2 * CARMA DATA-FPGA Access Driver
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
13 * FPGA Memory Dump Format
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
25 * Each correlation array consists of:
27 * Correlation Data (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
52 * This list holds all empty data buffers which are ready to receive data.
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
59 * This list holds data buffers which have been filled, and are waiting to be
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
73 * Notes on the IRQ masking scheme:
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
91 #include <linux/of_platform.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/miscdevice.h>
94 #include <linux/interrupt.h>
95 #include <linux/dmaengine.h>
96 #include <linux/seq_file.h>
97 #include <linux/highmem.h>
98 #include <linux/debugfs.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/poll.h>
102 #include <linux/init.h>
103 #include <linux/slab.h>
104 #include <linux/kref.h>
105 #include <linux/io.h>
107 #include <media/videobuf-dma-sg.h>
109 /* system controller registers */
110 #define SYS_IRQ_SOURCE_CTL 0x24
111 #define SYS_IRQ_OUTPUT_EN 0x28
112 #define SYS_IRQ_OUTPUT_DATA 0x2C
113 #define SYS_IRQ_INPUT_DATA 0x30
114 #define SYS_FPGA_CONFIG_STATUS 0x44
116 /* GPIO IRQ line assignment */
117 #define IRQ_CORL_DONE 0x10
120 #define MMAP_REG_VERSION 0x00
121 #define MMAP_REG_CORL_CONF1 0x08
122 #define MMAP_REG_CORL_CONF2 0x0C
123 #define MMAP_REG_STATUS 0x48
125 #define SYS_FPGA_BLOCK 0xF0000000
127 #define DATA_FPGA_START 0x400000
128 #define DATA_FPGA_SIZE 0x80000
130 static const char drv_name
[] = "carma-fpga";
134 #define MIN_DATA_BUFS 8
135 #define MAX_DATA_BUFS 64
138 unsigned int num_lag_ram
;
139 unsigned int blk_size
;
143 struct list_head entry
;
144 struct videobuf_dmabuf vb
;
149 /* character device */
150 struct miscdevice miscdev
;
154 /* reference count */
157 /* FPGA registers and information */
158 struct fpga_info info
[NUM_FPGA
];
162 /* FPGA Physical Address/Size Information */
163 resource_size_t phys_addr
;
167 struct sg_table corl_table
;
168 unsigned int corl_nents
;
169 struct dma_chan
*chan
;
171 /* Protection for all members below */
174 /* Device enable/disable flag */
177 /* Correlation data buffers */
178 wait_queue_head_t wait
;
179 struct list_head free
;
180 struct list_head used
;
181 struct data_buf
*inflight
;
183 /* Information about data buffers */
184 unsigned int num_dropped
;
185 unsigned int num_buffers
;
187 struct dentry
*dbg_entry
;
191 struct fpga_device
*priv
;
192 struct data_buf
*buf
;
196 static void fpga_device_release(struct kref
*ref
)
198 struct fpga_device
*priv
= container_of(ref
, struct fpga_device
, ref
);
200 /* the last reader has exited, cleanup the last bits */
201 mutex_destroy(&priv
->mutex
);
206 * Data Buffer Allocation Helpers
210 * data_free_buffer() - free a single data buffer and all allocated memory
211 * @buf: the buffer to free
213 * This will free all of the pages allocated to the given data buffer, and
214 * then free the structure itself
216 static void data_free_buffer(struct data_buf
*buf
)
218 /* It is ok to free a NULL buffer */
222 /* free all memory */
223 videobuf_dma_free(&buf
->vb
);
228 * data_alloc_buffer() - allocate and fill a data buffer with pages
229 * @bytes: the number of bytes required
231 * This allocates all space needed for a data buffer. It must be mapped before
232 * use in a DMA transaction using videobuf_dma_map().
234 * Returns NULL on failure
236 static struct data_buf
*data_alloc_buffer(const size_t bytes
)
238 unsigned int nr_pages
;
239 struct data_buf
*buf
;
242 /* calculate the number of pages necessary */
243 nr_pages
= DIV_ROUND_UP(bytes
, PAGE_SIZE
);
245 /* allocate the buffer structure */
246 buf
= kzalloc(sizeof(*buf
), GFP_KERNEL
);
250 /* initialize internal fields */
251 INIT_LIST_HEAD(&buf
->entry
);
254 /* allocate the videobuf */
255 videobuf_dma_init(&buf
->vb
);
256 ret
= videobuf_dma_init_kernel(&buf
->vb
, DMA_FROM_DEVICE
, nr_pages
);
269 * data_free_buffers() - free all allocated buffers
270 * @priv: the driver's private data structure
272 * Free all buffers allocated by the driver (except those currently in the
273 * process of being read by userspace).
275 * LOCKING: must hold dev->mutex
278 static void data_free_buffers(struct fpga_device
*priv
)
280 struct data_buf
*buf
, *tmp
;
282 /* the device should be stopped, no DMA in progress */
283 BUG_ON(priv
->inflight
!= NULL
);
285 list_for_each_entry_safe(buf
, tmp
, &priv
->free
, entry
) {
286 list_del_init(&buf
->entry
);
287 videobuf_dma_unmap(priv
->dev
, &buf
->vb
);
288 data_free_buffer(buf
);
291 list_for_each_entry_safe(buf
, tmp
, &priv
->used
, entry
) {
292 list_del_init(&buf
->entry
);
293 videobuf_dma_unmap(priv
->dev
, &buf
->vb
);
294 data_free_buffer(buf
);
297 priv
->num_buffers
= 0;
302 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
303 * @priv: the driver's private data structure
305 * Allocate enough buffers for a whole second worth of data
307 * This routine will attempt to degrade nicely by succeeding even if a full
308 * second worth of data buffers could not be allocated, as long as a minimum
309 * number were allocated. In this case, it will print a message to the kernel
312 * The device must not be modifying any lists when this is called.
315 * LOCKING: must hold dev->mutex
317 * Returns 0 on success, -ERRNO otherwise
319 static int data_alloc_buffers(struct fpga_device
*priv
)
321 struct data_buf
*buf
;
324 for (i
= 0; i
< MAX_DATA_BUFS
; i
++) {
326 /* allocate a buffer */
327 buf
= data_alloc_buffer(priv
->bufsize
);
332 ret
= videobuf_dma_map(priv
->dev
, &buf
->vb
);
334 data_free_buffer(buf
);
338 /* add it to the list of free buffers */
339 list_add_tail(&buf
->entry
, &priv
->free
);
343 /* Make sure we allocated the minimum required number of buffers */
344 if (priv
->num_buffers
< MIN_DATA_BUFS
) {
345 dev_err(priv
->dev
, "Unable to allocate enough data buffers\n");
346 data_free_buffers(priv
);
350 /* Warn if we are running in a degraded state, but do not fail */
351 if (priv
->num_buffers
< MAX_DATA_BUFS
) {
353 "Unable to allocate %d buffers, using %d buffers instead\n",
361 * DMA Operations Helpers
365 * fpga_start_addr() - get the physical address a DATA-FPGA
366 * @priv: the driver's private data structure
367 * @fpga: the DATA-FPGA number (zero based)
369 static dma_addr_t
fpga_start_addr(struct fpga_device
*priv
, unsigned int fpga
)
371 return priv
->phys_addr
+ 0x400000 + (0x80000 * fpga
);
375 * fpga_block_addr() - get the physical address of a correlation data block
376 * @priv: the driver's private data structure
377 * @fpga: the DATA-FPGA number (zero based)
378 * @blknum: the correlation block number (zero based)
380 static dma_addr_t
fpga_block_addr(struct fpga_device
*priv
, unsigned int fpga
,
383 return fpga_start_addr(priv
, fpga
) + (0x10000 * (1 + blknum
));
386 #define REG_BLOCK_SIZE (32 * 4)
389 * data_setup_corl_table() - create the scatterlist for correlation dumps
390 * @priv: the driver's private data structure
392 * Create the scatterlist for transferring a correlation dump from the
393 * DATA FPGAs. This structure will be reused for each buffer than needs
394 * to be filled with correlation data.
396 * Returns 0 on success, -ERRNO otherwise
398 static int data_setup_corl_table(struct fpga_device
*priv
)
400 struct sg_table
*table
= &priv
->corl_table
;
401 struct scatterlist
*sg
;
402 struct fpga_info
*info
;
405 /* Calculate the number of entries needed */
406 priv
->corl_nents
= (1 + NUM_FPGA
) * REG_BLOCK_SIZE
;
407 for (i
= 0; i
< NUM_FPGA
; i
++)
408 priv
->corl_nents
+= priv
->info
[i
].num_lag_ram
;
410 /* Allocate the scatterlist table */
411 ret
= sg_alloc_table(table
, priv
->corl_nents
, GFP_KERNEL
);
413 dev_err(priv
->dev
, "unable to allocate DMA table\n");
417 /* Add the DATA FPGA registers to the scatterlist */
419 for (i
= 0; i
< NUM_FPGA
; i
++) {
420 sg_dma_address(sg
) = fpga_start_addr(priv
, i
);
421 sg_dma_len(sg
) = REG_BLOCK_SIZE
;
425 /* Add the SYS-FPGA registers to the scatterlist */
426 sg_dma_address(sg
) = SYS_FPGA_BLOCK
;
427 sg_dma_len(sg
) = REG_BLOCK_SIZE
;
430 /* Add the FPGA correlation data blocks to the scatterlist */
431 for (i
= 0; i
< NUM_FPGA
; i
++) {
432 info
= &priv
->info
[i
];
433 for (j
= 0; j
< info
->num_lag_ram
; j
++) {
434 sg_dma_address(sg
) = fpga_block_addr(priv
, i
, j
);
435 sg_dma_len(sg
) = info
->blk_size
;
441 * All physical addresses and lengths are present in the structure
442 * now. It can be reused for every FPGA DATA interrupt
448 * FPGA Register Access Helpers
451 static void fpga_write_reg(struct fpga_device
*priv
, unsigned int fpga
,
452 unsigned int reg
, u32 val
)
454 const int fpga_start
= DATA_FPGA_START
+ (fpga
* DATA_FPGA_SIZE
);
455 iowrite32be(val
, priv
->regs
+ fpga_start
+ reg
);
458 static u32
fpga_read_reg(struct fpga_device
*priv
, unsigned int fpga
,
461 const int fpga_start
= DATA_FPGA_START
+ (fpga
* DATA_FPGA_SIZE
);
462 return ioread32be(priv
->regs
+ fpga_start
+ reg
);
466 * data_calculate_bufsize() - calculate the data buffer size required
467 * @priv: the driver's private data structure
469 * Calculate the total buffer size needed to hold a single block
470 * of correlation data
474 * Returns 0 on success, -ERRNO otherwise
476 static int data_calculate_bufsize(struct fpga_device
*priv
)
478 u32 num_corl
, num_lags
, num_meta
, num_qcnt
, num_pack
;
479 u32 conf1
, conf2
, version
;
480 u32 num_lag_ram
, blk_size
;
483 /* Each buffer starts with the 5 FPGA register areas */
484 priv
->bufsize
= (1 + NUM_FPGA
) * REG_BLOCK_SIZE
;
486 /* Read and store the configuration data for each FPGA */
487 for (i
= 0; i
< NUM_FPGA
; i
++) {
488 version
= fpga_read_reg(priv
, i
, MMAP_REG_VERSION
);
489 conf1
= fpga_read_reg(priv
, i
, MMAP_REG_CORL_CONF1
);
490 conf2
= fpga_read_reg(priv
, i
, MMAP_REG_CORL_CONF2
);
492 /* minor version 2 and later */
493 if ((version
& 0x000000FF) >= 2) {
494 num_corl
= (conf1
& 0x000000F0) >> 4;
495 num_pack
= (conf1
& 0x00000F00) >> 8;
496 num_lags
= (conf1
& 0x00FFF000) >> 12;
497 num_meta
= (conf1
& 0x7F000000) >> 24;
498 num_qcnt
= (conf2
& 0x00000FFF) >> 0;
500 num_corl
= (conf1
& 0x000000F0) >> 4;
501 num_pack
= 1; /* implied */
502 num_lags
= (conf1
& 0x000FFF00) >> 8;
503 num_meta
= (conf1
& 0x7FF00000) >> 20;
504 num_qcnt
= (conf2
& 0x00000FFF) >> 0;
507 num_lag_ram
= (num_corl
+ num_pack
- 1) / num_pack
;
508 blk_size
= ((num_pack
* num_lags
) + num_meta
+ num_qcnt
) * 8;
510 priv
->info
[i
].num_lag_ram
= num_lag_ram
;
511 priv
->info
[i
].blk_size
= blk_size
;
512 priv
->bufsize
+= num_lag_ram
* blk_size
;
514 dev_dbg(priv
->dev
, "FPGA %d NUM_CORL: %d\n", i
, num_corl
);
515 dev_dbg(priv
->dev
, "FPGA %d NUM_PACK: %d\n", i
, num_pack
);
516 dev_dbg(priv
->dev
, "FPGA %d NUM_LAGS: %d\n", i
, num_lags
);
517 dev_dbg(priv
->dev
, "FPGA %d NUM_META: %d\n", i
, num_meta
);
518 dev_dbg(priv
->dev
, "FPGA %d NUM_QCNT: %d\n", i
, num_qcnt
);
519 dev_dbg(priv
->dev
, "FPGA %d BLK_SIZE: %d\n", i
, blk_size
);
522 dev_dbg(priv
->dev
, "TOTAL BUFFER SIZE: %zu bytes\n", priv
->bufsize
);
531 * data_disable_interrupts() - stop the device from generating interrupts
532 * @priv: the driver's private data structure
534 * Hide interrupts by switching to GPIO interrupt source
536 * LOCKING: must hold dev->lock
538 static void data_disable_interrupts(struct fpga_device
*priv
)
540 /* hide the interrupt by switching the IRQ driver to GPIO */
541 iowrite32be(0x2F, priv
->regs
+ SYS_IRQ_SOURCE_CTL
);
545 * data_enable_interrupts() - allow the device to generate interrupts
546 * @priv: the driver's private data structure
548 * Unhide interrupts by switching to the FPGA interrupt source. At the
549 * same time, clear the DATA-FPGA status registers.
551 * LOCKING: must hold dev->lock
553 static void data_enable_interrupts(struct fpga_device
*priv
)
555 /* clear the actual FPGA corl_done interrupt */
556 fpga_write_reg(priv
, 0, MMAP_REG_STATUS
, 0x0);
557 fpga_write_reg(priv
, 1, MMAP_REG_STATUS
, 0x0);
558 fpga_write_reg(priv
, 2, MMAP_REG_STATUS
, 0x0);
559 fpga_write_reg(priv
, 3, MMAP_REG_STATUS
, 0x0);
561 /* flush the writes */
562 fpga_read_reg(priv
, 0, MMAP_REG_STATUS
);
564 /* switch back to the external interrupt source */
565 iowrite32be(0x3F, priv
->regs
+ SYS_IRQ_SOURCE_CTL
);
569 * data_dma_cb() - DMAEngine callback for DMA completion
570 * @data: the driver's private data structure
572 * Complete a DMA transfer from the DATA-FPGA's
574 * This is called via the DMA callback mechanism, and will handle moving the
575 * completed DMA transaction to the used list, and then wake any processes
576 * waiting for new data
578 * CONTEXT: any, softirq expected
580 static void data_dma_cb(void *data
)
582 struct fpga_device
*priv
= data
;
585 spin_lock_irqsave(&priv
->lock
, flags
);
587 /* If there is no inflight buffer, we've got a bug */
588 BUG_ON(priv
->inflight
== NULL
);
590 /* Move the inflight buffer onto the used list */
591 list_move_tail(&priv
->inflight
->entry
, &priv
->used
);
592 priv
->inflight
= NULL
;
594 /* clear the FPGA status and re-enable interrupts */
595 data_enable_interrupts(priv
);
597 spin_unlock_irqrestore(&priv
->lock
, flags
);
600 * We've changed both the inflight and used lists, so we need
601 * to wake up any processes that are blocking for those events
603 wake_up(&priv
->wait
);
607 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
608 * @priv: the driver's private data structure
609 * @buf: the data buffer
611 * Prepare and submit the necessary DMA transactions to fill a correlation
614 * LOCKING: must hold dev->lock
615 * CONTEXT: hardirq only
617 * Returns 0 on success, -ERRNO otherwise
619 static int data_submit_dma(struct fpga_device
*priv
, struct data_buf
*buf
)
621 struct scatterlist
*dst_sg
, *src_sg
;
622 unsigned int dst_nents
, src_nents
;
623 struct dma_chan
*chan
= priv
->chan
;
624 struct dma_async_tx_descriptor
*tx
;
628 dst_sg
= buf
->vb
.sglist
;
629 dst_nents
= buf
->vb
.sglen
;
631 src_sg
= priv
->corl_table
.sgl
;
632 src_nents
= priv
->corl_nents
;
635 * All buffers passed to this function should be ready and mapped
636 * for DMA already. Therefore, we don't need to do anything except
637 * submit it to the Freescale DMA Engine for processing
640 /* setup the scatterlist to scatterlist transfer */
641 tx
= chan
->device
->device_prep_dma_sg(chan
,
646 dev_err(priv
->dev
, "unable to prep scatterlist DMA\n");
650 /* submit the transaction to the DMA controller */
651 cookie
= tx
->tx_submit(tx
);
652 if (dma_submit_error(cookie
)) {
653 dev_err(priv
->dev
, "unable to submit scatterlist DMA\n");
657 /* Prepare the re-read of the SYS-FPGA block */
658 dst
= sg_dma_address(dst_sg
) + (NUM_FPGA
* REG_BLOCK_SIZE
);
659 src
= SYS_FPGA_BLOCK
;
660 tx
= chan
->device
->device_prep_dma_memcpy(chan
, dst
, src
,
664 dev_err(priv
->dev
, "unable to prep SYS-FPGA DMA\n");
668 /* Setup the callback */
669 tx
->callback
= data_dma_cb
;
670 tx
->callback_param
= priv
;
672 /* submit the transaction to the DMA controller */
673 cookie
= tx
->tx_submit(tx
);
674 if (dma_submit_error(cookie
)) {
675 dev_err(priv
->dev
, "unable to submit SYS-FPGA DMA\n");
682 #define CORL_DONE 0x1
685 static irqreturn_t
data_irq(int irq
, void *dev_id
)
687 struct fpga_device
*priv
= dev_id
;
688 bool submitted
= false;
689 struct data_buf
*buf
;
693 /* detect spurious interrupts via FPGA status */
694 for (i
= 0; i
< 4; i
++) {
695 status
= fpga_read_reg(priv
, i
, MMAP_REG_STATUS
);
696 if (!(status
& (CORL_DONE
| CORL_ERR
))) {
697 dev_err(priv
->dev
, "spurious irq detected (FPGA)\n");
702 /* detect spurious interrupts via raw IRQ pin readback */
703 status
= ioread32be(priv
->regs
+ SYS_IRQ_INPUT_DATA
);
704 if (status
& IRQ_CORL_DONE
) {
705 dev_err(priv
->dev
, "spurious irq detected (IRQ)\n");
709 spin_lock(&priv
->lock
);
711 /* hide the interrupt by switching the IRQ driver to GPIO */
712 data_disable_interrupts(priv
);
714 /* If there are no free buffers, drop this data */
715 if (list_empty(&priv
->free
)) {
720 buf
= list_first_entry(&priv
->free
, struct data_buf
, entry
);
721 list_del_init(&buf
->entry
);
722 BUG_ON(buf
->size
!= priv
->bufsize
);
724 /* Submit a DMA transfer to get the correlation data */
725 if (data_submit_dma(priv
, buf
)) {
726 dev_err(priv
->dev
, "Unable to setup DMA transfer\n");
727 list_move_tail(&buf
->entry
, &priv
->free
);
731 /* Save the buffer for the DMA callback */
732 priv
->inflight
= buf
;
735 /* Start the DMA Engine */
736 dma_async_memcpy_issue_pending(priv
->chan
);
739 /* If no DMA was submitted, re-enable interrupts */
741 data_enable_interrupts(priv
);
743 spin_unlock(&priv
->lock
);
748 * Realtime Device Enable Helpers
752 * data_device_enable() - enable the device for buffered dumping
753 * @priv: the driver's private data structure
755 * Enable the device for buffered dumping. Allocates buffers and hooks up
756 * the interrupt handler. When this finishes, data will come pouring in.
758 * LOCKING: must hold dev->mutex
759 * CONTEXT: user context only
761 * Returns 0 on success, -ERRNO otherwise
763 static int data_device_enable(struct fpga_device
*priv
)
768 /* multiple enables are safe: they do nothing */
772 /* check that the FPGAs are programmed */
773 val
= ioread32be(priv
->regs
+ SYS_FPGA_CONFIG_STATUS
);
774 if (!(val
& (1 << 18))) {
775 dev_err(priv
->dev
, "DATA-FPGAs are not enabled\n");
779 /* read the FPGAs to calculate the buffer size */
780 ret
= data_calculate_bufsize(priv
);
782 dev_err(priv
->dev
, "unable to calculate buffer size\n");
786 /* allocate the correlation data buffers */
787 ret
= data_alloc_buffers(priv
);
789 dev_err(priv
->dev
, "unable to allocate buffers\n");
793 /* setup the source scatterlist for dumping correlation data */
794 ret
= data_setup_corl_table(priv
);
796 dev_err(priv
->dev
, "unable to setup correlation DMA table\n");
800 /* hookup the irq handler */
801 ret
= request_irq(priv
->irq
, data_irq
, IRQF_SHARED
, drv_name
, priv
);
803 dev_err(priv
->dev
, "unable to request IRQ handler\n");
807 /* switch to the external FPGA IRQ line */
808 data_enable_interrupts(priv
);
810 /* success, we're enabled */
811 priv
->enabled
= true;
815 sg_free_table(&priv
->corl_table
);
816 priv
->corl_nents
= 0;
818 data_free_buffers(priv
);
823 * data_device_disable() - disable the device for buffered dumping
824 * @priv: the driver's private data structure
826 * Disable the device for buffered dumping. Stops new DMA transactions from
827 * being generated, waits for all outstanding DMA to complete, and then frees
830 * LOCKING: must hold dev->mutex
833 * Returns 0 on success, -ERRNO otherwise
835 static int data_device_disable(struct fpga_device
*priv
)
839 /* allow multiple disable */
843 /* switch to the internal GPIO IRQ line */
844 data_disable_interrupts(priv
);
846 /* unhook the irq handler */
847 free_irq(priv
->irq
, priv
);
850 * wait for all outstanding DMA to complete
852 * Device interrupts are disabled, therefore another buffer cannot
853 * be marked inflight.
855 ret
= wait_event_interruptible(priv
->wait
, priv
->inflight
== NULL
);
859 /* free the correlation table */
860 sg_free_table(&priv
->corl_table
);
861 priv
->corl_nents
= 0;
864 * We are taking the spinlock not to protect priv->enabled, but instead
865 * to make sure that there are no readers in the process of altering
866 * the free or used lists while we are setting this flag.
868 spin_lock_irq(&priv
->lock
);
869 priv
->enabled
= false;
870 spin_unlock_irq(&priv
->lock
);
872 /* free all buffers: the free and used lists are not being changed */
873 data_free_buffers(priv
);
880 #ifdef CONFIG_DEBUG_FS
883 * Count the number of entries in the given list
885 static unsigned int list_num_entries(struct list_head
*list
)
887 struct list_head
*entry
;
888 unsigned int ret
= 0;
890 list_for_each(entry
, list
)
896 static int data_debug_show(struct seq_file
*f
, void *offset
)
898 struct fpga_device
*priv
= f
->private;
902 * Lock the mutex first, so that we get an accurate value for enable
903 * Lock the spinlock next, to get accurate list counts
905 ret
= mutex_lock_interruptible(&priv
->mutex
);
909 spin_lock_irq(&priv
->lock
);
911 seq_printf(f
, "enabled: %d\n", priv
->enabled
);
912 seq_printf(f
, "bufsize: %d\n", priv
->bufsize
);
913 seq_printf(f
, "num_buffers: %d\n", priv
->num_buffers
);
914 seq_printf(f
, "num_free: %d\n", list_num_entries(&priv
->free
));
915 seq_printf(f
, "inflight: %d\n", priv
->inflight
!= NULL
);
916 seq_printf(f
, "num_used: %d\n", list_num_entries(&priv
->used
));
917 seq_printf(f
, "num_dropped: %d\n", priv
->num_dropped
);
919 spin_unlock_irq(&priv
->lock
);
920 mutex_unlock(&priv
->mutex
);
924 static int data_debug_open(struct inode
*inode
, struct file
*file
)
926 return single_open(file
, data_debug_show
, inode
->i_private
);
929 static const struct file_operations data_debug_fops
= {
930 .owner
= THIS_MODULE
,
931 .open
= data_debug_open
,
934 .release
= single_release
,
937 static int data_debugfs_init(struct fpga_device
*priv
)
939 priv
->dbg_entry
= debugfs_create_file(drv_name
, S_IRUGO
, NULL
, priv
,
941 if (IS_ERR(priv
->dbg_entry
))
942 return PTR_ERR(priv
->dbg_entry
);
947 static void data_debugfs_exit(struct fpga_device
*priv
)
949 debugfs_remove(priv
->dbg_entry
);
954 static inline int data_debugfs_init(struct fpga_device
*priv
)
959 static inline void data_debugfs_exit(struct fpga_device
*priv
)
963 #endif /* CONFIG_DEBUG_FS */
969 static ssize_t
data_en_show(struct device
*dev
, struct device_attribute
*attr
,
972 struct fpga_device
*priv
= dev_get_drvdata(dev
);
973 return snprintf(buf
, PAGE_SIZE
, "%u\n", priv
->enabled
);
976 static ssize_t
data_en_set(struct device
*dev
, struct device_attribute
*attr
,
977 const char *buf
, size_t count
)
979 struct fpga_device
*priv
= dev_get_drvdata(dev
);
980 unsigned long enable
;
983 ret
= strict_strtoul(buf
, 0, &enable
);
985 dev_err(priv
->dev
, "unable to parse enable input\n");
989 ret
= mutex_lock_interruptible(&priv
->mutex
);
994 ret
= data_device_enable(priv
);
996 ret
= data_device_disable(priv
);
999 dev_err(priv
->dev
, "device %s failed\n",
1000 enable
? "enable" : "disable");
1006 mutex_unlock(&priv
->mutex
);
1010 static DEVICE_ATTR(enable
, S_IWUSR
| S_IRUGO
, data_en_show
, data_en_set
);
1012 static struct attribute
*data_sysfs_attrs
[] = {
1013 &dev_attr_enable
.attr
,
1017 static const struct attribute_group rt_sysfs_attr_group
= {
1018 .attrs
= data_sysfs_attrs
,
1022 * FPGA Realtime Data Character Device
1025 static int data_open(struct inode
*inode
, struct file
*filp
)
1028 * The miscdevice layer puts our struct miscdevice into the
1029 * filp->private_data field. We use this to find our private
1030 * data and then overwrite it with our own private structure.
1032 struct fpga_device
*priv
= container_of(filp
->private_data
,
1033 struct fpga_device
, miscdev
);
1034 struct fpga_reader
*reader
;
1037 /* allocate private data */
1038 reader
= kzalloc(sizeof(*reader
), GFP_KERNEL
);
1042 reader
->priv
= priv
;
1045 filp
->private_data
= reader
;
1046 ret
= nonseekable_open(inode
, filp
);
1048 dev_err(priv
->dev
, "nonseekable-open failed\n");
1054 * success, increase the reference count of the private data structure
1055 * so that it doesn't disappear if the device is unbound
1057 kref_get(&priv
->ref
);
1061 static int data_release(struct inode
*inode
, struct file
*filp
)
1063 struct fpga_reader
*reader
= filp
->private_data
;
1064 struct fpga_device
*priv
= reader
->priv
;
1066 /* free the per-reader structure */
1067 data_free_buffer(reader
->buf
);
1069 filp
->private_data
= NULL
;
1071 /* decrement our reference count to the private data */
1072 kref_put(&priv
->ref
, fpga_device_release
);
1076 static ssize_t
data_read(struct file
*filp
, char __user
*ubuf
, size_t count
,
1079 struct fpga_reader
*reader
= filp
->private_data
;
1080 struct fpga_device
*priv
= reader
->priv
;
1081 struct list_head
*used
= &priv
->used
;
1082 struct data_buf
*dbuf
;
1087 /* check if we already have a partial buffer */
1093 spin_lock_irq(&priv
->lock
);
1095 /* Block until there is at least one buffer on the used list */
1096 while (list_empty(used
)) {
1097 spin_unlock_irq(&priv
->lock
);
1099 if (filp
->f_flags
& O_NONBLOCK
)
1102 ret
= wait_event_interruptible(priv
->wait
, !list_empty(used
));
1106 spin_lock_irq(&priv
->lock
);
1109 /* Grab the first buffer off of the used list */
1110 dbuf
= list_first_entry(used
, struct data_buf
, entry
);
1111 list_del_init(&dbuf
->entry
);
1113 spin_unlock_irq(&priv
->lock
);
1115 /* Buffers are always mapped: unmap it */
1116 videobuf_dma_unmap(priv
->dev
, &dbuf
->vb
);
1118 /* save the buffer for later */
1120 reader
->buf_start
= 0;
1123 /* Get the number of bytes available */
1124 avail
= dbuf
->size
- reader
->buf_start
;
1125 data
= dbuf
->vb
.vaddr
+ reader
->buf_start
;
1127 /* Get the number of bytes we can transfer */
1128 count
= min(count
, avail
);
1130 /* Copy the data to the userspace buffer */
1131 if (copy_to_user(ubuf
, data
, count
))
1134 /* Update the amount of available space */
1138 * If there is still some data available, save the buffer for the
1139 * next userspace call to read() and return
1142 reader
->buf_start
+= count
;
1148 * Get the buffer ready to be reused for DMA
1150 * If it fails, we pretend that the read never happed and return
1151 * -EFAULT to userspace. The read will be retried.
1153 ret
= videobuf_dma_map(priv
->dev
, &dbuf
->vb
);
1155 dev_err(priv
->dev
, "unable to remap buffer for DMA\n");
1159 /* Lock against concurrent enable/disable */
1160 spin_lock_irq(&priv
->lock
);
1162 /* the reader is finished with this buffer */
1166 * One of two things has happened, the device is disabled, or the
1167 * device has been reconfigured underneath us. In either case, we
1168 * should just throw away the buffer.
1170 if (!priv
->enabled
|| dbuf
->size
!= priv
->bufsize
) {
1171 videobuf_dma_unmap(priv
->dev
, &dbuf
->vb
);
1172 data_free_buffer(dbuf
);
1176 /* The buffer is safe to reuse, so add it back to the free list */
1177 list_add_tail(&dbuf
->entry
, &priv
->free
);
1180 spin_unlock_irq(&priv
->lock
);
1184 static unsigned int data_poll(struct file
*filp
, struct poll_table_struct
*tbl
)
1186 struct fpga_reader
*reader
= filp
->private_data
;
1187 struct fpga_device
*priv
= reader
->priv
;
1188 unsigned int mask
= 0;
1190 poll_wait(filp
, &priv
->wait
, tbl
);
1192 if (!list_empty(&priv
->used
))
1193 mask
|= POLLIN
| POLLRDNORM
;
1198 static int data_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1200 struct fpga_reader
*reader
= filp
->private_data
;
1201 struct fpga_device
*priv
= reader
->priv
;
1202 unsigned long offset
, vsize
, psize
, addr
;
1204 /* VMA properties */
1205 offset
= vma
->vm_pgoff
<< PAGE_SHIFT
;
1206 vsize
= vma
->vm_end
- vma
->vm_start
;
1207 psize
= priv
->phys_size
- offset
;
1208 addr
= (priv
->phys_addr
+ offset
) >> PAGE_SHIFT
;
1210 /* Check against the FPGA region's physical memory size */
1211 if (vsize
> psize
) {
1212 dev_err(priv
->dev
, "requested mmap mapping too large\n");
1216 /* IO memory (stop cacheing) */
1217 vma
->vm_flags
|= VM_IO
| VM_RESERVED
;
1218 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1220 return io_remap_pfn_range(vma
, vma
->vm_start
, addr
, vsize
,
1224 static const struct file_operations data_fops
= {
1225 .owner
= THIS_MODULE
,
1227 .release
= data_release
,
1231 .llseek
= no_llseek
,
1235 * OpenFirmware Device Subsystem
1238 static bool dma_filter(struct dma_chan
*chan
, void *data
)
1241 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1243 * This probably won't survive an unload/load cycle of the Freescale
1244 * DMAEngine driver, but that won't be a problem
1246 if (chan
->chan_id
== 0 && chan
->device
->dev_id
== 0)
1252 static int data_of_probe(struct platform_device
*op
)
1254 struct device_node
*of_node
= op
->dev
.of_node
;
1255 struct device
*this_device
;
1256 struct fpga_device
*priv
;
1257 struct resource res
;
1258 dma_cap_mask_t mask
;
1261 /* Allocate private data */
1262 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
1264 dev_err(&op
->dev
, "Unable to allocate device private data\n");
1269 dev_set_drvdata(&op
->dev
, priv
);
1270 priv
->dev
= &op
->dev
;
1271 kref_init(&priv
->ref
);
1272 mutex_init(&priv
->mutex
);
1274 dev_set_drvdata(priv
->dev
, priv
);
1275 spin_lock_init(&priv
->lock
);
1276 INIT_LIST_HEAD(&priv
->free
);
1277 INIT_LIST_HEAD(&priv
->used
);
1278 init_waitqueue_head(&priv
->wait
);
1280 /* Setup the misc device */
1281 priv
->miscdev
.minor
= MISC_DYNAMIC_MINOR
;
1282 priv
->miscdev
.name
= drv_name
;
1283 priv
->miscdev
.fops
= &data_fops
;
1285 /* Get the physical address of the FPGA registers */
1286 ret
= of_address_to_resource(of_node
, 0, &res
);
1288 dev_err(&op
->dev
, "Unable to find FPGA physical address\n");
1293 priv
->phys_addr
= res
.start
;
1294 priv
->phys_size
= resource_size(&res
);
1296 /* ioremap the registers for use */
1297 priv
->regs
= of_iomap(of_node
, 0);
1299 dev_err(&op
->dev
, "Unable to ioremap registers\n");
1305 dma_cap_set(DMA_MEMCPY
, mask
);
1306 dma_cap_set(DMA_INTERRUPT
, mask
);
1307 dma_cap_set(DMA_SLAVE
, mask
);
1308 dma_cap_set(DMA_SG
, mask
);
1310 /* Request a DMA channel */
1311 priv
->chan
= dma_request_channel(mask
, dma_filter
, NULL
);
1313 dev_err(&op
->dev
, "Unable to request DMA channel\n");
1315 goto out_unmap_regs
;
1318 /* Find the correct IRQ number */
1319 priv
->irq
= irq_of_parse_and_map(of_node
, 0);
1320 if (priv
->irq
== NO_IRQ
) {
1321 dev_err(&op
->dev
, "Unable to find IRQ line\n");
1323 goto out_release_dma
;
1326 /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1327 iowrite32be(IRQ_CORL_DONE
, priv
->regs
+ SYS_IRQ_OUTPUT_DATA
);
1329 /* Register the miscdevice */
1330 ret
= misc_register(&priv
->miscdev
);
1332 dev_err(&op
->dev
, "Unable to register miscdevice\n");
1333 goto out_irq_dispose_mapping
;
1336 /* Create the debugfs files */
1337 ret
= data_debugfs_init(priv
);
1339 dev_err(&op
->dev
, "Unable to create debugfs files\n");
1340 goto out_misc_deregister
;
1343 /* Create the sysfs files */
1344 this_device
= priv
->miscdev
.this_device
;
1345 dev_set_drvdata(this_device
, priv
);
1346 ret
= sysfs_create_group(&this_device
->kobj
, &rt_sysfs_attr_group
);
1348 dev_err(&op
->dev
, "Unable to create sysfs files\n");
1349 goto out_data_debugfs_exit
;
1352 dev_info(&op
->dev
, "CARMA FPGA Realtime Data Driver Loaded\n");
1355 out_data_debugfs_exit
:
1356 data_debugfs_exit(priv
);
1357 out_misc_deregister
:
1358 misc_deregister(&priv
->miscdev
);
1359 out_irq_dispose_mapping
:
1360 irq_dispose_mapping(priv
->irq
);
1362 dma_release_channel(priv
->chan
);
1364 iounmap(priv
->regs
);
1366 kref_put(&priv
->ref
, fpga_device_release
);
1371 static int data_of_remove(struct platform_device
*op
)
1373 struct fpga_device
*priv
= dev_get_drvdata(&op
->dev
);
1374 struct device
*this_device
= priv
->miscdev
.this_device
;
1376 /* remove all sysfs files, now the device cannot be re-enabled */
1377 sysfs_remove_group(&this_device
->kobj
, &rt_sysfs_attr_group
);
1379 /* remove all debugfs files */
1380 data_debugfs_exit(priv
);
1382 /* disable the device from generating data */
1383 data_device_disable(priv
);
1385 /* remove the character device to stop new readers from appearing */
1386 misc_deregister(&priv
->miscdev
);
1388 /* cleanup everything not needed by readers */
1389 irq_dispose_mapping(priv
->irq
);
1390 dma_release_channel(priv
->chan
);
1391 iounmap(priv
->regs
);
1393 /* release our reference */
1394 kref_put(&priv
->ref
, fpga_device_release
);
1398 static struct of_device_id data_of_match
[] = {
1399 { .compatible
= "carma,carma-fpga", },
1403 static struct platform_driver data_of_driver
= {
1404 .probe
= data_of_probe
,
1405 .remove
= data_of_remove
,
1408 .of_match_table
= data_of_match
,
1409 .owner
= THIS_MODULE
,
1414 * Module Init / Exit
1417 static int __init
data_init(void)
1419 return platform_driver_register(&data_of_driver
);
1422 static void __exit
data_exit(void)
1424 platform_driver_unregister(&data_of_driver
);
1427 MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1428 MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1429 MODULE_LICENSE("GPL");
1431 module_init(data_init
);
1432 module_exit(data_exit
);