4896 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
4899 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
4900 kvm_vcpu_on_spin(vcpu
);
4903 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
4907 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
4909 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4911 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
4912 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
4918 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
4920 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
4923 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
4924 return kvm_hv_hypercall(vcpu
);
4926 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4927 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
4928 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
4929 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
4930 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
4932 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
4934 if (!is_long_mode(vcpu
)) {
4942 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
4948 case KVM_HC_VAPIC_POLL_IRQ
:
4956 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
4957 ++vcpu
->stat
.hypercalls
;
4960 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
4962 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
4964 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4965 char instruction
[3];
4966 unsigned long rip
= kvm_rip_read(vcpu
);
4969 * Blow out the MMU to ensure that no other VCPU has an active mapping
4970 * to ensure that the updated hypercall appears atomically across all
4973 kvm_mmu_zap_all(vcpu
->kvm
);
4975 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
4977 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
4981 * Check if userspace requested an interrupt window, and that the
4982 * interrupt window is open.
4984 * No need to exit to userspace if we already have an interrupt queued.
4986 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
4988 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
4989 vcpu
->run
->request_interrupt_window
&&
4990 kvm_arch_interrupt_allowed(vcpu
));
4993 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
4995 struct kvm_run
*kvm_run
= vcpu
->run
;
4997 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
4998 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
4999 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5000 if (irqchip_in_kernel(vcpu
->kvm
))
5001 kvm_run
->ready_for_interrupt_injection
= 1;
5003 kvm_run
->ready_for_interrupt_injection
=
5004 kvm_arch_interrupt_allowed(vcpu
) &&
5005 !kvm_cpu_has_interrupt(vcpu
) &&
5006 !kvm_event_needs_reinjection(vcpu
);
5009 static void vapic_enter(struct kvm_vcpu
*vcpu
)
5011 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5014 if (!apic
|| !apic
->vapic_addr
)
5017 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5019 vcpu
->arch
.apic
->vapic_page
= page
;
5022 static void vapic_exit(struct kvm_vcpu
*vcpu
)
5024 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5027 if (!apic
|| !apic
->vapic_addr
)
5030 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5031 kvm_release_page_dirty(apic
->vapic_page
);
5032 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5033 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5036 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5040 if (!kvm_x86_ops
->update_cr8_intercept
)
5043 if (!vcpu
->arch
.apic
)
5046 if (!vcpu
->arch
.apic
->vapic_addr
)
5047 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5054 tpr
= kvm_lapic_get_cr8(vcpu
);
5056 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5059 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5061 /* try to reinject previous events if any */
5062 if (vcpu
->arch
.exception
.pending
) {
5063 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5064 vcpu
->arch
.exception
.has_error_code
,
5065 vcpu
->arch
.exception
.error_code
);
5066 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5067 vcpu
->arch
.exception
.has_error_code
,
5068 vcpu
->arch
.exception
.error_code
,
5069 vcpu
->arch
.exception
.reinject
);
5073 if (vcpu
->arch
.nmi_injected
) {
5074 kvm_x86_ops
->set_nmi(vcpu
);
5078 if (vcpu
->arch
.interrupt
.pending
) {
5079 kvm_x86_ops
->set_irq(vcpu
);
5083 /* try to inject new event if pending */
5084 if (vcpu
->arch
.nmi_pending
) {
5085 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5086 --vcpu
->arch
.nmi_pending
;
5087 vcpu
->arch
.nmi_injected
= true;
5088 kvm_x86_ops
->set_nmi(vcpu
);
5090 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5091 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5092 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5094 kvm_x86_ops
->set_irq(vcpu
);
5099 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5101 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5102 !vcpu
->guest_xcr0_loaded
) {
5103 /* kvm_set_xcr() also depends on this */
5104 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5105 vcpu
->guest_xcr0_loaded
= 1;
5109 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5111 if (vcpu
->guest_xcr0_loaded
) {
5112 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5113 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5114 vcpu
->guest_xcr0_loaded
= 0;
5118 static void process_nmi(struct kvm_vcpu
*vcpu
)
5123 * x86 is limited to one NMI running, and one NMI pending after it.
5124 * If an NMI is already in progress, limit further NMIs to just one.
5125 * Otherwise, allow two (and we'll inject the first one immediately).
5127 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
5130 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
5131 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
5132 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5135 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5138 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5139 vcpu
->run
->request_interrupt_window
;
5140 bool req_immediate_exit
= 0;
5142 if (vcpu
->requests
) {
5143 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5144 kvm_mmu_unload(vcpu
);
5145 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5146 __kvm_migrate_timers(vcpu
);
5147 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5148 r
= kvm_guest_time_update(vcpu
);
5152 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5153 kvm_mmu_sync_roots(vcpu
);
5154 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5155 kvm_x86_ops
->tlb_flush(vcpu
);
5156 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5157 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5161 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5162 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5166 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5167 vcpu
->fpu_active
= 0;
5168 kvm_x86_ops
->fpu_deactivate(vcpu
);
5170 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5171 /* Page is swapped out. Do synthetic halt */
5172 vcpu
->arch
.apf
.halted
= true;
5176 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5177 record_steal_time(vcpu
);
5178 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5180 req_immediate_exit
=
5181 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT
, vcpu
);
5182 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
5183 kvm_handle_pmu_event(vcpu
);
5184 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
5185 kvm_deliver_pmi(vcpu
);
5188 r
= kvm_mmu_reload(vcpu
);
5192 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5193 inject_pending_event(vcpu
);
5195 /* enable NMI/IRQ window open exits if needed */
5196 if (vcpu
->arch
.nmi_pending
)
5197 kvm_x86_ops
->enable_nmi_window(vcpu
);
5198 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5199 kvm_x86_ops
->enable_irq_window(vcpu
);
5201 if (kvm_lapic_enabled(vcpu
)) {
5202 update_cr8_intercept(vcpu
);
5203 kvm_lapic_sync_to_vapic(vcpu
);
5209 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5210 if (vcpu
->fpu_active
)
5211 kvm_load_guest_fpu(vcpu
);
5212 kvm_load_guest_xcr0(vcpu
);
5214 vcpu
->mode
= IN_GUEST_MODE
;
5216 /* We should set ->mode before check ->requests,
5217 * see the comment in make_all_cpus_request.
5221 local_irq_disable();
5223 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5224 || need_resched() || signal_pending(current
)) {
5225 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5229 kvm_x86_ops
->cancel_injection(vcpu
);
5234 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5236 if (req_immediate_exit
)
5237 smp_send_reschedule(vcpu
->cpu
);
5241 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5243 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5244 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5245 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5246 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5249 trace_kvm_entry(vcpu
->vcpu_id
);
5250 kvm_x86_ops
->run(vcpu
);
5253 * If the guest has used debug registers, at least dr7
5254 * will be disabled while returning to the host.
5255 * If we don't have active breakpoints in the host, we don't
5256 * care about the messed up debug address registers. But if
5257 * we have some of them active, restore the old state.
5259 if (hw_breakpoint_active())
5260 hw_breakpoint_restore();
5262 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
5264 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5271 * We must have an instruction between local_irq_enable() and
5272 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5273 * the interrupt shadow. The stat.exits increment will do nicely.
5274 * But we need to prevent reordering, hence this barrier():
5282 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5285 * Profile KVM exit RIPs:
5287 if (unlikely(prof_on
== KVM_PROFILING
)) {
5288 unsigned long rip
= kvm_rip_read(vcpu
);
5289 profile_hit(KVM_PROFILING
, (void *)rip
);
5293 kvm_lapic_sync_from_vapic(vcpu
);
5295 r
= kvm_x86_ops
->handle_exit(vcpu
);
5301 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5304 struct kvm
*kvm
= vcpu
->kvm
;
5306 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5307 pr_debug("vcpu %d received sipi with vector # %x\n",
5308 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5309 kvm_lapic_reset(vcpu
);
5310 r
= kvm_arch_vcpu_reset(vcpu
);
5313 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5316 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5321 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5322 !vcpu
->arch
.apf
.halted
)
5323 r
= vcpu_enter_guest(vcpu
);
5325 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5326 kvm_vcpu_block(vcpu
);
5327 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5328 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5330 switch(vcpu
->arch
.mp_state
) {
5331 case KVM_MP_STATE_HALTED
:
5332 vcpu
->arch
.mp_state
=
5333 KVM_MP_STATE_RUNNABLE
;
5334 case KVM_MP_STATE_RUNNABLE
:
5335 vcpu
->arch
.apf
.halted
= false;
5337 case KVM_MP_STATE_SIPI_RECEIVED
:
5348 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5349 if (kvm_cpu_has_pending_timer(vcpu
))
5350 kvm_inject_pending_timer_irqs(vcpu
);
5352 if (dm_request_for_irq_injection(vcpu
)) {
5354 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5355 ++vcpu
->stat
.request_irq_exits
;
5358 kvm_check_async_pf_completion(vcpu
);
5360 if (signal_pending(current
)) {
5362 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5363 ++vcpu
->stat
.signal_exits
;
5365 if (need_resched()) {
5366 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5368 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5372 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5379 static int complete_mmio(struct kvm_vcpu
*vcpu
)
5381 struct kvm_run
*run
= vcpu
->run
;
5384 if (!(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
))
5387 if (vcpu
->mmio_needed
) {
5388 vcpu
->mmio_needed
= 0;
5389 if (!vcpu
->mmio_is_write
)
5390 memcpy(vcpu
->mmio_data
+ vcpu
->mmio_index
,
5392 vcpu
->mmio_index
+= 8;
5393 if (vcpu
->mmio_index
< vcpu
->mmio_size
) {
5394 run
->exit_reason
= KVM_EXIT_MMIO
;
5395 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
+ vcpu
->mmio_index
;
5396 memcpy(run
->mmio
.data
, vcpu
->mmio_data
+ vcpu
->mmio_index
, 8);
5397 run
->mmio
.len
= min(vcpu
->mmio_size
- vcpu
->mmio_index
, 8);
5398 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
5399 vcpu
->mmio_needed
= 1;
5402 if (vcpu
->mmio_is_write
)
5404 vcpu
->mmio_read_completed
= 1;
5406 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5407 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
5408 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5409 if (r
!= EMULATE_DONE
)
5414 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5419 if (!tsk_used_math(current
) && init_fpu(current
))
5422 if (vcpu
->sigset_active
)
5423 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5425 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5426 kvm_vcpu_block(vcpu
);
5427 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5432 /* re-sync apic's tpr */
5433 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5434 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
5440 r
= complete_mmio(vcpu
);
5444 r
= __vcpu_run(vcpu
);
5447 post_kvm_run_save(vcpu
);
5448 if (vcpu
->sigset_active
)
5449 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5454 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5456 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
5458 * We are here if userspace calls get_regs() in the middle of
5459 * instruction emulation. Registers state needs to be copied
5460 * back from emulation context to vcpu. Usrapace shouldn't do
5461 * that usually, but some bad designed PV devices (vmware
5462 * backdoor interface) need this to work
5464 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5465 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
5466 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5468 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5469 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5470 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5471 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5472 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5473 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
5474 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
5475 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
5476 #ifdef CONFIG_X86_64
5477 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5478 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
5479 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
5480 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
5481 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
5482 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
5483 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
5484 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
5487 regs
->rip
= kvm_rip_read(vcpu
);
5488 regs
->rflags
= kvm_get_rflags(vcpu
);
5493 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5495 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
5496 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5498 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
5499 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
5500 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
5501 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
5502 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
5503 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
5504 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
5505 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
5506 #ifdef CONFIG_X86_64
5507 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
5508 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
5509 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
5510 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
5511 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
5512 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
5513 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
5514 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
5517 kvm_rip_write(vcpu
, regs
->rip
);
5518 kvm_set_rflags(vcpu
, regs
->rflags
);
5520 vcpu
->arch
.exception
.pending
= false;
5522 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5527 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
5529 struct kvm_segment cs
;
5531 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
5535 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
5537 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
5538 struct kvm_sregs
*sregs
)
5542 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5543 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5544 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5545 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5546 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5547 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5549 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5550 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5552 kvm_x86_ops
->get_idt(vcpu
, &dt
);
5553 sregs
->idt
.limit
= dt
.size
;
5554 sregs
->idt
.base
= dt
.address
;
5555 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
5556 sregs
->gdt
.limit
= dt
.size
;
5557 sregs
->gdt
.base
= dt
.address
;
5559 sregs
->cr0
= kvm_read_cr0(vcpu
);
5560 sregs
->cr2
= vcpu
->arch
.cr2
;
5561 sregs
->cr3
= kvm_read_cr3(vcpu
);
5562 sregs
->cr4
= kvm_read_cr4(vcpu
);
5563 sregs
->cr8
= kvm_get_cr8(vcpu
);
5564 sregs
->efer
= vcpu
->arch
.efer
;
5565 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
5567 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
5569 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
5570 set_bit(vcpu
->arch
.interrupt
.nr
,
5571 (unsigned long *)sregs
->interrupt_bitmap
);
5576 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
5577 struct kvm_mp_state
*mp_state
)
5579 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
5583 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
5584 struct kvm_mp_state
*mp_state
)
5586 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
5587 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5591 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
,
5592 bool has_error_code
, u32 error_code
)
5594 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5597 init_emulate_ctxt(vcpu
);
5599 ret
= emulator_task_switch(ctxt
, tss_selector
, reason
,
5600 has_error_code
, error_code
);
5603 return EMULATE_FAIL
;
5605 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
5606 kvm_rip_write(vcpu
, ctxt
->eip
);
5607 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5608 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5609 return EMULATE_DONE
;
5611 EXPORT_SYMBOL_GPL(kvm_task_switch
);
5613 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
5614 struct kvm_sregs
*sregs
)
5616 int mmu_reset_needed
= 0;
5617 int pending_vec
, max_bits
, idx
;
5620 dt
.size
= sregs
->idt
.limit
;
5621 dt
.address
= sregs
->idt
.base
;
5622 kvm_x86_ops
->set_idt(vcpu
, &dt
);
5623 dt
.size
= sregs
->gdt
.limit
;
5624 dt
.address
= sregs
->gdt
.base
;
5625 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
5627 vcpu
->arch
.cr2
= sregs
->cr2
;
5628 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
5629 vcpu
->arch
.cr3
= sregs
->cr3
;
5630 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
5632 kvm_set_cr8(vcpu
, sregs
->cr8
);
5634 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
5635 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
5636 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
5638 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
5639 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
5640 vcpu
->arch
.cr0
= sregs
->cr0
;
5642 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
5643 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
5644 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
5645 kvm_update_cpuid(vcpu
);
5647 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5648 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
5649 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
5650 mmu_reset_needed
= 1;
5652 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5654 if (mmu_reset_needed
)
5655 kvm_mmu_reset_context(vcpu
);
5657 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
5658 pending_vec
= find_first_bit(
5659 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
5660 if (pending_vec
< max_bits
) {
5661 kvm_queue_interrupt(vcpu
, pending_vec
, false);
5662 pr_debug("Set back pending irq %d\n", pending_vec
);
5665 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
5666 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
5667 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
5668 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
5669 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
5670 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
5672 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
5673 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
5675 update_cr8_intercept(vcpu
);
5677 /* Older userspace won't unhalt the vcpu on reset. */
5678 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
5679 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
5681 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5683 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5688 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
5689 struct kvm_guest_debug
*dbg
)
5691 unsigned long rflags
;
5694 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
5696 if (vcpu
->arch
.exception
.pending
)
5698 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
5699 kvm_queue_exception(vcpu
, DB_VECTOR
);
5701 kvm_queue_exception(vcpu
, BP_VECTOR
);
5705 * Read rflags as long as potentially injected trace flags are still
5708 rflags
= kvm_get_rflags(vcpu
);
5710 vcpu
->guest_debug
= dbg
->control
;
5711 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
5712 vcpu
->guest_debug
= 0;
5714 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5715 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
5716 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
5717 vcpu
->arch
.switch_db_regs
=
5718 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
5720 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
5721 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
5722 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
5725 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
5726 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
5727 get_segment_base(vcpu
, VCPU_SREG_CS
);
5730 * Trigger an rflags update that will inject or remove the trace
5733 kvm_set_rflags(vcpu
, rflags
);
5735 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
5745 * Translate a guest virtual address to a guest physical address.
5747 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
5748 struct kvm_translation
*tr
)
5750 unsigned long vaddr
= tr
->linear_address
;
5754 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5755 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
5756 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5757 tr
->physical_address
= gpa
;
5758 tr
->valid
= gpa
!= UNMAPPED_GVA
;
5765 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5767 struct i387_fxsave_struct
*fxsave
=
5768 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5770 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
5771 fpu
->fcw
= fxsave
->cwd
;
5772 fpu
->fsw
= fxsave
->swd
;
5773 fpu
->ftwx
= fxsave
->twd
;
5774 fpu
->last_opcode
= fxsave
->fop
;
5775 fpu
->last_ip
= fxsave
->rip
;
5776 fpu
->last_dp
= fxsave
->rdp
;
5777 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
5782 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
5784 struct i387_fxsave_struct
*fxsave
=
5785 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
5787 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
5788 fxsave
->cwd
= fpu
->fcw
;
5789 fxsave
->swd
= fpu
->fsw
;
5790 fxsave
->twd
= fpu
->ftwx
;
5791 fxsave
->fop
= fpu
->last_opcode
;
5792 fxsave
->rip
= fpu
->last_ip
;
5793 fxsave
->rdp
= fpu
->last_dp
;
5794 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
5799 int fx_init(struct kvm_vcpu
*vcpu
)
5803 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
5807 fpu_finit(&vcpu
->arch
.guest_fpu
);
5810 * Ensure guest xcr0 is valid for loading
5812 vcpu
->arch
.xcr0
= XSTATE_FP
;
5814 vcpu
->arch
.cr0
|= X86_CR0_ET
;
5818 EXPORT_SYMBOL_GPL(fx_init
);
5820 static void fx_free(struct kvm_vcpu
*vcpu
)
5822 fpu_free(&vcpu
->arch
.guest_fpu
);
5825 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
5827 if (vcpu
->guest_fpu_loaded
)
5831 * Restore all possible states in the guest,
5832 * and assume host would use all available bits.
5833 * Guest xcr0 would be loaded later.
5835 kvm_put_guest_xcr0(vcpu
);
5836 vcpu
->guest_fpu_loaded
= 1;
5837 unlazy_fpu(current
);
5838 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
5842 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
5844 kvm_put_guest_xcr0(vcpu
);
5846 if (!vcpu
->guest_fpu_loaded
)
5849 vcpu
->guest_fpu_loaded
= 0;
5850 fpu_save_init(&vcpu
->arch
.guest_fpu
);
5851 ++vcpu
->stat
.fpu_reload
;
5852 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
5856 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
5858 kvmclock_reset(vcpu
);
5860 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
5862 kvm_x86_ops
->vcpu_free(vcpu
);
5865 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
5868 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
5869 printk_once(KERN_WARNING
5870 "kvm: SMP vm created on host with unstable TSC; "
5871 "guest TSC will not be reliable\n");
5872 return kvm_x86_ops
->vcpu_create(kvm
, id
);
5875 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
5879 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
5881 r
= kvm_arch_vcpu_reset(vcpu
);
5883 r
= kvm_mmu_setup(vcpu
);
5889 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
5891 vcpu
->arch
.apf
.msr_val
= 0;
5894 kvm_mmu_unload(vcpu
);
5898 kvm_x86_ops
->vcpu_free(vcpu
);
5901 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
5903 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
5904 vcpu
->arch
.nmi_pending
= 0;
5905 vcpu
->arch
.nmi_injected
= false;
5907 vcpu
->arch
.switch_db_regs
= 0;
5908 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
5909 vcpu
->arch
.dr6
= DR6_FIXED_1
;
5910 vcpu
->arch
.dr7
= DR7_FIXED_1
;
5912 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5913 vcpu
->arch
.apf
.msr_val
= 0;
5914 vcpu
->arch
.st
.msr_val
= 0;
5916 kvmclock_reset(vcpu
);
5918 kvm_clear_async_pf_completion_queue(vcpu
);
5919 kvm_async_pf_hash_reset(vcpu
);
5920 vcpu
->arch
.apf
.halted
= false;
5922 kvm_pmu_reset(vcpu
);
5924 return kvm_x86_ops
->vcpu_reset(vcpu
);
5927 int kvm_arch_hardware_enable(void *garbage
)
5930 struct kvm_vcpu
*vcpu
;
5933 kvm_shared_msr_cpu_online();
5934 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5935 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5936 if (vcpu
->cpu
== smp_processor_id())
5937 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5938 return kvm_x86_ops
->hardware_enable(garbage
);
5941 void kvm_arch_hardware_disable(void *garbage
)
5943 kvm_x86_ops
->hardware_disable(garbage
);
5944 drop_user_return_notifiers(garbage
);
5947 int kvm_arch_hardware_setup(void)
5949 return kvm_x86_ops
->hardware_setup();
5952 void kvm_arch_hardware_unsetup(void)
5954 kvm_x86_ops
->hardware_unsetup();
5957 void kvm_arch_check_processor_compat(void *rtn
)
5959 kvm_x86_ops
->check_processor_compatibility(rtn
);
5962 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
5964 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
5967 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
5973 BUG_ON(vcpu
->kvm
== NULL
);
5976 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
5977 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
5978 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5980 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
5982 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
5987 vcpu
->arch
.pio_data
= page_address(page
);
5989 kvm_init_tsc_catchup(vcpu
, max_tsc_khz
);
5991 r
= kvm_mmu_create(vcpu
);
5993 goto fail_free_pio_data
;
5995 if (irqchip_in_kernel(kvm
)) {
5996 r
= kvm_create_lapic(vcpu
);
5998 goto fail_mmu_destroy
;
6001 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
6003 if (!vcpu
->arch
.mce_banks
) {
6005 goto fail_free_lapic
;
6007 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
6009 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
6010 goto fail_free_mce_banks
;
6012 kvm_async_pf_hash_reset(vcpu
);
6016 fail_free_mce_banks
:
6017 kfree(vcpu
->arch
.mce_banks
);
6019 kvm_free_lapic(vcpu
);
6021 kvm_mmu_destroy(vcpu
);
6023 free_page((unsigned long)vcpu
->arch
.pio_data
);
6028 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6032 kvm_pmu_destroy(vcpu
);
6033 kfree(vcpu
->arch
.mce_banks
);
6034 kvm_free_lapic(vcpu
);
6035 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6036 kvm_mmu_destroy(vcpu
);
6037 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6038 free_page((unsigned long)vcpu
->arch
.pio_data
);
6041 int kvm_arch_init_vm(struct kvm
*kvm
)
6043 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6044 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6046 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6047 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6049 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6054 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6057 kvm_mmu_unload(vcpu
);
6061 static void kvm_free_vcpus(struct kvm
*kvm
)
6064 struct kvm_vcpu
*vcpu
;
6067 * Unpin any mmu pages first.
6069 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6070 kvm_clear_async_pf_completion_queue(vcpu
);
6071 kvm_unload_vcpu_mmu(vcpu
);
6073 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6074 kvm_arch_vcpu_free(vcpu
);
6076 mutex_lock(&kvm
->lock
);
6077 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6078 kvm
->vcpus
[i
] = NULL
;
6080 atomic_set(&kvm
->online_vcpus
, 0);
6081 mutex_unlock(&kvm
->lock
);
6084 void kvm_arch_sync_events(struct kvm
*kvm
)
6086 kvm_free_all_assigned_devices(kvm
);
6090 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6092 kvm_iommu_unmap_guest(kvm
);
6093 kfree(kvm
->arch
.vpic
);
6094 kfree(kvm
->arch
.vioapic
);
6095 kvm_free_vcpus(kvm
);
6096 if (kvm
->arch
.apic_access_page
)
6097 put_page(kvm
->arch
.apic_access_page
);
6098 if (kvm
->arch
.ept_identity_pagetable
)
6099 put_page(kvm
->arch
.ept_identity_pagetable
);
6102 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6103 struct kvm_memory_slot
*memslot
,
6104 struct kvm_memory_slot old
,
6105 struct kvm_userspace_memory_region
*mem
,
6108 int npages
= memslot
->npages
;
6109 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6111 /* Prevent internal slot pages from being moved by fork()/COW. */
6112 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6113 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6115 /*To keep backward compatibility with older userspace,
6116 *x86 needs to hanlde !user_alloc case.
6119 if (npages
&& !old
.rmap
) {
6120 unsigned long userspace_addr
;
6122 down_write(¤t
->mm
->mmap_sem
);
6123 userspace_addr
= do_mmap(NULL
, 0,
6125 PROT_READ
| PROT_WRITE
,
6128 up_write(¤t
->mm
->mmap_sem
);
6130 if (IS_ERR((void *)userspace_addr
))
6131 return PTR_ERR((void *)userspace_addr
);
6133 memslot
->userspace_addr
= userspace_addr
;
6141 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6142 struct kvm_userspace_memory_region
*mem
,
6143 struct kvm_memory_slot old
,
6147 int nr_mmu_pages
= 0, npages
= mem
->memory_size
>> PAGE_SHIFT
;
6149 if (!user_alloc
&& !old
.user_alloc
&& old
.rmap
&& !npages
) {
6152 down_write(¤t
->mm
->mmap_sem
);
6153 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
6154 old
.npages
* PAGE_SIZE
);
6155 up_write(¤t
->mm
->mmap_sem
);
6158 "kvm_vm_ioctl_set_memory_region: "
6159 "failed to munmap memory\n");
6162 if (!kvm
->arch
.n_requested_mmu_pages
)
6163 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6165 spin_lock(&kvm
->mmu_lock
);
6167 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6168 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6169 spin_unlock(&kvm
->mmu_lock
);
6172 void kvm_arch_flush_shadow(struct kvm
*kvm
)
6174 kvm_mmu_zap_all(kvm
);
6175 kvm_reload_remote_mmus(kvm
);
6178 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6180 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6181 !vcpu
->arch
.apf
.halted
)
6182 || !list_empty_careful(&vcpu
->async_pf
.done
)
6183 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6184 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
6185 (kvm_arch_interrupt_allowed(vcpu
) &&
6186 kvm_cpu_has_interrupt(vcpu
));
6189 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
6192 int cpu
= vcpu
->cpu
;
6194 if (waitqueue_active(&vcpu
->wq
)) {
6195 wake_up_interruptible(&vcpu
->wq
);
6196 ++vcpu
->stat
.halt_wakeup
;
6200 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
6201 if (kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
)
6202 smp_send_reschedule(cpu
);
6206 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6208 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6211 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6213 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6214 get_segment_base(vcpu
, VCPU_SREG_CS
);
6216 return current_rip
== linear_rip
;
6218 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6220 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6222 unsigned long rflags
;
6224 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6225 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6226 rflags
&= ~X86_EFLAGS_TF
;
6229 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6231 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6233 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6234 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6235 rflags
|= X86_EFLAGS_TF
;
6236 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6237 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6239 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6241 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6245 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
6246 is_error_page(work
->page
))
6249 r
= kvm_mmu_reload(vcpu
);
6253 if (!vcpu
->arch
.mmu
.direct_map
&&
6254 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
6257 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
6260 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
6262 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
6265 static inline u32
kvm_async_pf_next_probe(u32 key
)
6267 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
6270 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6272 u32 key
= kvm_async_pf_hash_fn(gfn
);
6274 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
6275 key
= kvm_async_pf_next_probe(key
);
6277 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
6280 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6283 u32 key
= kvm_async_pf_hash_fn(gfn
);
6285 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
6286 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
6287 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
6288 key
= kvm_async_pf_next_probe(key
);
6293 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6295 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
6298 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6302 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
6304 vcpu
->arch
.apf
.gfns
[i
] = ~0;
6306 j
= kvm_async_pf_next_probe(j
);
6307 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
6309 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
6311 * k lies cyclically in ]i,j]
6313 * |....j i.k.| or |.k..j i...|
6315 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
6316 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
6321 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
6324 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
6328 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
6329 struct kvm_async_pf
*work
)
6331 struct x86_exception fault
;
6333 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
6334 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6336 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
6337 (vcpu
->arch
.apf
.send_user_only
&&
6338 kvm_x86_ops
->get_cpl(vcpu
) == 0))
6339 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
6340 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
6341 fault
.vector
= PF_VECTOR
;
6342 fault
.error_code_valid
= true;
6343 fault
.error_code
= 0;
6344 fault
.nested_page_fault
= false;
6345 fault
.address
= work
->arch
.token
;
6346 kvm_inject_page_fault(vcpu
, &fault
);
6350 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
6351 struct kvm_async_pf
*work
)
6353 struct x86_exception fault
;
6355 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
6356 if (is_error_page(work
->page
))
6357 work
->arch
.token
= ~0; /* broadcast wakeup */
6359 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6361 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
6362 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
6363 fault
.vector
= PF_VECTOR
;
6364 fault
.error_code_valid
= true;
6365 fault
.error_code
= 0;
6366 fault
.nested_page_fault
= false;
6367 fault
.address
= work
->arch
.token
;
6368 kvm_inject_page_fault(vcpu
, &fault
);
6370 vcpu
->arch
.apf
.halted
= false;
6373 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
6375 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
6378 return !kvm_event_needs_reinjection(vcpu
) &&
6379 kvm_x86_ops
->interrupt_allowed(vcpu
);
6382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
6383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
6384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
6385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
6386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
6387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
6388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
6389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
6390 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
6391 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
6392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
6393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);