2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 static int ext4_split_extent(handle_t
*handle
,
50 struct ext4_ext_path
*path
,
51 struct ext4_map_blocks
*map
,
55 static int ext4_ext_truncate_extend_restart(handle_t
*handle
,
61 if (!ext4_handle_valid(handle
))
63 if (handle
->h_buffer_credits
> needed
)
65 err
= ext4_journal_extend(handle
, needed
);
68 err
= ext4_truncate_restart_trans(handle
, inode
, needed
);
80 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
81 struct ext4_ext_path
*path
)
84 /* path points to block */
85 return ext4_journal_get_write_access(handle
, path
->p_bh
);
87 /* path points to leaf/index in inode body */
88 /* we use in-core data, no need to protect them */
98 #define ext4_ext_dirty(handle, inode, path) \
99 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
100 static int __ext4_ext_dirty(const char *where
, unsigned int line
,
101 handle_t
*handle
, struct inode
*inode
,
102 struct ext4_ext_path
*path
)
106 /* path points to block */
107 err
= __ext4_handle_dirty_metadata(where
, line
, handle
,
110 /* path points to leaf/index in inode body */
111 err
= ext4_mark_inode_dirty(handle
, inode
);
116 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
117 struct ext4_ext_path
*path
,
121 int depth
= path
->p_depth
;
122 struct ext4_extent
*ex
;
125 * Try to predict block placement assuming that we are
126 * filling in a file which will eventually be
127 * non-sparse --- i.e., in the case of libbfd writing
128 * an ELF object sections out-of-order but in a way
129 * the eventually results in a contiguous object or
130 * executable file, or some database extending a table
131 * space file. However, this is actually somewhat
132 * non-ideal if we are writing a sparse file such as
133 * qemu or KVM writing a raw image file that is going
134 * to stay fairly sparse, since it will end up
135 * fragmenting the file system's free space. Maybe we
136 * should have some hueristics or some way to allow
137 * userspace to pass a hint to file system,
138 * especially if the latter case turns out to be
141 ex
= path
[depth
].p_ext
;
143 ext4_fsblk_t ext_pblk
= ext4_ext_pblock(ex
);
144 ext4_lblk_t ext_block
= le32_to_cpu(ex
->ee_block
);
146 if (block
> ext_block
)
147 return ext_pblk
+ (block
- ext_block
);
149 return ext_pblk
- (ext_block
- block
);
152 /* it looks like index is empty;
153 * try to find starting block from index itself */
154 if (path
[depth
].p_bh
)
155 return path
[depth
].p_bh
->b_blocknr
;
158 /* OK. use inode's group */
159 return ext4_inode_to_goal_block(inode
);
163 * Allocation for a meta data block
166 ext4_ext_new_meta_block(handle_t
*handle
, struct inode
*inode
,
167 struct ext4_ext_path
*path
,
168 struct ext4_extent
*ex
, int *err
, unsigned int flags
)
170 ext4_fsblk_t goal
, newblock
;
172 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
173 newblock
= ext4_new_meta_blocks(handle
, inode
, goal
, flags
,
178 static inline int ext4_ext_space_block(struct inode
*inode
, int check
)
182 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
183 / sizeof(struct ext4_extent
);
184 #ifdef AGGRESSIVE_TEST
185 if (!check
&& size
> 6)
191 static inline int ext4_ext_space_block_idx(struct inode
*inode
, int check
)
195 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
196 / sizeof(struct ext4_extent_idx
);
197 #ifdef AGGRESSIVE_TEST
198 if (!check
&& size
> 5)
204 static inline int ext4_ext_space_root(struct inode
*inode
, int check
)
208 size
= sizeof(EXT4_I(inode
)->i_data
);
209 size
-= sizeof(struct ext4_extent_header
);
210 size
/= sizeof(struct ext4_extent
);
211 #ifdef AGGRESSIVE_TEST
212 if (!check
&& size
> 3)
218 static inline int ext4_ext_space_root_idx(struct inode
*inode
, int check
)
222 size
= sizeof(EXT4_I(inode
)->i_data
);
223 size
-= sizeof(struct ext4_extent_header
);
224 size
/= sizeof(struct ext4_extent_idx
);
225 #ifdef AGGRESSIVE_TEST
226 if (!check
&& size
> 4)
233 * Calculate the number of metadata blocks needed
234 * to allocate @blocks
235 * Worse case is one block per extent
237 int ext4_ext_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
239 struct ext4_inode_info
*ei
= EXT4_I(inode
);
242 idxs
= ((inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
243 / sizeof(struct ext4_extent_idx
));
246 * If the new delayed allocation block is contiguous with the
247 * previous da block, it can share index blocks with the
248 * previous block, so we only need to allocate a new index
249 * block every idxs leaf blocks. At ldxs**2 blocks, we need
250 * an additional index block, and at ldxs**3 blocks, yet
251 * another index blocks.
253 if (ei
->i_da_metadata_calc_len
&&
254 ei
->i_da_metadata_calc_last_lblock
+1 == lblock
) {
257 if ((ei
->i_da_metadata_calc_len
% idxs
) == 0)
259 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
)) == 0)
261 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
*idxs
)) == 0) {
263 ei
->i_da_metadata_calc_len
= 0;
265 ei
->i_da_metadata_calc_len
++;
266 ei
->i_da_metadata_calc_last_lblock
++;
271 * In the worst case we need a new set of index blocks at
272 * every level of the inode's extent tree.
274 ei
->i_da_metadata_calc_len
= 1;
275 ei
->i_da_metadata_calc_last_lblock
= lblock
;
276 return ext_depth(inode
) + 1;
280 ext4_ext_max_entries(struct inode
*inode
, int depth
)
284 if (depth
== ext_depth(inode
)) {
286 max
= ext4_ext_space_root(inode
, 1);
288 max
= ext4_ext_space_root_idx(inode
, 1);
291 max
= ext4_ext_space_block(inode
, 1);
293 max
= ext4_ext_space_block_idx(inode
, 1);
299 static int ext4_valid_extent(struct inode
*inode
, struct ext4_extent
*ext
)
301 ext4_fsblk_t block
= ext4_ext_pblock(ext
);
302 int len
= ext4_ext_get_actual_len(ext
);
304 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, len
);
307 static int ext4_valid_extent_idx(struct inode
*inode
,
308 struct ext4_extent_idx
*ext_idx
)
310 ext4_fsblk_t block
= ext4_idx_pblock(ext_idx
);
312 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, 1);
315 static int ext4_valid_extent_entries(struct inode
*inode
,
316 struct ext4_extent_header
*eh
,
319 unsigned short entries
;
320 if (eh
->eh_entries
== 0)
323 entries
= le16_to_cpu(eh
->eh_entries
);
327 struct ext4_extent
*ext
= EXT_FIRST_EXTENT(eh
);
329 if (!ext4_valid_extent(inode
, ext
))
335 struct ext4_extent_idx
*ext_idx
= EXT_FIRST_INDEX(eh
);
337 if (!ext4_valid_extent_idx(inode
, ext_idx
))
346 static int __ext4_ext_check(const char *function
, unsigned int line
,
347 struct inode
*inode
, struct ext4_extent_header
*eh
,
350 const char *error_msg
;
353 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
354 error_msg
= "invalid magic";
357 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
358 error_msg
= "unexpected eh_depth";
361 if (unlikely(eh
->eh_max
== 0)) {
362 error_msg
= "invalid eh_max";
365 max
= ext4_ext_max_entries(inode
, depth
);
366 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
367 error_msg
= "too large eh_max";
370 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
371 error_msg
= "invalid eh_entries";
374 if (!ext4_valid_extent_entries(inode
, eh
, depth
)) {
375 error_msg
= "invalid extent entries";
381 ext4_error_inode(inode
, function
, line
, 0,
382 "bad header/extent: %s - magic %x, "
383 "entries %u, max %u(%u), depth %u(%u)",
384 error_msg
, le16_to_cpu(eh
->eh_magic
),
385 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
386 max
, le16_to_cpu(eh
->eh_depth
), depth
);
391 #define ext4_ext_check(inode, eh, depth) \
392 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
394 int ext4_ext_check_inode(struct inode
*inode
)
396 return ext4_ext_check(inode
, ext_inode_hdr(inode
), ext_depth(inode
));
400 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
402 int k
, l
= path
->p_depth
;
405 for (k
= 0; k
<= l
; k
++, path
++) {
407 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
408 ext4_idx_pblock(path
->p_idx
));
409 } else if (path
->p_ext
) {
410 ext_debug(" %d:[%d]%d:%llu ",
411 le32_to_cpu(path
->p_ext
->ee_block
),
412 ext4_ext_is_uninitialized(path
->p_ext
),
413 ext4_ext_get_actual_len(path
->p_ext
),
414 ext4_ext_pblock(path
->p_ext
));
421 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
423 int depth
= ext_depth(inode
);
424 struct ext4_extent_header
*eh
;
425 struct ext4_extent
*ex
;
431 eh
= path
[depth
].p_hdr
;
432 ex
= EXT_FIRST_EXTENT(eh
);
434 ext_debug("Displaying leaf extents for inode %lu\n", inode
->i_ino
);
436 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
437 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex
->ee_block
),
438 ext4_ext_is_uninitialized(ex
),
439 ext4_ext_get_actual_len(ex
), ext4_ext_pblock(ex
));
444 static void ext4_ext_show_move(struct inode
*inode
, struct ext4_ext_path
*path
,
445 ext4_fsblk_t newblock
, int level
)
447 int depth
= ext_depth(inode
);
448 struct ext4_extent
*ex
;
450 if (depth
!= level
) {
451 struct ext4_extent_idx
*idx
;
452 idx
= path
[level
].p_idx
;
453 while (idx
<= EXT_MAX_INDEX(path
[level
].p_hdr
)) {
454 ext_debug("%d: move %d:%llu in new index %llu\n", level
,
455 le32_to_cpu(idx
->ei_block
),
456 ext4_idx_pblock(idx
),
464 ex
= path
[depth
].p_ext
;
465 while (ex
<= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
466 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
467 le32_to_cpu(ex
->ee_block
),
469 ext4_ext_is_uninitialized(ex
),
470 ext4_ext_get_actual_len(ex
),
477 #define ext4_ext_show_path(inode, path)
478 #define ext4_ext_show_leaf(inode, path)
479 #define ext4_ext_show_move(inode, path, newblock, level)
482 void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
484 int depth
= path
->p_depth
;
487 for (i
= 0; i
<= depth
; i
++, path
++)
495 * ext4_ext_binsearch_idx:
496 * binary search for the closest index of the given block
497 * the header must be checked before calling this
500 ext4_ext_binsearch_idx(struct inode
*inode
,
501 struct ext4_ext_path
*path
, ext4_lblk_t block
)
503 struct ext4_extent_header
*eh
= path
->p_hdr
;
504 struct ext4_extent_idx
*r
, *l
, *m
;
507 ext_debug("binsearch for %u(idx): ", block
);
509 l
= EXT_FIRST_INDEX(eh
) + 1;
510 r
= EXT_LAST_INDEX(eh
);
513 if (block
< le32_to_cpu(m
->ei_block
))
517 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
518 m
, le32_to_cpu(m
->ei_block
),
519 r
, le32_to_cpu(r
->ei_block
));
523 ext_debug(" -> %d->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
524 ext4_idx_pblock(path
->p_idx
));
526 #ifdef CHECK_BINSEARCH
528 struct ext4_extent_idx
*chix
, *ix
;
531 chix
= ix
= EXT_FIRST_INDEX(eh
);
532 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
534 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
535 printk(KERN_DEBUG
"k=%d, ix=0x%p, "
537 ix
, EXT_FIRST_INDEX(eh
));
538 printk(KERN_DEBUG
"%u <= %u\n",
539 le32_to_cpu(ix
->ei_block
),
540 le32_to_cpu(ix
[-1].ei_block
));
542 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
543 <= le32_to_cpu(ix
[-1].ei_block
));
544 if (block
< le32_to_cpu(ix
->ei_block
))
548 BUG_ON(chix
!= path
->p_idx
);
555 * ext4_ext_binsearch:
556 * binary search for closest extent of the given block
557 * the header must be checked before calling this
560 ext4_ext_binsearch(struct inode
*inode
,
561 struct ext4_ext_path
*path
, ext4_lblk_t block
)
563 struct ext4_extent_header
*eh
= path
->p_hdr
;
564 struct ext4_extent
*r
, *l
, *m
;
566 if (eh
->eh_entries
== 0) {
568 * this leaf is empty:
569 * we get such a leaf in split/add case
574 ext_debug("binsearch for %u: ", block
);
576 l
= EXT_FIRST_EXTENT(eh
) + 1;
577 r
= EXT_LAST_EXTENT(eh
);
581 if (block
< le32_to_cpu(m
->ee_block
))
585 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
586 m
, le32_to_cpu(m
->ee_block
),
587 r
, le32_to_cpu(r
->ee_block
));
591 ext_debug(" -> %d:%llu:[%d]%d ",
592 le32_to_cpu(path
->p_ext
->ee_block
),
593 ext4_ext_pblock(path
->p_ext
),
594 ext4_ext_is_uninitialized(path
->p_ext
),
595 ext4_ext_get_actual_len(path
->p_ext
));
597 #ifdef CHECK_BINSEARCH
599 struct ext4_extent
*chex
, *ex
;
602 chex
= ex
= EXT_FIRST_EXTENT(eh
);
603 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
604 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
605 <= le32_to_cpu(ex
[-1].ee_block
));
606 if (block
< le32_to_cpu(ex
->ee_block
))
610 BUG_ON(chex
!= path
->p_ext
);
616 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
618 struct ext4_extent_header
*eh
;
620 eh
= ext_inode_hdr(inode
);
623 eh
->eh_magic
= EXT4_EXT_MAGIC
;
624 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
, 0));
625 ext4_mark_inode_dirty(handle
, inode
);
626 ext4_ext_invalidate_cache(inode
);
630 struct ext4_ext_path
*
631 ext4_ext_find_extent(struct inode
*inode
, ext4_lblk_t block
,
632 struct ext4_ext_path
*path
)
634 struct ext4_extent_header
*eh
;
635 struct buffer_head
*bh
;
636 short int depth
, i
, ppos
= 0, alloc
= 0;
638 eh
= ext_inode_hdr(inode
);
639 depth
= ext_depth(inode
);
641 /* account possible depth increase */
643 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
646 return ERR_PTR(-ENOMEM
);
653 /* walk through the tree */
655 int need_to_validate
= 0;
657 ext_debug("depth %d: num %d, max %d\n",
658 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
660 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
661 path
[ppos
].p_block
= ext4_idx_pblock(path
[ppos
].p_idx
);
662 path
[ppos
].p_depth
= i
;
663 path
[ppos
].p_ext
= NULL
;
665 bh
= sb_getblk(inode
->i_sb
, path
[ppos
].p_block
);
668 if (!bh_uptodate_or_lock(bh
)) {
669 trace_ext4_ext_load_extent(inode
, block
,
671 if (bh_submit_read(bh
) < 0) {
675 /* validate the extent entries */
676 need_to_validate
= 1;
678 eh
= ext_block_hdr(bh
);
680 if (unlikely(ppos
> depth
)) {
682 EXT4_ERROR_INODE(inode
,
683 "ppos %d > depth %d", ppos
, depth
);
686 path
[ppos
].p_bh
= bh
;
687 path
[ppos
].p_hdr
= eh
;
690 if (need_to_validate
&& ext4_ext_check(inode
, eh
, i
))
694 path
[ppos
].p_depth
= i
;
695 path
[ppos
].p_ext
= NULL
;
696 path
[ppos
].p_idx
= NULL
;
699 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
700 /* if not an empty leaf */
701 if (path
[ppos
].p_ext
)
702 path
[ppos
].p_block
= ext4_ext_pblock(path
[ppos
].p_ext
);
704 ext4_ext_show_path(inode
, path
);
709 ext4_ext_drop_refs(path
);
712 return ERR_PTR(-EIO
);
716 * ext4_ext_insert_index:
717 * insert new index [@logical;@ptr] into the block at @curp;
718 * check where to insert: before @curp or after @curp
720 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
721 struct ext4_ext_path
*curp
,
722 int logical
, ext4_fsblk_t ptr
)
724 struct ext4_extent_idx
*ix
;
727 err
= ext4_ext_get_access(handle
, inode
, curp
);
731 if (unlikely(logical
== le32_to_cpu(curp
->p_idx
->ei_block
))) {
732 EXT4_ERROR_INODE(inode
,
733 "logical %d == ei_block %d!",
734 logical
, le32_to_cpu(curp
->p_idx
->ei_block
));
738 if (unlikely(le16_to_cpu(curp
->p_hdr
->eh_entries
)
739 >= le16_to_cpu(curp
->p_hdr
->eh_max
))) {
740 EXT4_ERROR_INODE(inode
,
741 "eh_entries %d >= eh_max %d!",
742 le16_to_cpu(curp
->p_hdr
->eh_entries
),
743 le16_to_cpu(curp
->p_hdr
->eh_max
));
747 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
749 ext_debug("insert new index %d after: %llu\n", logical
, ptr
);
750 ix
= curp
->p_idx
+ 1;
753 ext_debug("insert new index %d before: %llu\n", logical
, ptr
);
757 len
= EXT_LAST_INDEX(curp
->p_hdr
) - ix
+ 1;
760 ext_debug("insert new index %d: "
761 "move %d indices from 0x%p to 0x%p\n",
762 logical
, len
, ix
, ix
+ 1);
763 memmove(ix
+ 1, ix
, len
* sizeof(struct ext4_extent_idx
));
766 if (unlikely(ix
> EXT_MAX_INDEX(curp
->p_hdr
))) {
767 EXT4_ERROR_INODE(inode
, "ix > EXT_MAX_INDEX!");
771 ix
->ei_block
= cpu_to_le32(logical
);
772 ext4_idx_store_pblock(ix
, ptr
);
773 le16_add_cpu(&curp
->p_hdr
->eh_entries
, 1);
775 if (unlikely(ix
> EXT_LAST_INDEX(curp
->p_hdr
))) {
776 EXT4_ERROR_INODE(inode
, "ix > EXT_LAST_INDEX!");
780 err
= ext4_ext_dirty(handle
, inode
, curp
);
781 ext4_std_error(inode
->i_sb
, err
);
788 * inserts new subtree into the path, using free index entry
790 * - allocates all needed blocks (new leaf and all intermediate index blocks)
791 * - makes decision where to split
792 * - moves remaining extents and index entries (right to the split point)
793 * into the newly allocated blocks
794 * - initializes subtree
796 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
798 struct ext4_ext_path
*path
,
799 struct ext4_extent
*newext
, int at
)
801 struct buffer_head
*bh
= NULL
;
802 int depth
= ext_depth(inode
);
803 struct ext4_extent_header
*neh
;
804 struct ext4_extent_idx
*fidx
;
806 ext4_fsblk_t newblock
, oldblock
;
808 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
811 /* make decision: where to split? */
812 /* FIXME: now decision is simplest: at current extent */
814 /* if current leaf will be split, then we should use
815 * border from split point */
816 if (unlikely(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
))) {
817 EXT4_ERROR_INODE(inode
, "p_ext > EXT_MAX_EXTENT!");
820 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
821 border
= path
[depth
].p_ext
[1].ee_block
;
822 ext_debug("leaf will be split."
823 " next leaf starts at %d\n",
824 le32_to_cpu(border
));
826 border
= newext
->ee_block
;
827 ext_debug("leaf will be added."
828 " next leaf starts at %d\n",
829 le32_to_cpu(border
));
833 * If error occurs, then we break processing
834 * and mark filesystem read-only. index won't
835 * be inserted and tree will be in consistent
836 * state. Next mount will repair buffers too.
840 * Get array to track all allocated blocks.
841 * We need this to handle errors and free blocks
844 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
848 /* allocate all needed blocks */
849 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
850 for (a
= 0; a
< depth
- at
; a
++) {
851 newblock
= ext4_ext_new_meta_block(handle
, inode
, path
,
852 newext
, &err
, flags
);
855 ablocks
[a
] = newblock
;
858 /* initialize new leaf */
859 newblock
= ablocks
[--a
];
860 if (unlikely(newblock
== 0)) {
861 EXT4_ERROR_INODE(inode
, "newblock == 0!");
865 bh
= sb_getblk(inode
->i_sb
, newblock
);
872 err
= ext4_journal_get_create_access(handle
, bh
);
876 neh
= ext_block_hdr(bh
);
878 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
879 neh
->eh_magic
= EXT4_EXT_MAGIC
;
882 /* move remainder of path[depth] to the new leaf */
883 if (unlikely(path
[depth
].p_hdr
->eh_entries
!=
884 path
[depth
].p_hdr
->eh_max
)) {
885 EXT4_ERROR_INODE(inode
, "eh_entries %d != eh_max %d!",
886 path
[depth
].p_hdr
->eh_entries
,
887 path
[depth
].p_hdr
->eh_max
);
891 /* start copy from next extent */
892 m
= EXT_MAX_EXTENT(path
[depth
].p_hdr
) - path
[depth
].p_ext
++;
893 ext4_ext_show_move(inode
, path
, newblock
, depth
);
895 struct ext4_extent
*ex
;
896 ex
= EXT_FIRST_EXTENT(neh
);
897 memmove(ex
, path
[depth
].p_ext
, sizeof(struct ext4_extent
) * m
);
898 le16_add_cpu(&neh
->eh_entries
, m
);
901 set_buffer_uptodate(bh
);
904 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
910 /* correct old leaf */
912 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
915 le16_add_cpu(&path
[depth
].p_hdr
->eh_entries
, -m
);
916 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
922 /* create intermediate indexes */
924 if (unlikely(k
< 0)) {
925 EXT4_ERROR_INODE(inode
, "k %d < 0!", k
);
930 ext_debug("create %d intermediate indices\n", k
);
931 /* insert new index into current index block */
932 /* current depth stored in i var */
936 newblock
= ablocks
[--a
];
937 bh
= sb_getblk(inode
->i_sb
, newblock
);
944 err
= ext4_journal_get_create_access(handle
, bh
);
948 neh
= ext_block_hdr(bh
);
949 neh
->eh_entries
= cpu_to_le16(1);
950 neh
->eh_magic
= EXT4_EXT_MAGIC
;
951 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
952 neh
->eh_depth
= cpu_to_le16(depth
- i
);
953 fidx
= EXT_FIRST_INDEX(neh
);
954 fidx
->ei_block
= border
;
955 ext4_idx_store_pblock(fidx
, oldblock
);
957 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
958 i
, newblock
, le32_to_cpu(border
), oldblock
);
960 /* move remainder of path[i] to the new index block */
961 if (unlikely(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
962 EXT_LAST_INDEX(path
[i
].p_hdr
))) {
963 EXT4_ERROR_INODE(inode
,
964 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
965 le32_to_cpu(path
[i
].p_ext
->ee_block
));
969 /* start copy indexes */
970 m
= EXT_MAX_INDEX(path
[i
].p_hdr
) - path
[i
].p_idx
++;
971 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
972 EXT_MAX_INDEX(path
[i
].p_hdr
));
973 ext4_ext_show_move(inode
, path
, newblock
, i
);
975 memmove(++fidx
, path
[i
].p_idx
,
976 sizeof(struct ext4_extent_idx
) * m
);
977 le16_add_cpu(&neh
->eh_entries
, m
);
979 set_buffer_uptodate(bh
);
982 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
988 /* correct old index */
990 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
993 le16_add_cpu(&path
[i
].p_hdr
->eh_entries
, -m
);
994 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
1002 /* insert new index */
1003 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
1004 le32_to_cpu(border
), newblock
);
1008 if (buffer_locked(bh
))
1014 /* free all allocated blocks in error case */
1015 for (i
= 0; i
< depth
; i
++) {
1018 ext4_free_blocks(handle
, inode
, NULL
, ablocks
[i
], 1,
1019 EXT4_FREE_BLOCKS_METADATA
);
1028 * ext4_ext_grow_indepth:
1029 * implements tree growing procedure:
1030 * - allocates new block
1031 * - moves top-level data (index block or leaf) into the new block
1032 * - initializes new top-level, creating index that points to the
1033 * just created block
1035 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
1037 struct ext4_extent
*newext
)
1039 struct ext4_extent_header
*neh
;
1040 struct buffer_head
*bh
;
1041 ext4_fsblk_t newblock
;
1044 newblock
= ext4_ext_new_meta_block(handle
, inode
, NULL
,
1045 newext
, &err
, flags
);
1049 bh
= sb_getblk(inode
->i_sb
, newblock
);
1052 ext4_std_error(inode
->i_sb
, err
);
1057 err
= ext4_journal_get_create_access(handle
, bh
);
1063 /* move top-level index/leaf into new block */
1064 memmove(bh
->b_data
, EXT4_I(inode
)->i_data
,
1065 sizeof(EXT4_I(inode
)->i_data
));
1067 /* set size of new block */
1068 neh
= ext_block_hdr(bh
);
1069 /* old root could have indexes or leaves
1070 * so calculate e_max right way */
1071 if (ext_depth(inode
))
1072 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1074 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
1075 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1076 set_buffer_uptodate(bh
);
1079 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1083 /* Update top-level index: num,max,pointer */
1084 neh
= ext_inode_hdr(inode
);
1085 neh
->eh_entries
= cpu_to_le16(1);
1086 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh
), newblock
);
1087 if (neh
->eh_depth
== 0) {
1088 /* Root extent block becomes index block */
1089 neh
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
, 0));
1090 EXT_FIRST_INDEX(neh
)->ei_block
=
1091 EXT_FIRST_EXTENT(neh
)->ee_block
;
1093 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1094 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
1095 le32_to_cpu(EXT_FIRST_INDEX(neh
)->ei_block
),
1096 ext4_idx_pblock(EXT_FIRST_INDEX(neh
)));
1098 neh
->eh_depth
= cpu_to_le16(le16_to_cpu(neh
->eh_depth
) + 1);
1099 ext4_mark_inode_dirty(handle
, inode
);
1107 * ext4_ext_create_new_leaf:
1108 * finds empty index and adds new leaf.
1109 * if no free index is found, then it requests in-depth growing.
1111 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
1113 struct ext4_ext_path
*path
,
1114 struct ext4_extent
*newext
)
1116 struct ext4_ext_path
*curp
;
1117 int depth
, i
, err
= 0;
1120 i
= depth
= ext_depth(inode
);
1122 /* walk up to the tree and look for free index entry */
1123 curp
= path
+ depth
;
1124 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
1129 /* we use already allocated block for index block,
1130 * so subsequent data blocks should be contiguous */
1131 if (EXT_HAS_FREE_INDEX(curp
)) {
1132 /* if we found index with free entry, then use that
1133 * entry: create all needed subtree and add new leaf */
1134 err
= ext4_ext_split(handle
, inode
, flags
, path
, newext
, i
);
1139 ext4_ext_drop_refs(path
);
1140 path
= ext4_ext_find_extent(inode
,
1141 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1144 err
= PTR_ERR(path
);
1146 /* tree is full, time to grow in depth */
1147 err
= ext4_ext_grow_indepth(handle
, inode
, flags
, newext
);
1152 ext4_ext_drop_refs(path
);
1153 path
= ext4_ext_find_extent(inode
,
1154 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1157 err
= PTR_ERR(path
);
1162 * only first (depth 0 -> 1) produces free space;
1163 * in all other cases we have to split the grown tree
1165 depth
= ext_depth(inode
);
1166 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1167 /* now we need to split */
1177 * search the closest allocated block to the left for *logical
1178 * and returns it at @logical + it's physical address at @phys
1179 * if *logical is the smallest allocated block, the function
1180 * returns 0 at @phys
1181 * return value contains 0 (success) or error code
1183 static int ext4_ext_search_left(struct inode
*inode
,
1184 struct ext4_ext_path
*path
,
1185 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1187 struct ext4_extent_idx
*ix
;
1188 struct ext4_extent
*ex
;
1191 if (unlikely(path
== NULL
)) {
1192 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1195 depth
= path
->p_depth
;
1198 if (depth
== 0 && path
->p_ext
== NULL
)
1201 /* usually extent in the path covers blocks smaller
1202 * then *logical, but it can be that extent is the
1203 * first one in the file */
1205 ex
= path
[depth
].p_ext
;
1206 ee_len
= ext4_ext_get_actual_len(ex
);
1207 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1208 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1209 EXT4_ERROR_INODE(inode
,
1210 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1211 *logical
, le32_to_cpu(ex
->ee_block
));
1214 while (--depth
>= 0) {
1215 ix
= path
[depth
].p_idx
;
1216 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1217 EXT4_ERROR_INODE(inode
,
1218 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1219 ix
!= NULL
? le32_to_cpu(ix
->ei_block
) : 0,
1220 EXT_FIRST_INDEX(path
[depth
].p_hdr
) != NULL
?
1221 le32_to_cpu(EXT_FIRST_INDEX(path
[depth
].p_hdr
)->ei_block
) : 0,
1229 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1230 EXT4_ERROR_INODE(inode
,
1231 "logical %d < ee_block %d + ee_len %d!",
1232 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1236 *logical
= le32_to_cpu(ex
->ee_block
) + ee_len
- 1;
1237 *phys
= ext4_ext_pblock(ex
) + ee_len
- 1;
1242 * search the closest allocated block to the right for *logical
1243 * and returns it at @logical + it's physical address at @phys
1244 * if *logical is the largest allocated block, the function
1245 * returns 0 at @phys
1246 * return value contains 0 (success) or error code
1248 static int ext4_ext_search_right(struct inode
*inode
,
1249 struct ext4_ext_path
*path
,
1250 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
,
1251 struct ext4_extent
**ret_ex
)
1253 struct buffer_head
*bh
= NULL
;
1254 struct ext4_extent_header
*eh
;
1255 struct ext4_extent_idx
*ix
;
1256 struct ext4_extent
*ex
;
1258 int depth
; /* Note, NOT eh_depth; depth from top of tree */
1261 if (unlikely(path
== NULL
)) {
1262 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1265 depth
= path
->p_depth
;
1268 if (depth
== 0 && path
->p_ext
== NULL
)
1271 /* usually extent in the path covers blocks smaller
1272 * then *logical, but it can be that extent is the
1273 * first one in the file */
1275 ex
= path
[depth
].p_ext
;
1276 ee_len
= ext4_ext_get_actual_len(ex
);
1277 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1278 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1279 EXT4_ERROR_INODE(inode
,
1280 "first_extent(path[%d].p_hdr) != ex",
1284 while (--depth
>= 0) {
1285 ix
= path
[depth
].p_idx
;
1286 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1287 EXT4_ERROR_INODE(inode
,
1288 "ix != EXT_FIRST_INDEX *logical %d!",
1296 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1297 EXT4_ERROR_INODE(inode
,
1298 "logical %d < ee_block %d + ee_len %d!",
1299 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1303 if (ex
!= EXT_LAST_EXTENT(path
[depth
].p_hdr
)) {
1304 /* next allocated block in this leaf */
1309 /* go up and search for index to the right */
1310 while (--depth
>= 0) {
1311 ix
= path
[depth
].p_idx
;
1312 if (ix
!= EXT_LAST_INDEX(path
[depth
].p_hdr
))
1316 /* we've gone up to the root and found no index to the right */
1320 /* we've found index to the right, let's
1321 * follow it and find the closest allocated
1322 * block to the right */
1324 block
= ext4_idx_pblock(ix
);
1325 while (++depth
< path
->p_depth
) {
1326 bh
= sb_bread(inode
->i_sb
, block
);
1329 eh
= ext_block_hdr(bh
);
1330 /* subtract from p_depth to get proper eh_depth */
1331 if (ext4_ext_check(inode
, eh
, path
->p_depth
- depth
)) {
1335 ix
= EXT_FIRST_INDEX(eh
);
1336 block
= ext4_idx_pblock(ix
);
1340 bh
= sb_bread(inode
->i_sb
, block
);
1343 eh
= ext_block_hdr(bh
);
1344 if (ext4_ext_check(inode
, eh
, path
->p_depth
- depth
)) {
1348 ex
= EXT_FIRST_EXTENT(eh
);
1350 *logical
= le32_to_cpu(ex
->ee_block
);
1351 *phys
= ext4_ext_pblock(ex
);
1359 * ext4_ext_next_allocated_block:
1360 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1361 * NOTE: it considers block number from index entry as
1362 * allocated block. Thus, index entries have to be consistent
1366 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1370 BUG_ON(path
== NULL
);
1371 depth
= path
->p_depth
;
1373 if (depth
== 0 && path
->p_ext
== NULL
)
1374 return EXT_MAX_BLOCKS
;
1376 while (depth
>= 0) {
1377 if (depth
== path
->p_depth
) {
1379 if (path
[depth
].p_ext
&&
1380 path
[depth
].p_ext
!=
1381 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1382 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1385 if (path
[depth
].p_idx
!=
1386 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1387 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1392 return EXT_MAX_BLOCKS
;
1396 * ext4_ext_next_leaf_block:
1397 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1399 static ext4_lblk_t
ext4_ext_next_leaf_block(struct ext4_ext_path
*path
)
1403 BUG_ON(path
== NULL
);
1404 depth
= path
->p_depth
;
1406 /* zero-tree has no leaf blocks at all */
1408 return EXT_MAX_BLOCKS
;
1410 /* go to index block */
1413 while (depth
>= 0) {
1414 if (path
[depth
].p_idx
!=
1415 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1416 return (ext4_lblk_t
)
1417 le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1421 return EXT_MAX_BLOCKS
;
1425 * ext4_ext_correct_indexes:
1426 * if leaf gets modified and modified extent is first in the leaf,
1427 * then we have to correct all indexes above.
1428 * TODO: do we need to correct tree in all cases?
1430 static int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1431 struct ext4_ext_path
*path
)
1433 struct ext4_extent_header
*eh
;
1434 int depth
= ext_depth(inode
);
1435 struct ext4_extent
*ex
;
1439 eh
= path
[depth
].p_hdr
;
1440 ex
= path
[depth
].p_ext
;
1442 if (unlikely(ex
== NULL
|| eh
== NULL
)) {
1443 EXT4_ERROR_INODE(inode
,
1444 "ex %p == NULL or eh %p == NULL", ex
, eh
);
1449 /* there is no tree at all */
1453 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1454 /* we correct tree if first leaf got modified only */
1459 * TODO: we need correction if border is smaller than current one
1462 border
= path
[depth
].p_ext
->ee_block
;
1463 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1466 path
[k
].p_idx
->ei_block
= border
;
1467 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1472 /* change all left-side indexes */
1473 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1475 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1478 path
[k
].p_idx
->ei_block
= border
;
1479 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1488 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1489 struct ext4_extent
*ex2
)
1491 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1494 * Make sure that either both extents are uninitialized, or
1497 if (ext4_ext_is_uninitialized(ex1
) ^ ext4_ext_is_uninitialized(ex2
))
1500 if (ext4_ext_is_uninitialized(ex1
))
1501 max_len
= EXT_UNINIT_MAX_LEN
;
1503 max_len
= EXT_INIT_MAX_LEN
;
1505 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1506 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1508 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1509 le32_to_cpu(ex2
->ee_block
))
1513 * To allow future support for preallocated extents to be added
1514 * as an RO_COMPAT feature, refuse to merge to extents if
1515 * this can result in the top bit of ee_len being set.
1517 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1519 #ifdef AGGRESSIVE_TEST
1520 if (ext1_ee_len
>= 4)
1524 if (ext4_ext_pblock(ex1
) + ext1_ee_len
== ext4_ext_pblock(ex2
))
1530 * This function tries to merge the "ex" extent to the next extent in the tree.
1531 * It always tries to merge towards right. If you want to merge towards
1532 * left, pass "ex - 1" as argument instead of "ex".
1533 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1534 * 1 if they got merged.
1536 static int ext4_ext_try_to_merge_right(struct inode
*inode
,
1537 struct ext4_ext_path
*path
,
1538 struct ext4_extent
*ex
)
1540 struct ext4_extent_header
*eh
;
1541 unsigned int depth
, len
;
1543 int uninitialized
= 0;
1545 depth
= ext_depth(inode
);
1546 BUG_ON(path
[depth
].p_hdr
== NULL
);
1547 eh
= path
[depth
].p_hdr
;
1549 while (ex
< EXT_LAST_EXTENT(eh
)) {
1550 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1552 /* merge with next extent! */
1553 if (ext4_ext_is_uninitialized(ex
))
1555 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1556 + ext4_ext_get_actual_len(ex
+ 1));
1558 ext4_ext_mark_uninitialized(ex
);
1560 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1561 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1562 * sizeof(struct ext4_extent
);
1563 memmove(ex
+ 1, ex
+ 2, len
);
1565 le16_add_cpu(&eh
->eh_entries
, -1);
1567 WARN_ON(eh
->eh_entries
== 0);
1568 if (!eh
->eh_entries
)
1569 EXT4_ERROR_INODE(inode
, "eh->eh_entries = 0!");
1576 * This function tries to merge the @ex extent to neighbours in the tree.
1577 * return 1 if merge left else 0.
1579 static int ext4_ext_try_to_merge(struct inode
*inode
,
1580 struct ext4_ext_path
*path
,
1581 struct ext4_extent
*ex
) {
1582 struct ext4_extent_header
*eh
;
1587 depth
= ext_depth(inode
);
1588 BUG_ON(path
[depth
].p_hdr
== NULL
);
1589 eh
= path
[depth
].p_hdr
;
1591 if (ex
> EXT_FIRST_EXTENT(eh
))
1592 merge_done
= ext4_ext_try_to_merge_right(inode
, path
, ex
- 1);
1595 ret
= ext4_ext_try_to_merge_right(inode
, path
, ex
);
1601 * check if a portion of the "newext" extent overlaps with an
1604 * If there is an overlap discovered, it updates the length of the newext
1605 * such that there will be no overlap, and then returns 1.
1606 * If there is no overlap found, it returns 0.
1608 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info
*sbi
,
1609 struct inode
*inode
,
1610 struct ext4_extent
*newext
,
1611 struct ext4_ext_path
*path
)
1614 unsigned int depth
, len1
;
1615 unsigned int ret
= 0;
1617 b1
= le32_to_cpu(newext
->ee_block
);
1618 len1
= ext4_ext_get_actual_len(newext
);
1619 depth
= ext_depth(inode
);
1620 if (!path
[depth
].p_ext
)
1622 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1623 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1626 * get the next allocated block if the extent in the path
1627 * is before the requested block(s)
1630 b2
= ext4_ext_next_allocated_block(path
);
1631 if (b2
== EXT_MAX_BLOCKS
)
1633 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1636 /* check for wrap through zero on extent logical start block*/
1637 if (b1
+ len1
< b1
) {
1638 len1
= EXT_MAX_BLOCKS
- b1
;
1639 newext
->ee_len
= cpu_to_le16(len1
);
1643 /* check for overlap */
1644 if (b1
+ len1
> b2
) {
1645 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1653 * ext4_ext_insert_extent:
1654 * tries to merge requsted extent into the existing extent or
1655 * inserts requested extent as new one into the tree,
1656 * creating new leaf in the no-space case.
1658 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1659 struct ext4_ext_path
*path
,
1660 struct ext4_extent
*newext
, int flag
)
1662 struct ext4_extent_header
*eh
;
1663 struct ext4_extent
*ex
, *fex
;
1664 struct ext4_extent
*nearex
; /* nearest extent */
1665 struct ext4_ext_path
*npath
= NULL
;
1666 int depth
, len
, err
;
1668 unsigned uninitialized
= 0;
1671 if (unlikely(ext4_ext_get_actual_len(newext
) == 0)) {
1672 EXT4_ERROR_INODE(inode
, "ext4_ext_get_actual_len(newext) == 0");
1675 depth
= ext_depth(inode
);
1676 ex
= path
[depth
].p_ext
;
1677 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1678 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1682 /* try to insert block into found extent and return */
1683 if (ex
&& !(flag
& EXT4_GET_BLOCKS_PRE_IO
)
1684 && ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1685 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1686 ext4_ext_is_uninitialized(newext
),
1687 ext4_ext_get_actual_len(newext
),
1688 le32_to_cpu(ex
->ee_block
),
1689 ext4_ext_is_uninitialized(ex
),
1690 ext4_ext_get_actual_len(ex
),
1691 ext4_ext_pblock(ex
));
1692 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1697 * ext4_can_extents_be_merged should have checked that either
1698 * both extents are uninitialized, or both aren't. Thus we
1699 * need to check only one of them here.
1701 if (ext4_ext_is_uninitialized(ex
))
1703 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1704 + ext4_ext_get_actual_len(newext
));
1706 ext4_ext_mark_uninitialized(ex
);
1707 eh
= path
[depth
].p_hdr
;
1712 depth
= ext_depth(inode
);
1713 eh
= path
[depth
].p_hdr
;
1714 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1717 /* probably next leaf has space for us? */
1718 fex
= EXT_LAST_EXTENT(eh
);
1719 next
= EXT_MAX_BLOCKS
;
1720 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
))
1721 next
= ext4_ext_next_leaf_block(path
);
1722 if (next
!= EXT_MAX_BLOCKS
) {
1723 ext_debug("next leaf block - %u\n", next
);
1724 BUG_ON(npath
!= NULL
);
1725 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1727 return PTR_ERR(npath
);
1728 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1729 eh
= npath
[depth
].p_hdr
;
1730 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1731 ext_debug("next leaf isn't full(%d)\n",
1732 le16_to_cpu(eh
->eh_entries
));
1736 ext_debug("next leaf has no free space(%d,%d)\n",
1737 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1741 * There is no free space in the found leaf.
1742 * We're gonna add a new leaf in the tree.
1744 if (flag
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
)
1745 flags
= EXT4_MB_USE_ROOT_BLOCKS
;
1746 err
= ext4_ext_create_new_leaf(handle
, inode
, flags
, path
, newext
);
1749 depth
= ext_depth(inode
);
1750 eh
= path
[depth
].p_hdr
;
1753 nearex
= path
[depth
].p_ext
;
1755 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1760 /* there is no extent in this leaf, create first one */
1761 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1762 le32_to_cpu(newext
->ee_block
),
1763 ext4_ext_pblock(newext
),
1764 ext4_ext_is_uninitialized(newext
),
1765 ext4_ext_get_actual_len(newext
));
1766 nearex
= EXT_FIRST_EXTENT(eh
);
1768 if (le32_to_cpu(newext
->ee_block
)
1769 > le32_to_cpu(nearex
->ee_block
)) {
1771 ext_debug("insert %u:%llu:[%d]%d before: "
1773 le32_to_cpu(newext
->ee_block
),
1774 ext4_ext_pblock(newext
),
1775 ext4_ext_is_uninitialized(newext
),
1776 ext4_ext_get_actual_len(newext
),
1781 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1782 ext_debug("insert %u:%llu:[%d]%d after: "
1784 le32_to_cpu(newext
->ee_block
),
1785 ext4_ext_pblock(newext
),
1786 ext4_ext_is_uninitialized(newext
),
1787 ext4_ext_get_actual_len(newext
),
1790 len
= EXT_LAST_EXTENT(eh
) - nearex
+ 1;
1792 ext_debug("insert %u:%llu:[%d]%d: "
1793 "move %d extents from 0x%p to 0x%p\n",
1794 le32_to_cpu(newext
->ee_block
),
1795 ext4_ext_pblock(newext
),
1796 ext4_ext_is_uninitialized(newext
),
1797 ext4_ext_get_actual_len(newext
),
1798 len
, nearex
, nearex
+ 1);
1799 memmove(nearex
+ 1, nearex
,
1800 len
* sizeof(struct ext4_extent
));
1804 le16_add_cpu(&eh
->eh_entries
, 1);
1805 path
[depth
].p_ext
= nearex
;
1806 nearex
->ee_block
= newext
->ee_block
;
1807 ext4_ext_store_pblock(nearex
, ext4_ext_pblock(newext
));
1808 nearex
->ee_len
= newext
->ee_len
;
1811 /* try to merge extents to the right */
1812 if (!(flag
& EXT4_GET_BLOCKS_PRE_IO
))
1813 ext4_ext_try_to_merge(inode
, path
, nearex
);
1815 /* try to merge extents to the left */
1817 /* time to correct all indexes above */
1818 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1822 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1826 ext4_ext_drop_refs(npath
);
1829 ext4_ext_invalidate_cache(inode
);
1833 static int ext4_ext_walk_space(struct inode
*inode
, ext4_lblk_t block
,
1834 ext4_lblk_t num
, ext_prepare_callback func
,
1837 struct ext4_ext_path
*path
= NULL
;
1838 struct ext4_ext_cache cbex
;
1839 struct ext4_extent
*ex
;
1840 ext4_lblk_t next
, start
= 0, end
= 0;
1841 ext4_lblk_t last
= block
+ num
;
1842 int depth
, exists
, err
= 0;
1844 BUG_ON(func
== NULL
);
1845 BUG_ON(inode
== NULL
);
1847 while (block
< last
&& block
!= EXT_MAX_BLOCKS
) {
1849 /* find extent for this block */
1850 down_read(&EXT4_I(inode
)->i_data_sem
);
1851 path
= ext4_ext_find_extent(inode
, block
, path
);
1852 up_read(&EXT4_I(inode
)->i_data_sem
);
1854 err
= PTR_ERR(path
);
1859 depth
= ext_depth(inode
);
1860 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1861 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1865 ex
= path
[depth
].p_ext
;
1866 next
= ext4_ext_next_allocated_block(path
);
1870 /* there is no extent yet, so try to allocate
1871 * all requested space */
1874 } else if (le32_to_cpu(ex
->ee_block
) > block
) {
1875 /* need to allocate space before found extent */
1877 end
= le32_to_cpu(ex
->ee_block
);
1878 if (block
+ num
< end
)
1880 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1881 + ext4_ext_get_actual_len(ex
)) {
1882 /* need to allocate space after found extent */
1887 } else if (block
>= le32_to_cpu(ex
->ee_block
)) {
1889 * some part of requested space is covered
1893 end
= le32_to_cpu(ex
->ee_block
)
1894 + ext4_ext_get_actual_len(ex
);
1895 if (block
+ num
< end
)
1901 BUG_ON(end
<= start
);
1904 cbex
.ec_block
= start
;
1905 cbex
.ec_len
= end
- start
;
1908 cbex
.ec_block
= le32_to_cpu(ex
->ee_block
);
1909 cbex
.ec_len
= ext4_ext_get_actual_len(ex
);
1910 cbex
.ec_start
= ext4_ext_pblock(ex
);
1913 if (unlikely(cbex
.ec_len
== 0)) {
1914 EXT4_ERROR_INODE(inode
, "cbex.ec_len == 0");
1918 err
= func(inode
, next
, &cbex
, ex
, cbdata
);
1919 ext4_ext_drop_refs(path
);
1924 if (err
== EXT_REPEAT
)
1926 else if (err
== EXT_BREAK
) {
1931 if (ext_depth(inode
) != depth
) {
1932 /* depth was changed. we have to realloc path */
1937 block
= cbex
.ec_block
+ cbex
.ec_len
;
1941 ext4_ext_drop_refs(path
);
1949 ext4_ext_put_in_cache(struct inode
*inode
, ext4_lblk_t block
,
1950 __u32 len
, ext4_fsblk_t start
)
1952 struct ext4_ext_cache
*cex
;
1954 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1955 trace_ext4_ext_put_in_cache(inode
, block
, len
, start
);
1956 cex
= &EXT4_I(inode
)->i_cached_extent
;
1957 cex
->ec_block
= block
;
1959 cex
->ec_start
= start
;
1960 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1964 * ext4_ext_put_gap_in_cache:
1965 * calculate boundaries of the gap that the requested block fits into
1966 * and cache this gap
1969 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
1972 int depth
= ext_depth(inode
);
1975 struct ext4_extent
*ex
;
1977 ex
= path
[depth
].p_ext
;
1979 /* there is no extent yet, so gap is [0;-] */
1981 len
= EXT_MAX_BLOCKS
;
1982 ext_debug("cache gap(whole file):");
1983 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
1985 len
= le32_to_cpu(ex
->ee_block
) - block
;
1986 ext_debug("cache gap(before): %u [%u:%u]",
1988 le32_to_cpu(ex
->ee_block
),
1989 ext4_ext_get_actual_len(ex
));
1990 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1991 + ext4_ext_get_actual_len(ex
)) {
1993 lblock
= le32_to_cpu(ex
->ee_block
)
1994 + ext4_ext_get_actual_len(ex
);
1996 next
= ext4_ext_next_allocated_block(path
);
1997 ext_debug("cache gap(after): [%u:%u] %u",
1998 le32_to_cpu(ex
->ee_block
),
1999 ext4_ext_get_actual_len(ex
),
2001 BUG_ON(next
== lblock
);
2002 len
= next
- lblock
;
2008 ext_debug(" -> %u:%lu\n", lblock
, len
);
2009 ext4_ext_put_in_cache(inode
, lblock
, len
, 0);
2013 * ext4_ext_check_cache()
2014 * Checks to see if the given block is in the cache.
2015 * If it is, the cached extent is stored in the given
2016 * cache extent pointer. If the cached extent is a hole,
2017 * this routine should be used instead of
2018 * ext4_ext_in_cache if the calling function needs to
2019 * know the size of the hole.
2021 * @inode: The files inode
2022 * @block: The block to look for in the cache
2023 * @ex: Pointer where the cached extent will be stored
2024 * if it contains block
2026 * Return 0 if cache is invalid; 1 if the cache is valid
2028 static int ext4_ext_check_cache(struct inode
*inode
, ext4_lblk_t block
,
2029 struct ext4_ext_cache
*ex
){
2030 struct ext4_ext_cache
*cex
;
2031 struct ext4_sb_info
*sbi
;
2035 * We borrow i_block_reservation_lock to protect i_cached_extent
2037 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
2038 cex
= &EXT4_I(inode
)->i_cached_extent
;
2039 sbi
= EXT4_SB(inode
->i_sb
);
2041 /* has cache valid data? */
2042 if (cex
->ec_len
== 0)
2045 if (in_range(block
, cex
->ec_block
, cex
->ec_len
)) {
2046 memcpy(ex
, cex
, sizeof(struct ext4_ext_cache
));
2047 ext_debug("%u cached by %u:%u:%llu\n",
2049 cex
->ec_block
, cex
->ec_len
, cex
->ec_start
);
2054 sbi
->extent_cache_misses
++;
2056 sbi
->extent_cache_hits
++;
2057 trace_ext4_ext_in_cache(inode
, block
, ret
);
2058 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
2063 * ext4_ext_in_cache()
2064 * Checks to see if the given block is in the cache.
2065 * If it is, the cached extent is stored in the given
2068 * @inode: The files inode
2069 * @block: The block to look for in the cache
2070 * @ex: Pointer where the cached extent will be stored
2071 * if it contains block
2073 * Return 0 if cache is invalid; 1 if the cache is valid
2076 ext4_ext_in_cache(struct inode
*inode
, ext4_lblk_t block
,
2077 struct ext4_extent
*ex
)
2079 struct ext4_ext_cache cex
;
2082 if (ext4_ext_check_cache(inode
, block
, &cex
)) {
2083 ex
->ee_block
= cpu_to_le32(cex
.ec_block
);
2084 ext4_ext_store_pblock(ex
, cex
.ec_start
);
2085 ex
->ee_len
= cpu_to_le16(cex
.ec_len
);
2095 * removes index from the index block.
2097 static int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
2098 struct ext4_ext_path
*path
)
2103 /* free index block */
2105 leaf
= ext4_idx_pblock(path
->p_idx
);
2106 if (unlikely(path
->p_hdr
->eh_entries
== 0)) {
2107 EXT4_ERROR_INODE(inode
, "path->p_hdr->eh_entries == 0");
2110 err
= ext4_ext_get_access(handle
, inode
, path
);
2114 if (path
->p_idx
!= EXT_LAST_INDEX(path
->p_hdr
)) {
2115 int len
= EXT_LAST_INDEX(path
->p_hdr
) - path
->p_idx
;
2116 len
*= sizeof(struct ext4_extent_idx
);
2117 memmove(path
->p_idx
, path
->p_idx
+ 1, len
);
2120 le16_add_cpu(&path
->p_hdr
->eh_entries
, -1);
2121 err
= ext4_ext_dirty(handle
, inode
, path
);
2124 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
2125 trace_ext4_ext_rm_idx(inode
, leaf
);
2127 ext4_free_blocks(handle
, inode
, NULL
, leaf
, 1,
2128 EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
);
2133 * ext4_ext_calc_credits_for_single_extent:
2134 * This routine returns max. credits that needed to insert an extent
2135 * to the extent tree.
2136 * When pass the actual path, the caller should calculate credits
2139 int ext4_ext_calc_credits_for_single_extent(struct inode
*inode
, int nrblocks
,
2140 struct ext4_ext_path
*path
)
2143 int depth
= ext_depth(inode
);
2146 /* probably there is space in leaf? */
2147 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
2148 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
)) {
2151 * There are some space in the leaf tree, no
2152 * need to account for leaf block credit
2154 * bitmaps and block group descriptor blocks
2155 * and other metadata blocks still need to be
2158 /* 1 bitmap, 1 block group descriptor */
2159 ret
= 2 + EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
2164 return ext4_chunk_trans_blocks(inode
, nrblocks
);
2168 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2170 * if nrblocks are fit in a single extent (chunk flag is 1), then
2171 * in the worse case, each tree level index/leaf need to be changed
2172 * if the tree split due to insert a new extent, then the old tree
2173 * index/leaf need to be updated too
2175 * If the nrblocks are discontiguous, they could cause
2176 * the whole tree split more than once, but this is really rare.
2178 int ext4_ext_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
2181 int depth
= ext_depth(inode
);
2191 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
2192 struct ext4_extent
*ex
,
2193 ext4_fsblk_t
*partial_cluster
,
2194 ext4_lblk_t from
, ext4_lblk_t to
)
2196 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2197 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
2199 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2201 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2202 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2204 * For bigalloc file systems, we never free a partial cluster
2205 * at the beginning of the extent. Instead, we make a note
2206 * that we tried freeing the cluster, and check to see if we
2207 * need to free it on a subsequent call to ext4_remove_blocks,
2208 * or at the end of the ext4_truncate() operation.
2210 flags
|= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
;
2212 trace_ext4_remove_blocks(inode
, ex
, from
, to
, *partial_cluster
);
2214 * If we have a partial cluster, and it's different from the
2215 * cluster of the last block, we need to explicitly free the
2216 * partial cluster here.
2218 pblk
= ext4_ext_pblock(ex
) + ee_len
- 1;
2219 if (*partial_cluster
&& (EXT4_B2C(sbi
, pblk
) != *partial_cluster
)) {
2220 ext4_free_blocks(handle
, inode
, NULL
,
2221 EXT4_C2B(sbi
, *partial_cluster
),
2222 sbi
->s_cluster_ratio
, flags
);
2223 *partial_cluster
= 0;
2226 #ifdef EXTENTS_STATS
2228 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2229 spin_lock(&sbi
->s_ext_stats_lock
);
2230 sbi
->s_ext_blocks
+= ee_len
;
2231 sbi
->s_ext_extents
++;
2232 if (ee_len
< sbi
->s_ext_min
)
2233 sbi
->s_ext_min
= ee_len
;
2234 if (ee_len
> sbi
->s_ext_max
)
2235 sbi
->s_ext_max
= ee_len
;
2236 if (ext_depth(inode
) > sbi
->s_depth_max
)
2237 sbi
->s_depth_max
= ext_depth(inode
);
2238 spin_unlock(&sbi
->s_ext_stats_lock
);
2241 if (from
>= le32_to_cpu(ex
->ee_block
)
2242 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2246 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
2247 pblk
= ext4_ext_pblock(ex
) + ee_len
- num
;
2248 ext_debug("free last %u blocks starting %llu\n", num
, pblk
);
2249 ext4_free_blocks(handle
, inode
, NULL
, pblk
, num
, flags
);
2251 * If the block range to be freed didn't start at the
2252 * beginning of a cluster, and we removed the entire
2253 * extent, save the partial cluster here, since we
2254 * might need to delete if we determine that the
2255 * truncate operation has removed all of the blocks in
2258 if (pblk
& (sbi
->s_cluster_ratio
- 1) &&
2260 *partial_cluster
= EXT4_B2C(sbi
, pblk
);
2262 *partial_cluster
= 0;
2263 } else if (from
== le32_to_cpu(ex
->ee_block
)
2264 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2270 start
= ext4_ext_pblock(ex
);
2272 ext_debug("free first %u blocks starting %llu\n", num
, start
);
2273 ext4_free_blocks(handle
, inode
, NULL
, start
, num
, flags
);
2276 printk(KERN_INFO
"strange request: removal(2) "
2277 "%u-%u from %u:%u\n",
2278 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
2285 * ext4_ext_rm_leaf() Removes the extents associated with the
2286 * blocks appearing between "start" and "end", and splits the extents
2287 * if "start" and "end" appear in the same extent
2289 * @handle: The journal handle
2290 * @inode: The files inode
2291 * @path: The path to the leaf
2292 * @start: The first block to remove
2293 * @end: The last block to remove
2296 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
2297 struct ext4_ext_path
*path
, ext4_fsblk_t
*partial_cluster
,
2298 ext4_lblk_t start
, ext4_lblk_t end
)
2300 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2301 int err
= 0, correct_index
= 0;
2302 int depth
= ext_depth(inode
), credits
;
2303 struct ext4_extent_header
*eh
;
2306 ext4_lblk_t ex_ee_block
;
2307 unsigned short ex_ee_len
;
2308 unsigned uninitialized
= 0;
2309 struct ext4_extent
*ex
;
2311 /* the header must be checked already in ext4_ext_remove_space() */
2312 ext_debug("truncate since %u in leaf\n", start
);
2313 if (!path
[depth
].p_hdr
)
2314 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
2315 eh
= path
[depth
].p_hdr
;
2316 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
2317 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
2320 /* find where to start removing */
2321 ex
= EXT_LAST_EXTENT(eh
);
2323 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2324 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2326 trace_ext4_ext_rm_leaf(inode
, start
, ex
, *partial_cluster
);
2328 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
2329 ex_ee_block
+ ex_ee_len
> start
) {
2331 if (ext4_ext_is_uninitialized(ex
))
2336 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block
,
2337 uninitialized
, ex_ee_len
);
2338 path
[depth
].p_ext
= ex
;
2340 a
= ex_ee_block
> start
? ex_ee_block
: start
;
2341 b
= ex_ee_block
+ex_ee_len
- 1 < end
?
2342 ex_ee_block
+ex_ee_len
- 1 : end
;
2344 ext_debug(" border %u:%u\n", a
, b
);
2346 /* If this extent is beyond the end of the hole, skip it */
2347 if (end
<= ex_ee_block
) {
2349 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2350 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2352 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
2353 EXT4_ERROR_INODE(inode
," bad truncate %u:%u\n",
2357 } else if (a
!= ex_ee_block
) {
2358 /* remove tail of the extent */
2359 num
= a
- ex_ee_block
;
2361 /* remove whole extent: excellent! */
2365 * 3 for leaf, sb, and inode plus 2 (bmap and group
2366 * descriptor) for each block group; assume two block
2367 * groups plus ex_ee_len/blocks_per_block_group for
2370 credits
= 7 + 2*(ex_ee_len
/EXT4_BLOCKS_PER_GROUP(inode
->i_sb
));
2371 if (ex
== EXT_FIRST_EXTENT(eh
)) {
2373 credits
+= (ext_depth(inode
)) + 1;
2375 credits
+= EXT4_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
2377 err
= ext4_ext_truncate_extend_restart(handle
, inode
, credits
);
2381 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2385 err
= ext4_remove_blocks(handle
, inode
, ex
, partial_cluster
,
2391 /* this extent is removed; mark slot entirely unused */
2392 ext4_ext_store_pblock(ex
, 0);
2394 ex
->ee_len
= cpu_to_le16(num
);
2396 * Do not mark uninitialized if all the blocks in the
2397 * extent have been removed.
2399 if (uninitialized
&& num
)
2400 ext4_ext_mark_uninitialized(ex
);
2402 * If the extent was completely released,
2403 * we need to remove it from the leaf
2406 if (end
!= EXT_MAX_BLOCKS
- 1) {
2408 * For hole punching, we need to scoot all the
2409 * extents up when an extent is removed so that
2410 * we dont have blank extents in the middle
2412 memmove(ex
, ex
+1, (EXT_LAST_EXTENT(eh
) - ex
) *
2413 sizeof(struct ext4_extent
));
2415 /* Now get rid of the one at the end */
2416 memset(EXT_LAST_EXTENT(eh
), 0,
2417 sizeof(struct ext4_extent
));
2419 le16_add_cpu(&eh
->eh_entries
, -1);
2421 *partial_cluster
= 0;
2423 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2427 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block
, num
,
2428 ext4_ext_pblock(ex
));
2430 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2431 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2434 if (correct_index
&& eh
->eh_entries
)
2435 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2438 * If there is still a entry in the leaf node, check to see if
2439 * it references the partial cluster. This is the only place
2440 * where it could; if it doesn't, we can free the cluster.
2442 if (*partial_cluster
&& ex
>= EXT_FIRST_EXTENT(eh
) &&
2443 (EXT4_B2C(sbi
, ext4_ext_pblock(ex
) + ex_ee_len
- 1) !=
2444 *partial_cluster
)) {
2445 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2447 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2448 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2450 ext4_free_blocks(handle
, inode
, NULL
,
2451 EXT4_C2B(sbi
, *partial_cluster
),
2452 sbi
->s_cluster_ratio
, flags
);
2453 *partial_cluster
= 0;
2456 /* if this leaf is free, then we should
2457 * remove it from index block above */
2458 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
2459 err
= ext4_ext_rm_idx(handle
, inode
, path
+ depth
);
2466 * ext4_ext_more_to_rm:
2467 * returns 1 if current index has to be freed (even partial)
2470 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
2472 BUG_ON(path
->p_idx
== NULL
);
2474 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
2478 * if truncate on deeper level happened, it wasn't partial,
2479 * so we have to consider current index for truncation
2481 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
2486 static int ext4_ext_remove_space(struct inode
*inode
, ext4_lblk_t start
)
2488 struct super_block
*sb
= inode
->i_sb
;
2489 int depth
= ext_depth(inode
);
2490 struct ext4_ext_path
*path
;
2491 ext4_fsblk_t partial_cluster
= 0;
2495 ext_debug("truncate since %u\n", start
);
2497 /* probably first extent we're gonna free will be last in block */
2498 handle
= ext4_journal_start(inode
, depth
+ 1);
2500 return PTR_ERR(handle
);
2503 ext4_ext_invalidate_cache(inode
);
2505 trace_ext4_ext_remove_space(inode
, start
, depth
);
2508 * We start scanning from right side, freeing all the blocks
2509 * after i_size and walking into the tree depth-wise.
2511 depth
= ext_depth(inode
);
2512 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1), GFP_NOFS
);
2514 ext4_journal_stop(handle
);
2517 path
[0].p_depth
= depth
;
2518 path
[0].p_hdr
= ext_inode_hdr(inode
);
2519 if (ext4_ext_check(inode
, path
[0].p_hdr
, depth
)) {
2525 while (i
>= 0 && err
== 0) {
2527 /* this is leaf block */
2528 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
2529 &partial_cluster
, start
,
2530 EXT_MAX_BLOCKS
- 1);
2531 /* root level has p_bh == NULL, brelse() eats this */
2532 brelse(path
[i
].p_bh
);
2533 path
[i
].p_bh
= NULL
;
2538 /* this is index block */
2539 if (!path
[i
].p_hdr
) {
2540 ext_debug("initialize header\n");
2541 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
2544 if (!path
[i
].p_idx
) {
2545 /* this level hasn't been touched yet */
2546 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
2547 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
2548 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2550 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
2552 /* we were already here, see at next index */
2556 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2557 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
2559 if (ext4_ext_more_to_rm(path
+ i
)) {
2560 struct buffer_head
*bh
;
2561 /* go to the next level */
2562 ext_debug("move to level %d (block %llu)\n",
2563 i
+ 1, ext4_idx_pblock(path
[i
].p_idx
));
2564 memset(path
+ i
+ 1, 0, sizeof(*path
));
2565 bh
= sb_bread(sb
, ext4_idx_pblock(path
[i
].p_idx
));
2567 /* should we reset i_size? */
2571 if (WARN_ON(i
+ 1 > depth
)) {
2575 if (ext4_ext_check(inode
, ext_block_hdr(bh
),
2580 path
[i
+ 1].p_bh
= bh
;
2582 /* save actual number of indexes since this
2583 * number is changed at the next iteration */
2584 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2587 /* we finished processing this index, go up */
2588 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2589 /* index is empty, remove it;
2590 * handle must be already prepared by the
2591 * truncatei_leaf() */
2592 err
= ext4_ext_rm_idx(handle
, inode
, path
+ i
);
2594 /* root level has p_bh == NULL, brelse() eats this */
2595 brelse(path
[i
].p_bh
);
2596 path
[i
].p_bh
= NULL
;
2598 ext_debug("return to level %d\n", i
);
2602 trace_ext4_ext_remove_space_done(inode
, start
, depth
, partial_cluster
,
2603 path
->p_hdr
->eh_entries
);
2605 /* If we still have something in the partial cluster and we have removed
2606 * even the first extent, then we should free the blocks in the partial
2607 * cluster as well. */
2608 if (partial_cluster
&& path
->p_hdr
->eh_entries
== 0) {
2609 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2611 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2612 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2614 ext4_free_blocks(handle
, inode
, NULL
,
2615 EXT4_C2B(EXT4_SB(sb
), partial_cluster
),
2616 EXT4_SB(sb
)->s_cluster_ratio
, flags
);
2617 partial_cluster
= 0;
2620 /* TODO: flexible tree reduction should be here */
2621 if (path
->p_hdr
->eh_entries
== 0) {
2623 * truncate to zero freed all the tree,
2624 * so we need to correct eh_depth
2626 err
= ext4_ext_get_access(handle
, inode
, path
);
2628 ext_inode_hdr(inode
)->eh_depth
= 0;
2629 ext_inode_hdr(inode
)->eh_max
=
2630 cpu_to_le16(ext4_ext_space_root(inode
, 0));
2631 err
= ext4_ext_dirty(handle
, inode
, path
);
2635 ext4_ext_drop_refs(path
);
2639 ext4_journal_stop(handle
);
2645 * called at mount time
2647 void ext4_ext_init(struct super_block
*sb
)
2650 * possible initialization would be here
2653 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
2654 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2655 printk(KERN_INFO
"EXT4-fs: file extents enabled");
2656 #ifdef AGGRESSIVE_TEST
2657 printk(", aggressive tests");
2659 #ifdef CHECK_BINSEARCH
2660 printk(", check binsearch");
2662 #ifdef EXTENTS_STATS
2667 #ifdef EXTENTS_STATS
2668 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2669 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2670 EXT4_SB(sb
)->s_ext_max
= 0;
2676 * called at umount time
2678 void ext4_ext_release(struct super_block
*sb
)
2680 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
))
2683 #ifdef EXTENTS_STATS
2684 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2685 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2686 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2687 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2688 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2689 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2690 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2695 /* FIXME!! we need to try to merge to left or right after zero-out */
2696 static int ext4_ext_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
2698 ext4_fsblk_t ee_pblock
;
2699 unsigned int ee_len
;
2702 ee_len
= ext4_ext_get_actual_len(ex
);
2703 ee_pblock
= ext4_ext_pblock(ex
);
2705 ret
= sb_issue_zeroout(inode
->i_sb
, ee_pblock
, ee_len
, GFP_NOFS
);
2713 * used by extent splitting.
2715 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2717 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2718 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2721 * ext4_split_extent_at() splits an extent at given block.
2723 * @handle: the journal handle
2724 * @inode: the file inode
2725 * @path: the path to the extent
2726 * @split: the logical block where the extent is splitted.
2727 * @split_flags: indicates if the extent could be zeroout if split fails, and
2728 * the states(init or uninit) of new extents.
2729 * @flags: flags used to insert new extent to extent tree.
2732 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2733 * of which are deterimined by split_flag.
2735 * There are two cases:
2736 * a> the extent are splitted into two extent.
2737 * b> split is not needed, and just mark the extent.
2739 * return 0 on success.
2741 static int ext4_split_extent_at(handle_t
*handle
,
2742 struct inode
*inode
,
2743 struct ext4_ext_path
*path
,
2748 ext4_fsblk_t newblock
;
2749 ext4_lblk_t ee_block
;
2750 struct ext4_extent
*ex
, newex
, orig_ex
;
2751 struct ext4_extent
*ex2
= NULL
;
2752 unsigned int ee_len
, depth
;
2755 ext_debug("ext4_split_extents_at: inode %lu, logical"
2756 "block %llu\n", inode
->i_ino
, (unsigned long long)split
);
2758 ext4_ext_show_leaf(inode
, path
);
2760 depth
= ext_depth(inode
);
2761 ex
= path
[depth
].p_ext
;
2762 ee_block
= le32_to_cpu(ex
->ee_block
);
2763 ee_len
= ext4_ext_get_actual_len(ex
);
2764 newblock
= split
- ee_block
+ ext4_ext_pblock(ex
);
2766 BUG_ON(split
< ee_block
|| split
>= (ee_block
+ ee_len
));
2768 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2772 if (split
== ee_block
) {
2774 * case b: block @split is the block that the extent begins with
2775 * then we just change the state of the extent, and splitting
2778 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2779 ext4_ext_mark_uninitialized(ex
);
2781 ext4_ext_mark_initialized(ex
);
2783 if (!(flags
& EXT4_GET_BLOCKS_PRE_IO
))
2784 ext4_ext_try_to_merge(inode
, path
, ex
);
2786 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2791 memcpy(&orig_ex
, ex
, sizeof(orig_ex
));
2792 ex
->ee_len
= cpu_to_le16(split
- ee_block
);
2793 if (split_flag
& EXT4_EXT_MARK_UNINIT1
)
2794 ext4_ext_mark_uninitialized(ex
);
2797 * path may lead to new leaf, not to original leaf any more
2798 * after ext4_ext_insert_extent() returns,
2800 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2802 goto fix_extent_len
;
2805 ex2
->ee_block
= cpu_to_le32(split
);
2806 ex2
->ee_len
= cpu_to_le16(ee_len
- (split
- ee_block
));
2807 ext4_ext_store_pblock(ex2
, newblock
);
2808 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2809 ext4_ext_mark_uninitialized(ex2
);
2811 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
, flags
);
2812 if (err
== -ENOSPC
&& (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
2813 err
= ext4_ext_zeroout(inode
, &orig_ex
);
2815 goto fix_extent_len
;
2816 /* update the extent length and mark as initialized */
2817 ex
->ee_len
= cpu_to_le32(ee_len
);
2818 ext4_ext_try_to_merge(inode
, path
, ex
);
2819 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2822 goto fix_extent_len
;
2825 ext4_ext_show_leaf(inode
, path
);
2829 ex
->ee_len
= orig_ex
.ee_len
;
2830 ext4_ext_dirty(handle
, inode
, path
+ depth
);
2835 * ext4_split_extents() splits an extent and mark extent which is covered
2836 * by @map as split_flags indicates
2838 * It may result in splitting the extent into multiple extents (upto three)
2839 * There are three possibilities:
2840 * a> There is no split required
2841 * b> Splits in two extents: Split is happening at either end of the extent
2842 * c> Splits in three extents: Somone is splitting in middle of the extent
2845 static int ext4_split_extent(handle_t
*handle
,
2846 struct inode
*inode
,
2847 struct ext4_ext_path
*path
,
2848 struct ext4_map_blocks
*map
,
2852 ext4_lblk_t ee_block
;
2853 struct ext4_extent
*ex
;
2854 unsigned int ee_len
, depth
;
2857 int split_flag1
, flags1
;
2859 depth
= ext_depth(inode
);
2860 ex
= path
[depth
].p_ext
;
2861 ee_block
= le32_to_cpu(ex
->ee_block
);
2862 ee_len
= ext4_ext_get_actual_len(ex
);
2863 uninitialized
= ext4_ext_is_uninitialized(ex
);
2865 if (map
->m_lblk
+ map
->m_len
< ee_block
+ ee_len
) {
2866 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
2867 EXT4_EXT_MAY_ZEROOUT
: 0;
2868 flags1
= flags
| EXT4_GET_BLOCKS_PRE_IO
;
2870 split_flag1
|= EXT4_EXT_MARK_UNINIT1
|
2871 EXT4_EXT_MARK_UNINIT2
;
2872 err
= ext4_split_extent_at(handle
, inode
, path
,
2873 map
->m_lblk
+ map
->m_len
, split_flag1
, flags1
);
2878 ext4_ext_drop_refs(path
);
2879 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, path
);
2881 return PTR_ERR(path
);
2883 if (map
->m_lblk
>= ee_block
) {
2884 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
2885 EXT4_EXT_MAY_ZEROOUT
: 0;
2887 split_flag1
|= EXT4_EXT_MARK_UNINIT1
;
2888 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2889 split_flag1
|= EXT4_EXT_MARK_UNINIT2
;
2890 err
= ext4_split_extent_at(handle
, inode
, path
,
2891 map
->m_lblk
, split_flag1
, flags
);
2896 ext4_ext_show_leaf(inode
, path
);
2898 return err
? err
: map
->m_len
;
2901 #define EXT4_EXT_ZERO_LEN 7
2903 * This function is called by ext4_ext_map_blocks() if someone tries to write
2904 * to an uninitialized extent. It may result in splitting the uninitialized
2905 * extent into multiple extents (up to three - one initialized and two
2907 * There are three possibilities:
2908 * a> There is no split required: Entire extent should be initialized
2909 * b> Splits in two extents: Write is happening at either end of the extent
2910 * c> Splits in three extents: Somone is writing in middle of the extent
2913 * - The extent pointed to by 'path' is uninitialized.
2914 * - The extent pointed to by 'path' contains a superset
2915 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2917 * Post-conditions on success:
2918 * - the returned value is the number of blocks beyond map->l_lblk
2919 * that are allocated and initialized.
2920 * It is guaranteed to be >= map->m_len.
2922 static int ext4_ext_convert_to_initialized(handle_t
*handle
,
2923 struct inode
*inode
,
2924 struct ext4_map_blocks
*map
,
2925 struct ext4_ext_path
*path
)
2927 struct ext4_extent_header
*eh
;
2928 struct ext4_map_blocks split_map
;
2929 struct ext4_extent zero_ex
;
2930 struct ext4_extent
*ex
;
2931 ext4_lblk_t ee_block
, eof_block
;
2932 unsigned int ee_len
, depth
;
2937 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2938 "block %llu, max_blocks %u\n", inode
->i_ino
,
2939 (unsigned long long)map
->m_lblk
, map
->m_len
);
2941 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
2942 inode
->i_sb
->s_blocksize_bits
;
2943 if (eof_block
< map
->m_lblk
+ map
->m_len
)
2944 eof_block
= map
->m_lblk
+ map
->m_len
;
2946 depth
= ext_depth(inode
);
2947 eh
= path
[depth
].p_hdr
;
2948 ex
= path
[depth
].p_ext
;
2949 ee_block
= le32_to_cpu(ex
->ee_block
);
2950 ee_len
= ext4_ext_get_actual_len(ex
);
2951 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
2953 trace_ext4_ext_convert_to_initialized_enter(inode
, map
, ex
);
2955 /* Pre-conditions */
2956 BUG_ON(!ext4_ext_is_uninitialized(ex
));
2957 BUG_ON(!in_range(map
->m_lblk
, ee_block
, ee_len
));
2960 * Attempt to transfer newly initialized blocks from the currently
2961 * uninitialized extent to its left neighbor. This is much cheaper
2962 * than an insertion followed by a merge as those involve costly
2963 * memmove() calls. This is the common case in steady state for
2964 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2967 * Limitations of the current logic:
2968 * - L1: we only deal with writes at the start of the extent.
2969 * The approach could be extended to writes at the end
2970 * of the extent but this scenario was deemed less common.
2971 * - L2: we do not deal with writes covering the whole extent.
2972 * This would require removing the extent if the transfer
2974 * - L3: we only attempt to merge with an extent stored in the
2975 * same extent tree node.
2977 if ((map
->m_lblk
== ee_block
) && /*L1*/
2978 (map
->m_len
< ee_len
) && /*L2*/
2979 (ex
> EXT_FIRST_EXTENT(eh
))) { /*L3*/
2980 struct ext4_extent
*prev_ex
;
2981 ext4_lblk_t prev_lblk
;
2982 ext4_fsblk_t prev_pblk
, ee_pblk
;
2983 unsigned int prev_len
, write_len
;
2986 prev_lblk
= le32_to_cpu(prev_ex
->ee_block
);
2987 prev_len
= ext4_ext_get_actual_len(prev_ex
);
2988 prev_pblk
= ext4_ext_pblock(prev_ex
);
2989 ee_pblk
= ext4_ext_pblock(ex
);
2990 write_len
= map
->m_len
;
2993 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2994 * upon those conditions:
2995 * - C1: prev_ex is initialized,
2996 * - C2: prev_ex is logically abutting ex,
2997 * - C3: prev_ex is physically abutting ex,
2998 * - C4: prev_ex can receive the additional blocks without
2999 * overflowing the (initialized) length limit.
3001 if ((!ext4_ext_is_uninitialized(prev_ex
)) && /*C1*/
3002 ((prev_lblk
+ prev_len
) == ee_block
) && /*C2*/
3003 ((prev_pblk
+ prev_len
) == ee_pblk
) && /*C3*/
3004 (prev_len
< (EXT_INIT_MAX_LEN
- write_len
))) { /*C4*/
3005 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3009 trace_ext4_ext_convert_to_initialized_fastpath(inode
,
3012 /* Shift the start of ex by 'write_len' blocks */
3013 ex
->ee_block
= cpu_to_le32(ee_block
+ write_len
);
3014 ext4_ext_store_pblock(ex
, ee_pblk
+ write_len
);
3015 ex
->ee_len
= cpu_to_le16(ee_len
- write_len
);
3016 ext4_ext_mark_uninitialized(ex
); /* Restore the flag */
3018 /* Extend prev_ex by 'write_len' blocks */
3019 prev_ex
->ee_len
= cpu_to_le16(prev_len
+ write_len
);
3021 /* Mark the block containing both extents as dirty */
3022 ext4_ext_dirty(handle
, inode
, path
+ depth
);
3024 /* Update path to point to the right extent */
3025 path
[depth
].p_ext
= prev_ex
;
3027 /* Result: number of initialized blocks past m_lblk */
3028 allocated
= write_len
;
3033 WARN_ON(map
->m_lblk
< ee_block
);
3035 * It is safe to convert extent to initialized via explicit
3036 * zeroout only if extent is fully insde i_size or new_size.
3038 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3040 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3041 if (ee_len
<= 2*EXT4_EXT_ZERO_LEN
&&
3042 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3043 err
= ext4_ext_zeroout(inode
, ex
);
3047 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3050 ext4_ext_mark_initialized(ex
);
3051 ext4_ext_try_to_merge(inode
, path
, ex
);
3052 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
3058 * 1. split the extent into three extents.
3059 * 2. split the extent into two extents, zeroout the first half.
3060 * 3. split the extent into two extents, zeroout the second half.
3061 * 4. split the extent into two extents with out zeroout.
3063 split_map
.m_lblk
= map
->m_lblk
;
3064 split_map
.m_len
= map
->m_len
;
3066 if (allocated
> map
->m_len
) {
3067 if (allocated
<= EXT4_EXT_ZERO_LEN
&&
3068 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3071 cpu_to_le32(map
->m_lblk
);
3072 zero_ex
.ee_len
= cpu_to_le16(allocated
);
3073 ext4_ext_store_pblock(&zero_ex
,
3074 ext4_ext_pblock(ex
) + map
->m_lblk
- ee_block
);
3075 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3078 split_map
.m_lblk
= map
->m_lblk
;
3079 split_map
.m_len
= allocated
;
3080 } else if ((map
->m_lblk
- ee_block
+ map
->m_len
<
3081 EXT4_EXT_ZERO_LEN
) &&
3082 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3084 if (map
->m_lblk
!= ee_block
) {
3085 zero_ex
.ee_block
= ex
->ee_block
;
3086 zero_ex
.ee_len
= cpu_to_le16(map
->m_lblk
-
3088 ext4_ext_store_pblock(&zero_ex
,
3089 ext4_ext_pblock(ex
));
3090 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3095 split_map
.m_lblk
= ee_block
;
3096 split_map
.m_len
= map
->m_lblk
- ee_block
+ map
->m_len
;
3097 allocated
= map
->m_len
;
3101 allocated
= ext4_split_extent(handle
, inode
, path
,
3102 &split_map
, split_flag
, 0);
3107 return err
? err
: allocated
;
3111 * This function is called by ext4_ext_map_blocks() from
3112 * ext4_get_blocks_dio_write() when DIO to write
3113 * to an uninitialized extent.
3115 * Writing to an uninitialized extent may result in splitting the uninitialized
3116 * extent into multiple /initialized uninitialized extents (up to three)
3117 * There are three possibilities:
3118 * a> There is no split required: Entire extent should be uninitialized
3119 * b> Splits in two extents: Write is happening at either end of the extent
3120 * c> Splits in three extents: Somone is writing in middle of the extent
3122 * One of more index blocks maybe needed if the extent tree grow after
3123 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3124 * complete, we need to split the uninitialized extent before DIO submit
3125 * the IO. The uninitialized extent called at this time will be split
3126 * into three uninitialized extent(at most). After IO complete, the part
3127 * being filled will be convert to initialized by the end_io callback function
3128 * via ext4_convert_unwritten_extents().
3130 * Returns the size of uninitialized extent to be written on success.
3132 static int ext4_split_unwritten_extents(handle_t
*handle
,
3133 struct inode
*inode
,
3134 struct ext4_map_blocks
*map
,
3135 struct ext4_ext_path
*path
,
3138 ext4_lblk_t eof_block
;
3139 ext4_lblk_t ee_block
;
3140 struct ext4_extent
*ex
;
3141 unsigned int ee_len
;
3142 int split_flag
= 0, depth
;
3144 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3145 "block %llu, max_blocks %u\n", inode
->i_ino
,
3146 (unsigned long long)map
->m_lblk
, map
->m_len
);
3148 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3149 inode
->i_sb
->s_blocksize_bits
;
3150 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3151 eof_block
= map
->m_lblk
+ map
->m_len
;
3153 * It is safe to convert extent to initialized via explicit
3154 * zeroout only if extent is fully insde i_size or new_size.
3156 depth
= ext_depth(inode
);
3157 ex
= path
[depth
].p_ext
;
3158 ee_block
= le32_to_cpu(ex
->ee_block
);
3159 ee_len
= ext4_ext_get_actual_len(ex
);
3161 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3162 split_flag
|= EXT4_EXT_MARK_UNINIT2
;
3164 flags
|= EXT4_GET_BLOCKS_PRE_IO
;
3165 return ext4_split_extent(handle
, inode
, path
, map
, split_flag
, flags
);
3168 static int ext4_convert_unwritten_extents_endio(handle_t
*handle
,
3169 struct inode
*inode
,
3170 struct ext4_ext_path
*path
)
3172 struct ext4_extent
*ex
;
3176 depth
= ext_depth(inode
);
3177 ex
= path
[depth
].p_ext
;
3179 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3180 "block %llu, max_blocks %u\n", inode
->i_ino
,
3181 (unsigned long long)le32_to_cpu(ex
->ee_block
),
3182 ext4_ext_get_actual_len(ex
));
3184 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3187 /* first mark the extent as initialized */
3188 ext4_ext_mark_initialized(ex
);
3190 /* note: ext4_ext_correct_indexes() isn't needed here because
3191 * borders are not changed
3193 ext4_ext_try_to_merge(inode
, path
, ex
);
3195 /* Mark modified extent as dirty */
3196 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
3198 ext4_ext_show_leaf(inode
, path
);
3202 static void unmap_underlying_metadata_blocks(struct block_device
*bdev
,
3203 sector_t block
, int count
)
3206 for (i
= 0; i
< count
; i
++)
3207 unmap_underlying_metadata(bdev
, block
+ i
);
3211 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3213 static int check_eofblocks_fl(handle_t
*handle
, struct inode
*inode
,
3215 struct ext4_ext_path
*path
,
3219 struct ext4_extent_header
*eh
;
3220 struct ext4_extent
*last_ex
;
3222 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
3225 depth
= ext_depth(inode
);
3226 eh
= path
[depth
].p_hdr
;
3228 if (unlikely(!eh
->eh_entries
)) {
3229 EXT4_ERROR_INODE(inode
, "eh->eh_entries == 0 and "
3230 "EOFBLOCKS_FL set");
3233 last_ex
= EXT_LAST_EXTENT(eh
);
3235 * We should clear the EOFBLOCKS_FL flag if we are writing the
3236 * last block in the last extent in the file. We test this by
3237 * first checking to see if the caller to
3238 * ext4_ext_get_blocks() was interested in the last block (or
3239 * a block beyond the last block) in the current extent. If
3240 * this turns out to be false, we can bail out from this
3241 * function immediately.
3243 if (lblk
+ len
< le32_to_cpu(last_ex
->ee_block
) +
3244 ext4_ext_get_actual_len(last_ex
))
3247 * If the caller does appear to be planning to write at or
3248 * beyond the end of the current extent, we then test to see
3249 * if the current extent is the last extent in the file, by
3250 * checking to make sure it was reached via the rightmost node
3251 * at each level of the tree.
3253 for (i
= depth
-1; i
>= 0; i
--)
3254 if (path
[i
].p_idx
!= EXT_LAST_INDEX(path
[i
].p_hdr
))
3256 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3257 return ext4_mark_inode_dirty(handle
, inode
);
3261 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3263 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3264 * whether there are any buffers marked for delayed allocation. It returns '1'
3265 * on the first delalloc'ed buffer head found. If no buffer head in the given
3266 * range is marked for delalloc, it returns 0.
3267 * lblk_start should always be <= lblk_end.
3268 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3269 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3270 * block sooner). This is useful when blocks are truncated sequentially from
3271 * lblk_start towards lblk_end.
3273 static int ext4_find_delalloc_range(struct inode
*inode
,
3274 ext4_lblk_t lblk_start
,
3275 ext4_lblk_t lblk_end
,
3276 int search_hint_reverse
)
3278 struct address_space
*mapping
= inode
->i_mapping
;
3279 struct buffer_head
*head
, *bh
= NULL
;
3281 ext4_lblk_t i
, pg_lblk
;
3284 /* reverse search wont work if fs block size is less than page size */
3285 if (inode
->i_blkbits
< PAGE_CACHE_SHIFT
)
3286 search_hint_reverse
= 0;
3288 if (search_hint_reverse
)
3293 index
= i
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3295 while ((i
>= lblk_start
) && (i
<= lblk_end
)) {
3296 page
= find_get_page(mapping
, index
);
3300 if (!page_has_buffers(page
))
3303 head
= page_buffers(page
);
3308 pg_lblk
= index
<< (PAGE_CACHE_SHIFT
-
3311 if (unlikely(pg_lblk
< lblk_start
)) {
3313 * This is possible when fs block size is less
3314 * than page size and our cluster starts/ends in
3315 * middle of the page. So we need to skip the
3316 * initial few blocks till we reach the 'lblk'
3322 /* Check if the buffer is delayed allocated and that it
3323 * is not yet mapped. (when da-buffers are mapped during
3324 * their writeout, their da_mapped bit is set.)
3326 if (buffer_delay(bh
) && !buffer_da_mapped(bh
)) {
3327 page_cache_release(page
);
3328 trace_ext4_find_delalloc_range(inode
,
3329 lblk_start
, lblk_end
,
3330 search_hint_reverse
,
3334 if (search_hint_reverse
)
3338 } while ((i
>= lblk_start
) && (i
<= lblk_end
) &&
3339 ((bh
= bh
->b_this_page
) != head
));
3342 page_cache_release(page
);
3344 * Move to next page. 'i' will be the first lblk in the next
3347 if (search_hint_reverse
)
3351 i
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3354 trace_ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3355 search_hint_reverse
, 0, 0);
3359 int ext4_find_delalloc_cluster(struct inode
*inode
, ext4_lblk_t lblk
,
3360 int search_hint_reverse
)
3362 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3363 ext4_lblk_t lblk_start
, lblk_end
;
3364 lblk_start
= lblk
& (~(sbi
->s_cluster_ratio
- 1));
3365 lblk_end
= lblk_start
+ sbi
->s_cluster_ratio
- 1;
3367 return ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3368 search_hint_reverse
);
3372 * Determines how many complete clusters (out of those specified by the 'map')
3373 * are under delalloc and were reserved quota for.
3374 * This function is called when we are writing out the blocks that were
3375 * originally written with their allocation delayed, but then the space was
3376 * allocated using fallocate() before the delayed allocation could be resolved.
3377 * The cases to look for are:
3378 * ('=' indicated delayed allocated blocks
3379 * '-' indicates non-delayed allocated blocks)
3380 * (a) partial clusters towards beginning and/or end outside of allocated range
3381 * are not delalloc'ed.
3383 * |----c---=|====c====|====c====|===-c----|
3384 * |++++++ allocated ++++++|
3385 * ==> 4 complete clusters in above example
3387 * (b) partial cluster (outside of allocated range) towards either end is
3388 * marked for delayed allocation. In this case, we will exclude that
3391 * |----====c========|========c========|
3392 * |++++++ allocated ++++++|
3393 * ==> 1 complete clusters in above example
3396 * |================c================|
3397 * |++++++ allocated ++++++|
3398 * ==> 0 complete clusters in above example
3400 * The ext4_da_update_reserve_space will be called only if we
3401 * determine here that there were some "entire" clusters that span
3402 * this 'allocated' range.
3403 * In the non-bigalloc case, this function will just end up returning num_blks
3404 * without ever calling ext4_find_delalloc_range.
3407 get_reserved_cluster_alloc(struct inode
*inode
, ext4_lblk_t lblk_start
,
3408 unsigned int num_blks
)
3410 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3411 ext4_lblk_t alloc_cluster_start
, alloc_cluster_end
;
3412 ext4_lblk_t lblk_from
, lblk_to
, c_offset
;
3413 unsigned int allocated_clusters
= 0;
3415 alloc_cluster_start
= EXT4_B2C(sbi
, lblk_start
);
3416 alloc_cluster_end
= EXT4_B2C(sbi
, lblk_start
+ num_blks
- 1);
3418 /* max possible clusters for this allocation */
3419 allocated_clusters
= alloc_cluster_end
- alloc_cluster_start
+ 1;
3421 trace_ext4_get_reserved_cluster_alloc(inode
, lblk_start
, num_blks
);
3423 /* Check towards left side */
3424 c_offset
= lblk_start
& (sbi
->s_cluster_ratio
- 1);
3426 lblk_from
= lblk_start
& (~(sbi
->s_cluster_ratio
- 1));
3427 lblk_to
= lblk_from
+ c_offset
- 1;
3429 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3430 allocated_clusters
--;
3433 /* Now check towards right. */
3434 c_offset
= (lblk_start
+ num_blks
) & (sbi
->s_cluster_ratio
- 1);
3435 if (allocated_clusters
&& c_offset
) {
3436 lblk_from
= lblk_start
+ num_blks
;
3437 lblk_to
= lblk_from
+ (sbi
->s_cluster_ratio
- c_offset
) - 1;
3439 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3440 allocated_clusters
--;
3443 return allocated_clusters
;
3447 ext4_ext_handle_uninitialized_extents(handle_t
*handle
, struct inode
*inode
,
3448 struct ext4_map_blocks
*map
,
3449 struct ext4_ext_path
*path
, int flags
,
3450 unsigned int allocated
, ext4_fsblk_t newblock
)
3454 ext4_io_end_t
*io
= EXT4_I(inode
)->cur_aio_dio
;
3456 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3457 "block %llu, max_blocks %u, flags %d, allocated %u",
3458 inode
->i_ino
, (unsigned long long)map
->m_lblk
, map
->m_len
,
3460 ext4_ext_show_leaf(inode
, path
);
3462 trace_ext4_ext_handle_uninitialized_extents(inode
, map
, allocated
,
3465 /* get_block() before submit the IO, split the extent */
3466 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
3467 ret
= ext4_split_unwritten_extents(handle
, inode
, map
,
3470 * Flag the inode(non aio case) or end_io struct (aio case)
3471 * that this IO needs to conversion to written when IO is
3475 ext4_set_io_unwritten_flag(inode
, io
);
3477 ext4_set_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3478 if (ext4_should_dioread_nolock(inode
))
3479 map
->m_flags
|= EXT4_MAP_UNINIT
;
3482 /* IO end_io complete, convert the filled extent to written */
3483 if ((flags
& EXT4_GET_BLOCKS_CONVERT
)) {
3484 ret
= ext4_convert_unwritten_extents_endio(handle
, inode
,
3487 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3488 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
3494 /* buffered IO case */
3496 * repeat fallocate creation request
3497 * we already have an unwritten extent
3499 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
)
3502 /* buffered READ or buffered write_begin() lookup */
3503 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3505 * We have blocks reserved already. We
3506 * return allocated blocks so that delalloc
3507 * won't do block reservation for us. But
3508 * the buffer head will be unmapped so that
3509 * a read from the block returns 0s.
3511 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
3515 /* buffered write, writepage time, convert*/
3516 ret
= ext4_ext_convert_to_initialized(handle
, inode
, map
, path
);
3518 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3525 map
->m_flags
|= EXT4_MAP_NEW
;
3527 * if we allocated more blocks than requested
3528 * we need to make sure we unmap the extra block
3529 * allocated. The actual needed block will get
3530 * unmapped later when we find the buffer_head marked
3533 if (allocated
> map
->m_len
) {
3534 unmap_underlying_metadata_blocks(inode
->i_sb
->s_bdev
,
3535 newblock
+ map
->m_len
,
3536 allocated
- map
->m_len
);
3537 allocated
= map
->m_len
;
3541 * If we have done fallocate with the offset that is already
3542 * delayed allocated, we would have block reservation
3543 * and quota reservation done in the delayed write path.
3544 * But fallocate would have already updated quota and block
3545 * count for this offset. So cancel these reservation
3547 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
3548 unsigned int reserved_clusters
;
3549 reserved_clusters
= get_reserved_cluster_alloc(inode
,
3550 map
->m_lblk
, map
->m_len
);
3551 if (reserved_clusters
)
3552 ext4_da_update_reserve_space(inode
,
3558 map
->m_flags
|= EXT4_MAP_MAPPED
;
3559 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0) {
3560 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
, path
,
3566 if (allocated
> map
->m_len
)
3567 allocated
= map
->m_len
;
3568 ext4_ext_show_leaf(inode
, path
);
3569 map
->m_pblk
= newblock
;
3570 map
->m_len
= allocated
;
3573 ext4_ext_drop_refs(path
);
3576 return err
? err
: allocated
;
3580 * get_implied_cluster_alloc - check to see if the requested
3581 * allocation (in the map structure) overlaps with a cluster already
3582 * allocated in an extent.
3583 * @sb The filesystem superblock structure
3584 * @map The requested lblk->pblk mapping
3585 * @ex The extent structure which might contain an implied
3586 * cluster allocation
3588 * This function is called by ext4_ext_map_blocks() after we failed to
3589 * find blocks that were already in the inode's extent tree. Hence,
3590 * we know that the beginning of the requested region cannot overlap
3591 * the extent from the inode's extent tree. There are three cases we
3592 * want to catch. The first is this case:
3594 * |--- cluster # N--|
3595 * |--- extent ---| |---- requested region ---|
3598 * The second case that we need to test for is this one:
3600 * |--------- cluster # N ----------------|
3601 * |--- requested region --| |------- extent ----|
3602 * |=======================|
3604 * The third case is when the requested region lies between two extents
3605 * within the same cluster:
3606 * |------------- cluster # N-------------|
3607 * |----- ex -----| |---- ex_right ----|
3608 * |------ requested region ------|
3609 * |================|
3611 * In each of the above cases, we need to set the map->m_pblk and
3612 * map->m_len so it corresponds to the return the extent labelled as
3613 * "|====|" from cluster #N, since it is already in use for data in
3614 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3615 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3616 * as a new "allocated" block region. Otherwise, we will return 0 and
3617 * ext4_ext_map_blocks() will then allocate one or more new clusters
3618 * by calling ext4_mb_new_blocks().
3620 static int get_implied_cluster_alloc(struct super_block
*sb
,
3621 struct ext4_map_blocks
*map
,
3622 struct ext4_extent
*ex
,
3623 struct ext4_ext_path
*path
)
3625 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3626 ext4_lblk_t c_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3627 ext4_lblk_t ex_cluster_start
, ex_cluster_end
;
3628 ext4_lblk_t rr_cluster_start
, rr_cluster_end
;
3629 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3630 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3631 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
3633 /* The extent passed in that we are trying to match */
3634 ex_cluster_start
= EXT4_B2C(sbi
, ee_block
);
3635 ex_cluster_end
= EXT4_B2C(sbi
, ee_block
+ ee_len
- 1);
3637 /* The requested region passed into ext4_map_blocks() */
3638 rr_cluster_start
= EXT4_B2C(sbi
, map
->m_lblk
);
3639 rr_cluster_end
= EXT4_B2C(sbi
, map
->m_lblk
+ map
->m_len
- 1);
3641 if ((rr_cluster_start
== ex_cluster_end
) ||
3642 (rr_cluster_start
== ex_cluster_start
)) {
3643 if (rr_cluster_start
== ex_cluster_end
)
3644 ee_start
+= ee_len
- 1;
3645 map
->m_pblk
= (ee_start
& ~(sbi
->s_cluster_ratio
- 1)) +
3647 map
->m_len
= min(map
->m_len
,
3648 (unsigned) sbi
->s_cluster_ratio
- c_offset
);
3650 * Check for and handle this case:
3652 * |--------- cluster # N-------------|
3653 * |------- extent ----|
3654 * |--- requested region ---|
3658 if (map
->m_lblk
< ee_block
)
3659 map
->m_len
= min(map
->m_len
, ee_block
- map
->m_lblk
);
3662 * Check for the case where there is already another allocated
3663 * block to the right of 'ex' but before the end of the cluster.
3665 * |------------- cluster # N-------------|
3666 * |----- ex -----| |---- ex_right ----|
3667 * |------ requested region ------|
3668 * |================|
3670 if (map
->m_lblk
> ee_block
) {
3671 ext4_lblk_t next
= ext4_ext_next_allocated_block(path
);
3672 map
->m_len
= min(map
->m_len
, next
- map
->m_lblk
);
3675 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 1);
3679 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 0);
3685 * Block allocation/map/preallocation routine for extents based files
3688 * Need to be called with
3689 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3690 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3692 * return > 0, number of of blocks already mapped/allocated
3693 * if create == 0 and these are pre-allocated blocks
3694 * buffer head is unmapped
3695 * otherwise blocks are mapped
3697 * return = 0, if plain look up failed (blocks have not been allocated)
3698 * buffer head is unmapped
3700 * return < 0, error case.
3702 int ext4_ext_map_blocks(handle_t
*handle
, struct inode
*inode
,
3703 struct ext4_map_blocks
*map
, int flags
)
3705 struct ext4_ext_path
*path
= NULL
;
3706 struct ext4_extent newex
, *ex
, *ex2
;
3707 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3708 ext4_fsblk_t newblock
= 0;
3709 int free_on_err
= 0, err
= 0, depth
, ret
;
3710 unsigned int allocated
= 0, offset
= 0;
3711 unsigned int allocated_clusters
= 0;
3712 unsigned int punched_out
= 0;
3713 unsigned int result
= 0;
3714 struct ext4_allocation_request ar
;
3715 ext4_io_end_t
*io
= EXT4_I(inode
)->cur_aio_dio
;
3716 ext4_lblk_t cluster_offset
;
3718 ext_debug("blocks %u/%u requested for inode %lu\n",
3719 map
->m_lblk
, map
->m_len
, inode
->i_ino
);
3720 trace_ext4_ext_map_blocks_enter(inode
, map
->m_lblk
, map
->m_len
, flags
);
3722 /* check in cache */
3723 if (!(flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) &&
3724 ext4_ext_in_cache(inode
, map
->m_lblk
, &newex
)) {
3725 if (!newex
.ee_start_lo
&& !newex
.ee_start_hi
) {
3726 if ((sbi
->s_cluster_ratio
> 1) &&
3727 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3728 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3730 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3732 * block isn't allocated yet and
3733 * user doesn't want to allocate it
3737 /* we should allocate requested block */
3739 /* block is already allocated */
3740 if (sbi
->s_cluster_ratio
> 1)
3741 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3742 newblock
= map
->m_lblk
3743 - le32_to_cpu(newex
.ee_block
)
3744 + ext4_ext_pblock(&newex
);
3745 /* number of remaining blocks in the extent */
3746 allocated
= ext4_ext_get_actual_len(&newex
) -
3747 (map
->m_lblk
- le32_to_cpu(newex
.ee_block
));
3752 /* find extent for this block */
3753 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, NULL
);
3755 err
= PTR_ERR(path
);
3760 depth
= ext_depth(inode
);
3763 * consistent leaf must not be empty;
3764 * this situation is possible, though, _during_ tree modification;
3765 * this is why assert can't be put in ext4_ext_find_extent()
3767 if (unlikely(path
[depth
].p_ext
== NULL
&& depth
!= 0)) {
3768 EXT4_ERROR_INODE(inode
, "bad extent address "
3769 "lblock: %lu, depth: %d pblock %lld",
3770 (unsigned long) map
->m_lblk
, depth
,
3771 path
[depth
].p_block
);
3776 ex
= path
[depth
].p_ext
;
3778 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3779 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3780 unsigned short ee_len
;
3783 * Uninitialized extents are treated as holes, except that
3784 * we split out initialized portions during a write.
3786 ee_len
= ext4_ext_get_actual_len(ex
);
3788 trace_ext4_ext_show_extent(inode
, ee_block
, ee_start
, ee_len
);
3790 /* if found extent covers block, simply return it */
3791 if (in_range(map
->m_lblk
, ee_block
, ee_len
)) {
3792 struct ext4_map_blocks punch_map
;
3793 ext4_fsblk_t partial_cluster
= 0;
3795 newblock
= map
->m_lblk
- ee_block
+ ee_start
;
3796 /* number of remaining blocks in the extent */
3797 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3798 ext_debug("%u fit into %u:%d -> %llu\n", map
->m_lblk
,
3799 ee_block
, ee_len
, newblock
);
3801 if ((flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) == 0) {
3803 * Do not put uninitialized extent
3806 if (!ext4_ext_is_uninitialized(ex
)) {
3807 ext4_ext_put_in_cache(inode
, ee_block
,
3811 ret
= ext4_ext_handle_uninitialized_extents(
3812 handle
, inode
, map
, path
, flags
,
3813 allocated
, newblock
);
3818 * Punch out the map length, but only to the
3821 punched_out
= allocated
< map
->m_len
?
3822 allocated
: map
->m_len
;
3825 * Sense extents need to be converted to
3826 * uninitialized, they must fit in an
3827 * uninitialized extent
3829 if (punched_out
> EXT_UNINIT_MAX_LEN
)
3830 punched_out
= EXT_UNINIT_MAX_LEN
;
3832 punch_map
.m_lblk
= map
->m_lblk
;
3833 punch_map
.m_pblk
= newblock
;
3834 punch_map
.m_len
= punched_out
;
3835 punch_map
.m_flags
= 0;
3837 /* Check to see if the extent needs to be split */
3838 if (punch_map
.m_len
!= ee_len
||
3839 punch_map
.m_lblk
!= ee_block
) {
3841 ret
= ext4_split_extent(handle
, inode
,
3842 path
, &punch_map
, 0,
3843 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
|
3844 EXT4_GET_BLOCKS_PRE_IO
);
3851 * find extent for the block at
3852 * the start of the hole
3854 ext4_ext_drop_refs(path
);
3857 path
= ext4_ext_find_extent(inode
,
3860 err
= PTR_ERR(path
);
3865 depth
= ext_depth(inode
);
3866 ex
= path
[depth
].p_ext
;
3867 ee_len
= ext4_ext_get_actual_len(ex
);
3868 ee_block
= le32_to_cpu(ex
->ee_block
);
3869 ee_start
= ext4_ext_pblock(ex
);
3873 ext4_ext_mark_uninitialized(ex
);
3875 ext4_ext_invalidate_cache(inode
);
3877 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
3878 &partial_cluster
, map
->m_lblk
,
3879 map
->m_lblk
+ punched_out
);
3881 if (!err
&& path
->p_hdr
->eh_entries
== 0) {
3883 * Punch hole freed all of this sub tree,
3884 * so we need to correct eh_depth
3886 err
= ext4_ext_get_access(handle
, inode
, path
);
3888 ext_inode_hdr(inode
)->eh_depth
= 0;
3889 ext_inode_hdr(inode
)->eh_max
=
3890 cpu_to_le16(ext4_ext_space_root(
3893 err
= ext4_ext_dirty(
3894 handle
, inode
, path
);
3902 if ((sbi
->s_cluster_ratio
> 1) &&
3903 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3904 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3907 * requested block isn't allocated yet;
3908 * we couldn't try to create block if create flag is zero
3910 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3912 * put just found gap into cache to speed up
3913 * subsequent requests
3915 ext4_ext_put_gap_in_cache(inode
, path
, map
->m_lblk
);
3920 * Okay, we need to do block allocation.
3922 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
3923 newex
.ee_block
= cpu_to_le32(map
->m_lblk
);
3924 cluster_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3927 * If we are doing bigalloc, check to see if the extent returned
3928 * by ext4_ext_find_extent() implies a cluster we can use.
3930 if (cluster_offset
&& ex
&&
3931 get_implied_cluster_alloc(inode
->i_sb
, map
, ex
, path
)) {
3932 ar
.len
= allocated
= map
->m_len
;
3933 newblock
= map
->m_pblk
;
3934 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3935 goto got_allocated_blocks
;
3938 /* find neighbour allocated blocks */
3939 ar
.lleft
= map
->m_lblk
;
3940 err
= ext4_ext_search_left(inode
, path
, &ar
.lleft
, &ar
.pleft
);
3943 ar
.lright
= map
->m_lblk
;
3945 err
= ext4_ext_search_right(inode
, path
, &ar
.lright
, &ar
.pright
, &ex2
);
3949 /* Check if the extent after searching to the right implies a
3950 * cluster we can use. */
3951 if ((sbi
->s_cluster_ratio
> 1) && ex2
&&
3952 get_implied_cluster_alloc(inode
->i_sb
, map
, ex2
, path
)) {
3953 ar
.len
= allocated
= map
->m_len
;
3954 newblock
= map
->m_pblk
;
3955 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3956 goto got_allocated_blocks
;
3960 * See if request is beyond maximum number of blocks we can have in
3961 * a single extent. For an initialized extent this limit is
3962 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3963 * EXT_UNINIT_MAX_LEN.
3965 if (map
->m_len
> EXT_INIT_MAX_LEN
&&
3966 !(flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
3967 map
->m_len
= EXT_INIT_MAX_LEN
;
3968 else if (map
->m_len
> EXT_UNINIT_MAX_LEN
&&
3969 (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
3970 map
->m_len
= EXT_UNINIT_MAX_LEN
;
3972 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3973 newex
.ee_len
= cpu_to_le16(map
->m_len
);
3974 err
= ext4_ext_check_overlap(sbi
, inode
, &newex
, path
);
3976 allocated
= ext4_ext_get_actual_len(&newex
);
3978 allocated
= map
->m_len
;
3980 /* allocate new block */
3982 ar
.goal
= ext4_ext_find_goal(inode
, path
, map
->m_lblk
);
3983 ar
.logical
= map
->m_lblk
;
3985 * We calculate the offset from the beginning of the cluster
3986 * for the logical block number, since when we allocate a
3987 * physical cluster, the physical block should start at the
3988 * same offset from the beginning of the cluster. This is
3989 * needed so that future calls to get_implied_cluster_alloc()
3992 offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
- 1);
3993 ar
.len
= EXT4_NUM_B2C(sbi
, offset
+allocated
);
3995 ar
.logical
-= offset
;
3996 if (S_ISREG(inode
->i_mode
))
3997 ar
.flags
= EXT4_MB_HINT_DATA
;
3999 /* disable in-core preallocation for non-regular files */
4001 if (flags
& EXT4_GET_BLOCKS_NO_NORMALIZE
)
4002 ar
.flags
|= EXT4_MB_HINT_NOPREALLOC
;
4003 newblock
= ext4_mb_new_blocks(handle
, &ar
, &err
);
4006 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4007 ar
.goal
, newblock
, allocated
);
4009 allocated_clusters
= ar
.len
;
4010 ar
.len
= EXT4_C2B(sbi
, ar
.len
) - offset
;
4011 if (ar
.len
> allocated
)
4014 got_allocated_blocks
:
4015 /* try to insert new extent into found leaf and return */
4016 ext4_ext_store_pblock(&newex
, newblock
+ offset
);
4017 newex
.ee_len
= cpu_to_le16(ar
.len
);
4018 /* Mark uninitialized */
4019 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
){
4020 ext4_ext_mark_uninitialized(&newex
);
4022 * io_end structure was created for every IO write to an
4023 * uninitialized extent. To avoid unnecessary conversion,
4024 * here we flag the IO that really needs the conversion.
4025 * For non asycn direct IO case, flag the inode state
4026 * that we need to perform conversion when IO is done.
4028 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
4030 ext4_set_io_unwritten_flag(inode
, io
);
4032 ext4_set_inode_state(inode
,
4033 EXT4_STATE_DIO_UNWRITTEN
);
4035 if (ext4_should_dioread_nolock(inode
))
4036 map
->m_flags
|= EXT4_MAP_UNINIT
;
4040 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0)
4041 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
4044 err
= ext4_ext_insert_extent(handle
, inode
, path
,
4046 if (err
&& free_on_err
) {
4047 int fb_flags
= flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
?
4048 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
: 0;
4049 /* free data blocks we just allocated */
4050 /* not a good idea to call discard here directly,
4051 * but otherwise we'd need to call it every free() */
4052 ext4_discard_preallocations(inode
);
4053 ext4_free_blocks(handle
, inode
, NULL
, ext4_ext_pblock(&newex
),
4054 ext4_ext_get_actual_len(&newex
), fb_flags
);
4058 /* previous routine could use block we allocated */
4059 newblock
= ext4_ext_pblock(&newex
);
4060 allocated
= ext4_ext_get_actual_len(&newex
);
4061 if (allocated
> map
->m_len
)
4062 allocated
= map
->m_len
;
4063 map
->m_flags
|= EXT4_MAP_NEW
;
4066 * Update reserved blocks/metadata blocks after successful
4067 * block allocation which had been deferred till now.
4069 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
4070 unsigned int reserved_clusters
;
4072 * Check how many clusters we had reserved this allocated range
4074 reserved_clusters
= get_reserved_cluster_alloc(inode
,
4075 map
->m_lblk
, allocated
);
4076 if (map
->m_flags
& EXT4_MAP_FROM_CLUSTER
) {
4077 if (reserved_clusters
) {
4079 * We have clusters reserved for this range.
4080 * But since we are not doing actual allocation
4081 * and are simply using blocks from previously
4082 * allocated cluster, we should release the
4083 * reservation and not claim quota.
4085 ext4_da_update_reserve_space(inode
,
4086 reserved_clusters
, 0);
4089 BUG_ON(allocated_clusters
< reserved_clusters
);
4090 /* We will claim quota for all newly allocated blocks.*/
4091 ext4_da_update_reserve_space(inode
, allocated_clusters
,
4093 if (reserved_clusters
< allocated_clusters
) {
4094 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4095 int reservation
= allocated_clusters
-
4098 * It seems we claimed few clusters outside of
4099 * the range of this allocation. We should give
4100 * it back to the reservation pool. This can
4101 * happen in the following case:
4103 * * Suppose s_cluster_ratio is 4 (i.e., each
4104 * cluster has 4 blocks. Thus, the clusters
4105 * are [0-3],[4-7],[8-11]...
4106 * * First comes delayed allocation write for
4107 * logical blocks 10 & 11. Since there were no
4108 * previous delayed allocated blocks in the
4109 * range [8-11], we would reserve 1 cluster
4111 * * Next comes write for logical blocks 3 to 8.
4112 * In this case, we will reserve 2 clusters
4113 * (for [0-3] and [4-7]; and not for [8-11] as
4114 * that range has a delayed allocated blocks.
4115 * Thus total reserved clusters now becomes 3.
4116 * * Now, during the delayed allocation writeout
4117 * time, we will first write blocks [3-8] and
4118 * allocate 3 clusters for writing these
4119 * blocks. Also, we would claim all these
4120 * three clusters above.
4121 * * Now when we come here to writeout the
4122 * blocks [10-11], we would expect to claim
4123 * the reservation of 1 cluster we had made
4124 * (and we would claim it since there are no
4125 * more delayed allocated blocks in the range
4126 * [8-11]. But our reserved cluster count had
4127 * already gone to 0.
4129 * Thus, at the step 4 above when we determine
4130 * that there are still some unwritten delayed
4131 * allocated blocks outside of our current
4132 * block range, we should increment the
4133 * reserved clusters count so that when the
4134 * remaining blocks finally gets written, we
4137 dquot_reserve_block(inode
,
4138 EXT4_C2B(sbi
, reservation
));
4139 spin_lock(&ei
->i_block_reservation_lock
);
4140 ei
->i_reserved_data_blocks
+= reservation
;
4141 spin_unlock(&ei
->i_block_reservation_lock
);
4147 * Cache the extent and update transaction to commit on fdatasync only
4148 * when it is _not_ an uninitialized extent.
4150 if ((flags
& EXT4_GET_BLOCKS_UNINIT_EXT
) == 0) {
4151 ext4_ext_put_in_cache(inode
, map
->m_lblk
, allocated
, newblock
);
4152 ext4_update_inode_fsync_trans(handle
, inode
, 1);
4154 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4156 if (allocated
> map
->m_len
)
4157 allocated
= map
->m_len
;
4158 ext4_ext_show_leaf(inode
, path
);
4159 map
->m_flags
|= EXT4_MAP_MAPPED
;
4160 map
->m_pblk
= newblock
;
4161 map
->m_len
= allocated
;
4164 ext4_ext_drop_refs(path
);
4167 result
= (flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) ?
4168 punched_out
: allocated
;
4170 trace_ext4_ext_map_blocks_exit(inode
, map
->m_lblk
,
4171 newblock
, map
->m_len
, err
? err
: result
);
4173 return err
? err
: result
;
4176 void ext4_ext_truncate(struct inode
*inode
)
4178 struct address_space
*mapping
= inode
->i_mapping
;
4179 struct super_block
*sb
= inode
->i_sb
;
4180 ext4_lblk_t last_block
;
4186 * finish any pending end_io work so we won't run the risk of
4187 * converting any truncated blocks to initialized later
4189 ext4_flush_completed_IO(inode
);
4192 * probably first extent we're gonna free will be last in block
4194 err
= ext4_writepage_trans_blocks(inode
);
4195 handle
= ext4_journal_start(inode
, err
);
4199 if (inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4200 page_len
= PAGE_CACHE_SIZE
-
4201 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4203 err
= ext4_discard_partial_page_buffers(handle
,
4204 mapping
, inode
->i_size
, page_len
, 0);
4210 if (ext4_orphan_add(handle
, inode
))
4213 down_write(&EXT4_I(inode
)->i_data_sem
);
4214 ext4_ext_invalidate_cache(inode
);
4216 ext4_discard_preallocations(inode
);
4219 * TODO: optimization is possible here.
4220 * Probably we need not scan at all,
4221 * because page truncation is enough.
4224 /* we have to know where to truncate from in crash case */
4225 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
4226 ext4_mark_inode_dirty(handle
, inode
);
4228 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
4229 >> EXT4_BLOCK_SIZE_BITS(sb
);
4230 err
= ext4_ext_remove_space(inode
, last_block
);
4232 /* In a multi-transaction truncate, we only make the final
4233 * transaction synchronous.
4236 ext4_handle_sync(handle
);
4238 up_write(&EXT4_I(inode
)->i_data_sem
);
4242 * If this was a simple ftruncate() and the file will remain alive,
4243 * then we need to clear up the orphan record which we created above.
4244 * However, if this was a real unlink then we were called by
4245 * ext4_delete_inode(), and we allow that function to clean up the
4246 * orphan info for us.
4249 ext4_orphan_del(handle
, inode
);
4251 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4252 ext4_mark_inode_dirty(handle
, inode
);
4253 ext4_journal_stop(handle
);
4256 static void ext4_falloc_update_inode(struct inode
*inode
,
4257 int mode
, loff_t new_size
, int update_ctime
)
4259 struct timespec now
;
4262 now
= current_fs_time(inode
->i_sb
);
4263 if (!timespec_equal(&inode
->i_ctime
, &now
))
4264 inode
->i_ctime
= now
;
4267 * Update only when preallocation was requested beyond
4270 if (!(mode
& FALLOC_FL_KEEP_SIZE
)) {
4271 if (new_size
> i_size_read(inode
))
4272 i_size_write(inode
, new_size
);
4273 if (new_size
> EXT4_I(inode
)->i_disksize
)
4274 ext4_update_i_disksize(inode
, new_size
);
4277 * Mark that we allocate beyond EOF so the subsequent truncate
4278 * can proceed even if the new size is the same as i_size.
4280 if (new_size
> i_size_read(inode
))
4281 ext4_set_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4287 * preallocate space for a file. This implements ext4's fallocate file
4288 * operation, which gets called from sys_fallocate system call.
4289 * For block-mapped files, posix_fallocate should fall back to the method
4290 * of writing zeroes to the required new blocks (the same behavior which is
4291 * expected for file systems which do not support fallocate() system call).
4293 long ext4_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
4295 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4298 unsigned int max_blocks
;
4303 struct ext4_map_blocks map
;
4304 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4307 * currently supporting (pre)allocate mode for extent-based
4310 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4313 /* Return error if mode is not supported */
4314 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
4317 if (mode
& FALLOC_FL_PUNCH_HOLE
)
4318 return ext4_punch_hole(file
, offset
, len
);
4320 trace_ext4_fallocate_enter(inode
, offset
, len
, mode
);
4321 map
.m_lblk
= offset
>> blkbits
;
4323 * We can't just convert len to max_blocks because
4324 * If blocksize = 4096 offset = 3072 and len = 2048
4326 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
4329 * credits to insert 1 extent into extent tree
4331 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4332 mutex_lock(&inode
->i_mutex
);
4333 ret
= inode_newsize_ok(inode
, (len
+ offset
));
4335 mutex_unlock(&inode
->i_mutex
);
4336 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
, ret
);
4339 flags
= EXT4_GET_BLOCKS_CREATE_UNINIT_EXT
;
4340 if (mode
& FALLOC_FL_KEEP_SIZE
)
4341 flags
|= EXT4_GET_BLOCKS_KEEP_SIZE
;
4343 * Don't normalize the request if it can fit in one extent so
4344 * that it doesn't get unnecessarily split into multiple
4347 if (len
<= EXT_UNINIT_MAX_LEN
<< blkbits
)
4348 flags
|= EXT4_GET_BLOCKS_NO_NORMALIZE
;
4350 while (ret
>= 0 && ret
< max_blocks
) {
4351 map
.m_lblk
= map
.m_lblk
+ ret
;
4352 map
.m_len
= max_blocks
= max_blocks
- ret
;
4353 handle
= ext4_journal_start(inode
, credits
);
4354 if (IS_ERR(handle
)) {
4355 ret
= PTR_ERR(handle
);
4358 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
4362 printk(KERN_ERR
"%s: ext4_ext_map_blocks "
4363 "returned error inode#%lu, block=%u, "
4364 "max_blocks=%u", __func__
,
4365 inode
->i_ino
, map
.m_lblk
, max_blocks
);
4367 ext4_mark_inode_dirty(handle
, inode
);
4368 ret2
= ext4_journal_stop(handle
);
4371 if ((map
.m_lblk
+ ret
) >= (EXT4_BLOCK_ALIGN(offset
+ len
,
4372 blkbits
) >> blkbits
))
4373 new_size
= offset
+ len
;
4375 new_size
= ((loff_t
) map
.m_lblk
+ ret
) << blkbits
;
4377 ext4_falloc_update_inode(inode
, mode
, new_size
,
4378 (map
.m_flags
& EXT4_MAP_NEW
));
4379 ext4_mark_inode_dirty(handle
, inode
);
4380 ret2
= ext4_journal_stop(handle
);
4384 if (ret
== -ENOSPC
&&
4385 ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
4389 mutex_unlock(&inode
->i_mutex
);
4390 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
,
4391 ret
> 0 ? ret2
: ret
);
4392 return ret
> 0 ? ret2
: ret
;
4396 * This function convert a range of blocks to written extents
4397 * The caller of this function will pass the start offset and the size.
4398 * all unwritten extents within this range will be converted to
4401 * This function is called from the direct IO end io call back
4402 * function, to convert the fallocated extents after IO is completed.
4403 * Returns 0 on success.
4405 int ext4_convert_unwritten_extents(struct inode
*inode
, loff_t offset
,
4409 unsigned int max_blocks
;
4412 struct ext4_map_blocks map
;
4413 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4415 map
.m_lblk
= offset
>> blkbits
;
4417 * We can't just convert len to max_blocks because
4418 * If blocksize = 4096 offset = 3072 and len = 2048
4420 max_blocks
= ((EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
) -
4423 * credits to insert 1 extent into extent tree
4425 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4426 while (ret
>= 0 && ret
< max_blocks
) {
4428 map
.m_len
= (max_blocks
-= ret
);
4429 handle
= ext4_journal_start(inode
, credits
);
4430 if (IS_ERR(handle
)) {
4431 ret
= PTR_ERR(handle
);
4434 ret
= ext4_map_blocks(handle
, inode
, &map
,
4435 EXT4_GET_BLOCKS_IO_CONVERT_EXT
);
4438 printk(KERN_ERR
"%s: ext4_ext_map_blocks "
4439 "returned error inode#%lu, block=%u, "
4440 "max_blocks=%u", __func__
,
4441 inode
->i_ino
, map
.m_lblk
, map
.m_len
);
4443 ext4_mark_inode_dirty(handle
, inode
);
4444 ret2
= ext4_journal_stop(handle
);
4445 if (ret
<= 0 || ret2
)
4448 return ret
> 0 ? ret2
: ret
;
4452 * Callback function called for each extent to gather FIEMAP information.
4454 static int ext4_ext_fiemap_cb(struct inode
*inode
, ext4_lblk_t next
,
4455 struct ext4_ext_cache
*newex
, struct ext4_extent
*ex
,
4463 struct fiemap_extent_info
*fieinfo
= data
;
4464 unsigned char blksize_bits
;
4466 blksize_bits
= inode
->i_sb
->s_blocksize_bits
;
4467 logical
= (__u64
)newex
->ec_block
<< blksize_bits
;
4469 if (newex
->ec_start
== 0) {
4471 * No extent in extent-tree contains block @newex->ec_start,
4472 * then the block may stay in 1)a hole or 2)delayed-extent.
4474 * Holes or delayed-extents are processed as follows.
4475 * 1. lookup dirty pages with specified range in pagecache.
4476 * If no page is got, then there is no delayed-extent and
4477 * return with EXT_CONTINUE.
4478 * 2. find the 1st mapped buffer,
4479 * 3. check if the mapped buffer is both in the request range
4480 * and a delayed buffer. If not, there is no delayed-extent,
4482 * 4. a delayed-extent is found, the extent will be collected.
4484 ext4_lblk_t end
= 0;
4485 pgoff_t last_offset
;
4488 pgoff_t start_index
= 0;
4489 struct page
**pages
= NULL
;
4490 struct buffer_head
*bh
= NULL
;
4491 struct buffer_head
*head
= NULL
;
4492 unsigned int nr_pages
= PAGE_SIZE
/ sizeof(struct page
*);
4494 pages
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4498 offset
= logical
>> PAGE_SHIFT
;
4500 last_offset
= offset
;
4502 ret
= find_get_pages_tag(inode
->i_mapping
, &offset
,
4503 PAGECACHE_TAG_DIRTY
, nr_pages
, pages
);
4505 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4506 /* First time, try to find a mapped buffer. */
4509 for (index
= 0; index
< ret
; index
++)
4510 page_cache_release(pages
[index
]);
4513 return EXT_CONTINUE
;
4518 /* Try to find the 1st mapped buffer. */
4519 end
= ((__u64
)pages
[index
]->index
<< PAGE_SHIFT
) >>
4521 if (!page_has_buffers(pages
[index
]))
4523 head
= page_buffers(pages
[index
]);
4530 if (end
>= newex
->ec_block
+
4532 /* The buffer is out of
4533 * the request range.
4537 if (buffer_mapped(bh
) &&
4538 end
>= newex
->ec_block
) {
4539 start_index
= index
- 1;
4540 /* get the 1st mapped buffer. */
4541 goto found_mapped_buffer
;
4544 bh
= bh
->b_this_page
;
4546 } while (bh
!= head
);
4548 /* No mapped buffer in the range found in this page,
4549 * We need to look up next page.
4552 /* There is no page left, but we need to limit
4555 newex
->ec_len
= end
- newex
->ec_block
;
4560 /*Find contiguous delayed buffers. */
4561 if (ret
> 0 && pages
[0]->index
== last_offset
)
4562 head
= page_buffers(pages
[0]);
4568 found_mapped_buffer
:
4569 if (bh
!= NULL
&& buffer_delay(bh
)) {
4570 /* 1st or contiguous delayed buffer found. */
4571 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4573 * 1st delayed buffer found, record
4574 * the start of extent.
4576 flags
|= FIEMAP_EXTENT_DELALLOC
;
4577 newex
->ec_block
= end
;
4578 logical
= (__u64
)end
<< blksize_bits
;
4580 /* Find contiguous delayed buffers. */
4582 if (!buffer_delay(bh
))
4583 goto found_delayed_extent
;
4584 bh
= bh
->b_this_page
;
4586 } while (bh
!= head
);
4588 for (; index
< ret
; index
++) {
4589 if (!page_has_buffers(pages
[index
])) {
4593 head
= page_buffers(pages
[index
]);
4599 if (pages
[index
]->index
!=
4600 pages
[start_index
]->index
+ index
4602 /* Blocks are not contiguous. */
4608 if (!buffer_delay(bh
))
4609 /* Delayed-extent ends. */
4610 goto found_delayed_extent
;
4611 bh
= bh
->b_this_page
;
4613 } while (bh
!= head
);
4615 } else if (!(flags
& FIEMAP_EXTENT_DELALLOC
))
4619 found_delayed_extent
:
4620 newex
->ec_len
= min(end
- newex
->ec_block
,
4621 (ext4_lblk_t
)EXT_INIT_MAX_LEN
);
4622 if (ret
== nr_pages
&& bh
!= NULL
&&
4623 newex
->ec_len
< EXT_INIT_MAX_LEN
&&
4625 /* Have not collected an extent and continue. */
4626 for (index
= 0; index
< ret
; index
++)
4627 page_cache_release(pages
[index
]);
4631 for (index
= 0; index
< ret
; index
++)
4632 page_cache_release(pages
[index
]);
4636 physical
= (__u64
)newex
->ec_start
<< blksize_bits
;
4637 length
= (__u64
)newex
->ec_len
<< blksize_bits
;
4639 if (ex
&& ext4_ext_is_uninitialized(ex
))
4640 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4642 if (next
== EXT_MAX_BLOCKS
)
4643 flags
|= FIEMAP_EXTENT_LAST
;
4645 ret
= fiemap_fill_next_extent(fieinfo
, logical
, physical
,
4651 return EXT_CONTINUE
;
4653 /* fiemap flags we can handle specified here */
4654 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4656 static int ext4_xattr_fiemap(struct inode
*inode
,
4657 struct fiemap_extent_info
*fieinfo
)
4661 __u32 flags
= FIEMAP_EXTENT_LAST
;
4662 int blockbits
= inode
->i_sb
->s_blocksize_bits
;
4666 if (ext4_test_inode_state(inode
, EXT4_STATE_XATTR
)) {
4667 struct ext4_iloc iloc
;
4668 int offset
; /* offset of xattr in inode */
4670 error
= ext4_get_inode_loc(inode
, &iloc
);
4673 physical
= iloc
.bh
->b_blocknr
<< blockbits
;
4674 offset
= EXT4_GOOD_OLD_INODE_SIZE
+
4675 EXT4_I(inode
)->i_extra_isize
;
4677 length
= EXT4_SB(inode
->i_sb
)->s_inode_size
- offset
;
4678 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
4680 } else { /* external block */
4681 physical
= EXT4_I(inode
)->i_file_acl
<< blockbits
;
4682 length
= inode
->i_sb
->s_blocksize
;
4686 error
= fiemap_fill_next_extent(fieinfo
, 0, physical
,
4688 return (error
< 0 ? error
: 0);
4692 * ext4_ext_punch_hole
4694 * Punches a hole of "length" bytes in a file starting
4697 * @inode: The inode of the file to punch a hole in
4698 * @offset: The starting byte offset of the hole
4699 * @length: The length of the hole
4701 * Returns the number of blocks removed or negative on err
4703 int ext4_ext_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
4705 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4706 struct super_block
*sb
= inode
->i_sb
;
4707 struct ext4_ext_cache cache_ex
;
4708 ext4_lblk_t first_block
, last_block
, num_blocks
, iblock
, max_blocks
;
4709 struct address_space
*mapping
= inode
->i_mapping
;
4710 struct ext4_map_blocks map
;
4712 loff_t first_page
, last_page
, page_len
;
4713 loff_t first_page_offset
, last_page_offset
;
4714 int ret
, credits
, blocks_released
, err
= 0;
4716 /* No need to punch hole beyond i_size */
4717 if (offset
>= inode
->i_size
)
4721 * If the hole extends beyond i_size, set the hole
4722 * to end after the page that contains i_size
4724 if (offset
+ length
> inode
->i_size
) {
4725 length
= inode
->i_size
+
4726 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
4730 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4731 EXT4_BLOCK_SIZE_BITS(sb
);
4732 last_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4734 first_page
= (offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
4735 last_page
= (offset
+ length
) >> PAGE_CACHE_SHIFT
;
4737 first_page_offset
= first_page
<< PAGE_CACHE_SHIFT
;
4738 last_page_offset
= last_page
<< PAGE_CACHE_SHIFT
;
4741 * Write out all dirty pages to avoid race conditions
4742 * Then release them.
4744 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
4745 err
= filemap_write_and_wait_range(mapping
,
4746 offset
, offset
+ length
- 1);
4752 /* Now release the pages */
4753 if (last_page_offset
> first_page_offset
) {
4754 truncate_inode_pages_range(mapping
, first_page_offset
,
4755 last_page_offset
-1);
4758 /* finish any pending end_io work */
4759 ext4_flush_completed_IO(inode
);
4761 credits
= ext4_writepage_trans_blocks(inode
);
4762 handle
= ext4_journal_start(inode
, credits
);
4764 return PTR_ERR(handle
);
4766 err
= ext4_orphan_add(handle
, inode
);
4771 * Now we need to zero out the non-page-aligned data in the
4772 * pages at the start and tail of the hole, and unmap the buffer
4773 * heads for the block aligned regions of the page that were
4774 * completely zeroed.
4776 if (first_page
> last_page
) {
4778 * If the file space being truncated is contained within a page
4779 * just zero out and unmap the middle of that page
4781 err
= ext4_discard_partial_page_buffers(handle
,
4782 mapping
, offset
, length
, 0);
4788 * zero out and unmap the partial page that contains
4789 * the start of the hole
4791 page_len
= first_page_offset
- offset
;
4793 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4794 offset
, page_len
, 0);
4800 * zero out and unmap the partial page that contains
4801 * the end of the hole
4803 page_len
= offset
+ length
- last_page_offset
;
4805 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4806 last_page_offset
, page_len
, 0);
4814 * If i_size is contained in the last page, we need to
4815 * unmap and zero the partial page after i_size
4817 if (inode
->i_size
>> PAGE_CACHE_SHIFT
== last_page
&&
4818 inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4820 page_len
= PAGE_CACHE_SIZE
-
4821 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4824 err
= ext4_discard_partial_page_buffers(handle
,
4825 mapping
, inode
->i_size
, page_len
, 0);
4832 /* If there are no blocks to remove, return now */
4833 if (first_block
>= last_block
)
4836 down_write(&EXT4_I(inode
)->i_data_sem
);
4837 ext4_ext_invalidate_cache(inode
);
4838 ext4_discard_preallocations(inode
);
4841 * Loop over all the blocks and identify blocks
4842 * that need to be punched out
4844 iblock
= first_block
;
4845 blocks_released
= 0;
4846 while (iblock
< last_block
) {
4847 max_blocks
= last_block
- iblock
;
4849 memset(&map
, 0, sizeof(map
));
4850 map
.m_lblk
= iblock
;
4851 map
.m_len
= max_blocks
;
4852 ret
= ext4_ext_map_blocks(handle
, inode
, &map
,
4853 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
);
4856 blocks_released
+= ret
;
4858 } else if (ret
== 0) {
4860 * If map blocks could not find the block,
4861 * then it is in a hole. If the hole was
4862 * not already cached, then map blocks should
4863 * put it in the cache. So we can get the hole
4866 memset(&cache_ex
, 0, sizeof(cache_ex
));
4867 if ((ext4_ext_check_cache(inode
, iblock
, &cache_ex
)) &&
4868 !cache_ex
.ec_start
) {
4870 /* The hole is cached */
4871 num_blocks
= cache_ex
.ec_block
+
4872 cache_ex
.ec_len
- iblock
;
4875 /* The block could not be identified */
4880 /* Map blocks error */
4885 if (num_blocks
== 0) {
4886 /* This condition should never happen */
4887 ext_debug("Block lookup failed");
4892 iblock
+= num_blocks
;
4895 if (blocks_released
> 0) {
4896 ext4_ext_invalidate_cache(inode
);
4897 ext4_discard_preallocations(inode
);
4901 ext4_handle_sync(handle
);
4903 up_write(&EXT4_I(inode
)->i_data_sem
);
4906 ext4_orphan_del(handle
, inode
);
4907 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4908 ext4_mark_inode_dirty(handle
, inode
);
4909 ext4_journal_stop(handle
);
4912 int ext4_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4913 __u64 start
, __u64 len
)
4915 ext4_lblk_t start_blk
;
4918 /* fallback to generic here if not in extents fmt */
4919 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4920 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
4923 if (fiemap_check_flags(fieinfo
, EXT4_FIEMAP_FLAGS
))
4926 if (fieinfo
->fi_flags
& FIEMAP_FLAG_XATTR
) {
4927 error
= ext4_xattr_fiemap(inode
, fieinfo
);
4929 ext4_lblk_t len_blks
;
4932 start_blk
= start
>> inode
->i_sb
->s_blocksize_bits
;
4933 last_blk
= (start
+ len
- 1) >> inode
->i_sb
->s_blocksize_bits
;
4934 if (last_blk
>= EXT_MAX_BLOCKS
)
4935 last_blk
= EXT_MAX_BLOCKS
-1;
4936 len_blks
= ((ext4_lblk_t
) last_blk
) - start_blk
+ 1;
4939 * Walk the extent tree gathering extent information.
4940 * ext4_ext_fiemap_cb will push extents back to user.
4942 error
= ext4_ext_walk_space(inode
, start_blk
, len_blks
,
4943 ext4_ext_fiemap_cb
, fieinfo
);