Staging: hv: hv_mouse: unwind the initialization process a bit
[zen-stable.git] / arch / powerpc / include / asm / lppaca.h
blob380d48bacd16d0047cd1cb5006853ff4adf9506c
1 /*
2 * lppaca.h
3 * Copyright (C) 2001 Mike Corrigan IBM Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #ifndef _ASM_POWERPC_LPPACA_H
20 #define _ASM_POWERPC_LPPACA_H
21 #ifdef __KERNEL__
23 /* These definitions relate to hypervisors that only exist when using
24 * a server type processor
26 #ifdef CONFIG_PPC_BOOK3S
28 //=============================================================================
30 // This control block contains the data that is shared between the
31 // hypervisor (PLIC) and the OS.
34 //----------------------------------------------------------------------------
35 #include <linux/cache.h>
36 #include <asm/types.h>
37 #include <asm/mmu.h>
39 /* The Hypervisor barfs if the lppaca crosses a page boundary. A 1k
40 * alignment is sufficient to prevent this */
41 struct lppaca {
42 //=============================================================================
43 // CACHE_LINE_1 0x0000 - 0x007F Contains read-only data
44 // NOTE: The xDynXyz fields are fields that will be dynamically changed by
45 // PLIC when preparing to bring a processor online or when dispatching a
46 // virtual processor!
47 //=============================================================================
48 u32 desc; // Eye catcher 0xD397D781 x00-x03
49 u16 size; // Size of this struct x04-x05
50 u16 reserved1; // Reserved x06-x07
51 u16 reserved2:14; // Reserved x08-x09
52 u8 shared_proc:1; // Shared processor indicator ...
53 u8 secondary_thread:1; // Secondary thread indicator ...
54 volatile u8 dyn_proc_status:8; // Dynamic Status of this proc x0A-x0A
55 u8 secondary_thread_count; // Secondary thread count x0B-x0B
56 volatile u16 dyn_hv_phys_proc_index;// Dynamic HV Physical Proc Index0C-x0D
57 volatile u16 dyn_hv_log_proc_index;// Dynamic HV Logical Proc Indexx0E-x0F
58 u32 decr_val; // Value for Decr programming x10-x13
59 u32 pmc_val; // Value for PMC regs x14-x17
60 volatile u32 dyn_hw_node_id; // Dynamic Hardware Node id x18-x1B
61 volatile u32 dyn_hw_proc_id; // Dynamic Hardware Proc Id x1C-x1F
62 volatile u32 dyn_pir; // Dynamic ProcIdReg value x20-x23
63 u32 dsei_data; // DSEI data x24-x27
64 u64 sprg3; // SPRG3 value x28-x2F
65 u8 reserved3[40]; // Reserved x30-x57
66 volatile u8 vphn_assoc_counts[8]; // Virtual processor home node
67 // associativity change counters x58-x5F
68 u8 reserved4[32]; // Reserved x60-x7F
70 //=============================================================================
71 // CACHE_LINE_2 0x0080 - 0x00FF Contains local read-write data
72 //=============================================================================
73 // This Dword contains a byte for each type of interrupt that can occur.
74 // The IPI is a count while the others are just a binary 1 or 0.
75 union {
76 u64 any_int;
77 struct {
78 u16 reserved; // Reserved - cleared by #mpasmbl
79 u8 xirr_int; // Indicates xXirrValue is valid or Immed IO
80 u8 ipi_cnt; // IPI Count
81 u8 decr_int; // DECR interrupt occurred
82 u8 pdc_int; // PDC interrupt occurred
83 u8 quantum_int; // Interrupt quantum reached
84 u8 old_plic_deferred_ext_int; // Old PLIC has a deferred XIRR pending
85 } fields;
86 } int_dword;
88 // Whenever any fields in this Dword are set then PLIC will defer the
89 // processing of external interrupts. Note that PLIC will store the
90 // XIRR directly into the xXirrValue field so that another XIRR will
91 // not be presented until this one clears. The layout of the low
92 // 4-bytes of this Dword is upto SLIC - PLIC just checks whether the
93 // entire Dword is zero or not. A non-zero value in the low order
94 // 2-bytes will result in SLIC being granted the highest thread
95 // priority upon return. A 0 will return to SLIC as medium priority.
96 u64 plic_defer_ints_area; // Entire Dword
98 // Used to pass the real SRR0/1 from PLIC to SLIC as well as to
99 // pass the target SRR0/1 from SLIC to PLIC on a SetAsrAndRfid.
100 u64 saved_srr0; // Saved SRR0 x10-x17
101 u64 saved_srr1; // Saved SRR1 x18-x1F
103 // Used to pass parms from the OS to PLIC for SetAsrAndRfid
104 u64 saved_gpr3; // Saved GPR3 x20-x27
105 u64 saved_gpr4; // Saved GPR4 x28-x2F
106 union {
107 u64 saved_gpr5; /* Saved GPR5 x30-x37 */
108 struct {
109 u8 cede_latency_hint; /* x30 */
110 u8 reserved[7]; /* x31-x36 */
111 } fields;
112 } gpr5_dword;
115 u8 dtl_enable_mask; // Dispatch Trace Log mask x38-x38
116 u8 donate_dedicated_cpu; // Donate dedicated CPU cycles x39-x39
117 u8 fpregs_in_use; // FP regs in use x3A-x3A
118 u8 pmcregs_in_use; // PMC regs in use x3B-x3B
119 volatile u32 saved_decr; // Saved Decr Value x3C-x3F
120 volatile u64 emulated_time_base;// Emulated TB for this thread x40-x47
121 volatile u64 cur_plic_latency; // Unaccounted PLIC latency x48-x4F
122 u64 tot_plic_latency; // Accumulated PLIC latency x50-x57
123 u64 wait_state_cycles; // Wait cycles for this proc x58-x5F
124 u64 end_of_quantum; // TB at end of quantum x60-x67
125 u64 pdc_saved_sprg1; // Saved SPRG1 for PMC int x68-x6F
126 u64 pdc_saved_srr0; // Saved SRR0 for PMC int x70-x77
127 volatile u32 virtual_decr; // Virtual DECR for shared procsx78-x7B
128 u16 slb_count; // # of SLBs to maintain x7C-x7D
129 u8 idle; // Indicate OS is idle x7E
130 u8 vmxregs_in_use; // VMX registers in use x7F
133 //=============================================================================
134 // CACHE_LINE_3 0x0100 - 0x017F: This line is shared with other processors
135 //=============================================================================
136 // This is the yield_count. An "odd" value (low bit on) means that
137 // the processor is yielded (either because of an OS yield or a PLIC
138 // preempt). An even value implies that the processor is currently
139 // executing.
140 // NOTE: This value will ALWAYS be zero for dedicated processors and
141 // will NEVER be zero for shared processors (ie, initialized to a 1).
142 volatile u32 yield_count; // PLIC increments each dispatchx00-x03
143 volatile u32 dispersion_count; // dispatch changed phys cpu x04-x07
144 volatile u64 cmo_faults; // CMO page fault count x08-x0F
145 volatile u64 cmo_fault_time; // CMO page fault time x10-x17
146 u8 reserved7[104]; // Reserved x18-x7F
148 //=============================================================================
149 // CACHE_LINE_4-5 0x0180 - 0x027F Contains PMC interrupt data
150 //=============================================================================
151 u32 page_ins; // CMO Hint - # page ins by OS x00-x03
152 u8 reserved8[148]; // Reserved x04-x97
153 volatile u64 dtl_idx; // Dispatch Trace Log head idx x98-x9F
154 u8 reserved9[96]; // Reserved xA0-xFF
155 } __attribute__((__aligned__(0x400)));
157 extern struct lppaca lppaca[];
159 #define lppaca_of(cpu) (*paca[cpu].lppaca_ptr)
162 * SLB shadow buffer structure as defined in the PAPR. The save_area
163 * contains adjacent ESID and VSID pairs for each shadowed SLB. The
164 * ESID is stored in the lower 64bits, then the VSID.
166 struct slb_shadow {
167 u32 persistent; // Number of persistent SLBs x00-x03
168 u32 buffer_length; // Total shadow buffer length x04-x07
169 u64 reserved; // Alignment x08-x0f
170 struct {
171 u64 esid;
172 u64 vsid;
173 } save_area[SLB_NUM_BOLTED]; // x10-x40
174 } ____cacheline_aligned;
176 extern struct slb_shadow slb_shadow[];
179 * Layout of entries in the hypervisor's dispatch trace log buffer.
181 struct dtl_entry {
182 u8 dispatch_reason;
183 u8 preempt_reason;
184 u16 processor_id;
185 u32 enqueue_to_dispatch_time;
186 u32 ready_to_enqueue_time;
187 u32 waiting_to_ready_time;
188 u64 timebase;
189 u64 fault_addr;
190 u64 srr0;
191 u64 srr1;
194 #define DISPATCH_LOG_BYTES 4096 /* bytes per cpu */
195 #define N_DISPATCH_LOG (DISPATCH_LOG_BYTES / sizeof(struct dtl_entry))
198 * When CONFIG_VIRT_CPU_ACCOUNTING = y, the cpu accounting code controls
199 * reading from the dispatch trace log. If other code wants to consume
200 * DTL entries, it can set this pointer to a function that will get
201 * called once for each DTL entry that gets processed.
203 extern void (*dtl_consumer)(struct dtl_entry *entry, u64 index);
205 #endif /* CONFIG_PPC_BOOK3S */
206 #endif /* __KERNEL__ */
207 #endif /* _ASM_POWERPC_LPPACA_H */