2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 #include <linux/export.h>
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw
*ah
,
22 struct ath9k_tx_queue_info
*qi
)
24 ath_dbg(ath9k_hw_common(ah
), INTERRUPT
,
25 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 ah
->txok_interrupt_mask
, ah
->txerr_interrupt_mask
,
27 ah
->txdesc_interrupt_mask
, ah
->txeol_interrupt_mask
,
28 ah
->txurn_interrupt_mask
);
30 ENABLE_REGWRITE_BUFFER(ah
);
32 REG_WRITE(ah
, AR_IMR_S0
,
33 SM(ah
->txok_interrupt_mask
, AR_IMR_S0_QCU_TXOK
)
34 | SM(ah
->txdesc_interrupt_mask
, AR_IMR_S0_QCU_TXDESC
));
35 REG_WRITE(ah
, AR_IMR_S1
,
36 SM(ah
->txerr_interrupt_mask
, AR_IMR_S1_QCU_TXERR
)
37 | SM(ah
->txeol_interrupt_mask
, AR_IMR_S1_QCU_TXEOL
));
39 ah
->imrs2_reg
&= ~AR_IMR_S2_QCU_TXURN
;
40 ah
->imrs2_reg
|= (ah
->txurn_interrupt_mask
& AR_IMR_S2_QCU_TXURN
);
41 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
43 REGWRITE_BUFFER_FLUSH(ah
);
46 u32
ath9k_hw_gettxbuf(struct ath_hw
*ah
, u32 q
)
48 return REG_READ(ah
, AR_QTXDP(q
));
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf
);
52 void ath9k_hw_puttxbuf(struct ath_hw
*ah
, u32 q
, u32 txdp
)
54 REG_WRITE(ah
, AR_QTXDP(q
), txdp
);
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf
);
58 void ath9k_hw_txstart(struct ath_hw
*ah
, u32 q
)
60 ath_dbg(ath9k_hw_common(ah
), QUEUE
, "Enable TXE on queue: %u\n", q
);
61 REG_WRITE(ah
, AR_Q_TXE
, 1 << q
);
63 EXPORT_SYMBOL(ath9k_hw_txstart
);
65 u32
ath9k_hw_numtxpending(struct ath_hw
*ah
, u32 q
)
69 npend
= REG_READ(ah
, AR_QSTS(q
)) & AR_Q_STS_PEND_FR_CNT
;
72 if (REG_READ(ah
, AR_Q_TXE
) & (1 << q
))
78 EXPORT_SYMBOL(ath9k_hw_numtxpending
);
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
100 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw
*ah
, bool bIncTrigLevel
)
107 u32 txcfg
, curLevel
, newLevel
;
109 if (ah
->tx_trig_level
>= ah
->config
.max_txtrig_level
)
112 ath9k_hw_disable_interrupts(ah
);
114 txcfg
= REG_READ(ah
, AR_TXCFG
);
115 curLevel
= MS(txcfg
, AR_FTRIG
);
118 if (curLevel
< ah
->config
.max_txtrig_level
)
120 } else if (curLevel
> MIN_TX_FIFO_THRESHOLD
)
122 if (newLevel
!= curLevel
)
123 REG_WRITE(ah
, AR_TXCFG
,
124 (txcfg
& ~AR_FTRIG
) | SM(newLevel
, AR_FTRIG
));
126 ath9k_hw_enable_interrupts(ah
);
128 ah
->tx_trig_level
= newLevel
;
130 return newLevel
!= curLevel
;
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel
);
134 void ath9k_hw_abort_tx_dma(struct ath_hw
*ah
)
138 REG_WRITE(ah
, AR_Q_TXD
, AR_Q_TXD_M
);
140 REG_SET_BIT(ah
, AR_PCU_MISC
, AR_PCU_FORCE_QUIET_COLL
| AR_PCU_CLEAR_VMF
);
141 REG_SET_BIT(ah
, AR_DIAG_SW
, AR_DIAG_FORCE_CH_IDLE_HIGH
);
142 REG_SET_BIT(ah
, AR_D_GBL_IFS_MISC
, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF
);
144 for (q
= 0; q
< AR_NUM_QCU
; q
++) {
145 for (i
= 0; i
< 1000; i
++) {
149 if (!ath9k_hw_numtxpending(ah
, q
))
154 REG_CLR_BIT(ah
, AR_PCU_MISC
, AR_PCU_FORCE_QUIET_COLL
| AR_PCU_CLEAR_VMF
);
155 REG_CLR_BIT(ah
, AR_DIAG_SW
, AR_DIAG_FORCE_CH_IDLE_HIGH
);
156 REG_CLR_BIT(ah
, AR_D_GBL_IFS_MISC
, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF
);
158 REG_WRITE(ah
, AR_Q_TXD
, 0);
160 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma
);
162 bool ath9k_hw_stop_dma_queue(struct ath_hw
*ah
, u32 q
)
164 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
165 #define ATH9K_TIME_QUANTUM 100 /* usec */
166 int wait_time
= ATH9K_TX_STOP_DMA_TIMEOUT
/ ATH9K_TIME_QUANTUM
;
169 REG_WRITE(ah
, AR_Q_TXD
, 1 << q
);
171 for (wait
= wait_time
; wait
!= 0; wait
--) {
172 if (wait
!= wait_time
)
173 udelay(ATH9K_TIME_QUANTUM
);
175 if (ath9k_hw_numtxpending(ah
, q
) == 0)
179 REG_WRITE(ah
, AR_Q_TXD
, 0);
183 #undef ATH9K_TX_STOP_DMA_TIMEOUT
184 #undef ATH9K_TIME_QUANTUM
186 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue
);
188 void ath9k_hw_gettxintrtxqs(struct ath_hw
*ah
, u32
*txqs
)
190 *txqs
&= ah
->intr_txqs
;
191 ah
->intr_txqs
&= ~(*txqs
);
193 EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs
);
195 bool ath9k_hw_set_txq_props(struct ath_hw
*ah
, int q
,
196 const struct ath9k_tx_queue_info
*qinfo
)
199 struct ath_common
*common
= ath9k_hw_common(ah
);
200 struct ath9k_tx_queue_info
*qi
;
203 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
204 ath_dbg(common
, QUEUE
,
205 "Set TXQ properties, inactive queue: %u\n", q
);
209 ath_dbg(common
, QUEUE
, "Set queue properties for: %u\n", q
);
211 qi
->tqi_ver
= qinfo
->tqi_ver
;
212 qi
->tqi_subtype
= qinfo
->tqi_subtype
;
213 qi
->tqi_qflags
= qinfo
->tqi_qflags
;
214 qi
->tqi_priority
= qinfo
->tqi_priority
;
215 if (qinfo
->tqi_aifs
!= ATH9K_TXQ_USEDEFAULT
)
216 qi
->tqi_aifs
= min(qinfo
->tqi_aifs
, 255U);
218 qi
->tqi_aifs
= INIT_AIFS
;
219 if (qinfo
->tqi_cwmin
!= ATH9K_TXQ_USEDEFAULT
) {
220 cw
= min(qinfo
->tqi_cwmin
, 1024U);
222 while (qi
->tqi_cwmin
< cw
)
223 qi
->tqi_cwmin
= (qi
->tqi_cwmin
<< 1) | 1;
225 qi
->tqi_cwmin
= qinfo
->tqi_cwmin
;
226 if (qinfo
->tqi_cwmax
!= ATH9K_TXQ_USEDEFAULT
) {
227 cw
= min(qinfo
->tqi_cwmax
, 1024U);
229 while (qi
->tqi_cwmax
< cw
)
230 qi
->tqi_cwmax
= (qi
->tqi_cwmax
<< 1) | 1;
232 qi
->tqi_cwmax
= INIT_CWMAX
;
234 if (qinfo
->tqi_shretry
!= 0)
235 qi
->tqi_shretry
= min((u32
) qinfo
->tqi_shretry
, 15U);
237 qi
->tqi_shretry
= INIT_SH_RETRY
;
238 if (qinfo
->tqi_lgretry
!= 0)
239 qi
->tqi_lgretry
= min((u32
) qinfo
->tqi_lgretry
, 15U);
241 qi
->tqi_lgretry
= INIT_LG_RETRY
;
242 qi
->tqi_cbrPeriod
= qinfo
->tqi_cbrPeriod
;
243 qi
->tqi_cbrOverflowLimit
= qinfo
->tqi_cbrOverflowLimit
;
244 qi
->tqi_burstTime
= qinfo
->tqi_burstTime
;
245 qi
->tqi_readyTime
= qinfo
->tqi_readyTime
;
247 switch (qinfo
->tqi_subtype
) {
249 if (qi
->tqi_type
== ATH9K_TX_QUEUE_DATA
)
250 qi
->tqi_intFlags
= ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS
;
258 EXPORT_SYMBOL(ath9k_hw_set_txq_props
);
260 bool ath9k_hw_get_txq_props(struct ath_hw
*ah
, int q
,
261 struct ath9k_tx_queue_info
*qinfo
)
263 struct ath_common
*common
= ath9k_hw_common(ah
);
264 struct ath9k_tx_queue_info
*qi
;
267 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
268 ath_dbg(common
, QUEUE
,
269 "Get TXQ properties, inactive queue: %u\n", q
);
273 qinfo
->tqi_qflags
= qi
->tqi_qflags
;
274 qinfo
->tqi_ver
= qi
->tqi_ver
;
275 qinfo
->tqi_subtype
= qi
->tqi_subtype
;
276 qinfo
->tqi_qflags
= qi
->tqi_qflags
;
277 qinfo
->tqi_priority
= qi
->tqi_priority
;
278 qinfo
->tqi_aifs
= qi
->tqi_aifs
;
279 qinfo
->tqi_cwmin
= qi
->tqi_cwmin
;
280 qinfo
->tqi_cwmax
= qi
->tqi_cwmax
;
281 qinfo
->tqi_shretry
= qi
->tqi_shretry
;
282 qinfo
->tqi_lgretry
= qi
->tqi_lgretry
;
283 qinfo
->tqi_cbrPeriod
= qi
->tqi_cbrPeriod
;
284 qinfo
->tqi_cbrOverflowLimit
= qi
->tqi_cbrOverflowLimit
;
285 qinfo
->tqi_burstTime
= qi
->tqi_burstTime
;
286 qinfo
->tqi_readyTime
= qi
->tqi_readyTime
;
290 EXPORT_SYMBOL(ath9k_hw_get_txq_props
);
292 int ath9k_hw_setuptxqueue(struct ath_hw
*ah
, enum ath9k_tx_queue type
,
293 const struct ath9k_tx_queue_info
*qinfo
)
295 struct ath_common
*common
= ath9k_hw_common(ah
);
296 struct ath9k_tx_queue_info
*qi
;
300 case ATH9K_TX_QUEUE_BEACON
:
301 q
= ATH9K_NUM_TX_QUEUES
- 1;
303 case ATH9K_TX_QUEUE_CAB
:
304 q
= ATH9K_NUM_TX_QUEUES
- 2;
306 case ATH9K_TX_QUEUE_PSPOLL
:
309 case ATH9K_TX_QUEUE_UAPSD
:
310 q
= ATH9K_NUM_TX_QUEUES
- 3;
312 case ATH9K_TX_QUEUE_DATA
:
313 for (q
= 0; q
< ATH9K_NUM_TX_QUEUES
; q
++)
314 if (ah
->txq
[q
].tqi_type
==
315 ATH9K_TX_QUEUE_INACTIVE
)
317 if (q
== ATH9K_NUM_TX_QUEUES
) {
318 ath_err(common
, "No available TX queue\n");
323 ath_err(common
, "Invalid TX queue type: %u\n", type
);
327 ath_dbg(common
, QUEUE
, "Setup TX queue: %u\n", q
);
330 if (qi
->tqi_type
!= ATH9K_TX_QUEUE_INACTIVE
) {
331 ath_err(common
, "TX queue: %u already active\n", q
);
334 memset(qi
, 0, sizeof(struct ath9k_tx_queue_info
));
336 qi
->tqi_physCompBuf
= qinfo
->tqi_physCompBuf
;
337 (void) ath9k_hw_set_txq_props(ah
, q
, qinfo
);
341 EXPORT_SYMBOL(ath9k_hw_setuptxqueue
);
343 bool ath9k_hw_releasetxqueue(struct ath_hw
*ah
, u32 q
)
345 struct ath_common
*common
= ath9k_hw_common(ah
);
346 struct ath9k_tx_queue_info
*qi
;
349 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
350 ath_dbg(common
, QUEUE
, "Release TXQ, inactive queue: %u\n", q
);
354 ath_dbg(common
, QUEUE
, "Release TX queue: %u\n", q
);
356 qi
->tqi_type
= ATH9K_TX_QUEUE_INACTIVE
;
357 ah
->txok_interrupt_mask
&= ~(1 << q
);
358 ah
->txerr_interrupt_mask
&= ~(1 << q
);
359 ah
->txdesc_interrupt_mask
&= ~(1 << q
);
360 ah
->txeol_interrupt_mask
&= ~(1 << q
);
361 ah
->txurn_interrupt_mask
&= ~(1 << q
);
362 ath9k_hw_set_txq_interrupts(ah
, qi
);
366 EXPORT_SYMBOL(ath9k_hw_releasetxqueue
);
368 bool ath9k_hw_resettxqueue(struct ath_hw
*ah
, u32 q
)
370 struct ath_common
*common
= ath9k_hw_common(ah
);
371 struct ath9k_channel
*chan
= ah
->curchan
;
372 struct ath9k_tx_queue_info
*qi
;
373 u32 cwMin
, chanCwMin
, value
;
376 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
377 ath_dbg(common
, QUEUE
, "Reset TXQ, inactive queue: %u\n", q
);
381 ath_dbg(common
, QUEUE
, "Reset TX queue: %u\n", q
);
383 if (qi
->tqi_cwmin
== ATH9K_TXQ_USEDEFAULT
) {
384 if (chan
&& IS_CHAN_B(chan
))
385 chanCwMin
= INIT_CWMIN_11B
;
387 chanCwMin
= INIT_CWMIN
;
389 for (cwMin
= 1; cwMin
< chanCwMin
; cwMin
= (cwMin
<< 1) | 1);
391 cwMin
= qi
->tqi_cwmin
;
393 ENABLE_REGWRITE_BUFFER(ah
);
395 REG_WRITE(ah
, AR_DLCL_IFS(q
),
396 SM(cwMin
, AR_D_LCL_IFS_CWMIN
) |
397 SM(qi
->tqi_cwmax
, AR_D_LCL_IFS_CWMAX
) |
398 SM(qi
->tqi_aifs
, AR_D_LCL_IFS_AIFS
));
400 REG_WRITE(ah
, AR_DRETRY_LIMIT(q
),
401 SM(INIT_SSH_RETRY
, AR_D_RETRY_LIMIT_STA_SH
) |
402 SM(INIT_SLG_RETRY
, AR_D_RETRY_LIMIT_STA_LG
) |
403 SM(qi
->tqi_shretry
, AR_D_RETRY_LIMIT_FR_SH
));
405 REG_WRITE(ah
, AR_QMISC(q
), AR_Q_MISC_DCU_EARLY_TERM_REQ
);
407 if (AR_SREV_9340(ah
))
408 REG_WRITE(ah
, AR_DMISC(q
),
409 AR_D_MISC_CW_BKOFF_EN
| AR_D_MISC_FRAG_WAIT_EN
| 0x1);
411 REG_WRITE(ah
, AR_DMISC(q
),
412 AR_D_MISC_CW_BKOFF_EN
| AR_D_MISC_FRAG_WAIT_EN
| 0x2);
414 if (qi
->tqi_cbrPeriod
) {
415 REG_WRITE(ah
, AR_QCBRCFG(q
),
416 SM(qi
->tqi_cbrPeriod
, AR_Q_CBRCFG_INTERVAL
) |
417 SM(qi
->tqi_cbrOverflowLimit
, AR_Q_CBRCFG_OVF_THRESH
));
418 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_FSP_CBR
|
419 (qi
->tqi_cbrOverflowLimit
?
420 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN
: 0));
422 if (qi
->tqi_readyTime
&& (qi
->tqi_type
!= ATH9K_TX_QUEUE_CAB
)) {
423 REG_WRITE(ah
, AR_QRDYTIMECFG(q
),
424 SM(qi
->tqi_readyTime
, AR_Q_RDYTIMECFG_DURATION
) |
428 REG_WRITE(ah
, AR_DCHNTIME(q
),
429 SM(qi
->tqi_burstTime
, AR_D_CHNTIME_DUR
) |
430 (qi
->tqi_burstTime
? AR_D_CHNTIME_EN
: 0));
432 if (qi
->tqi_burstTime
433 && (qi
->tqi_qflags
& TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE
))
434 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_RDYTIME_EXP_POLICY
);
436 if (qi
->tqi_qflags
& TXQ_FLAG_BACKOFF_DISABLE
)
437 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_POST_FR_BKOFF_DIS
);
439 REGWRITE_BUFFER_FLUSH(ah
);
441 if (qi
->tqi_qflags
& TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE
)
442 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_FRAG_BKOFF_EN
);
444 switch (qi
->tqi_type
) {
445 case ATH9K_TX_QUEUE_BEACON
:
446 ENABLE_REGWRITE_BUFFER(ah
);
448 REG_SET_BIT(ah
, AR_QMISC(q
),
449 AR_Q_MISC_FSP_DBA_GATED
450 | AR_Q_MISC_BEACON_USE
451 | AR_Q_MISC_CBR_INCR_DIS1
);
453 REG_SET_BIT(ah
, AR_DMISC(q
),
454 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
<<
455 AR_D_MISC_ARB_LOCKOUT_CNTRL_S
)
456 | AR_D_MISC_BEACON_USE
457 | AR_D_MISC_POST_FR_BKOFF_DIS
);
459 REGWRITE_BUFFER_FLUSH(ah
);
462 * cwmin and cwmax should be 0 for beacon queue
463 * but not for IBSS as we would create an imbalance
464 * on beaconing fairness for participating nodes.
466 if (AR_SREV_9300_20_OR_LATER(ah
) &&
467 ah
->opmode
!= NL80211_IFTYPE_ADHOC
) {
468 REG_WRITE(ah
, AR_DLCL_IFS(q
), SM(0, AR_D_LCL_IFS_CWMIN
)
469 | SM(0, AR_D_LCL_IFS_CWMAX
)
470 | SM(qi
->tqi_aifs
, AR_D_LCL_IFS_AIFS
));
473 case ATH9K_TX_QUEUE_CAB
:
474 ENABLE_REGWRITE_BUFFER(ah
);
476 REG_SET_BIT(ah
, AR_QMISC(q
),
477 AR_Q_MISC_FSP_DBA_GATED
478 | AR_Q_MISC_CBR_INCR_DIS1
479 | AR_Q_MISC_CBR_INCR_DIS0
);
480 value
= (qi
->tqi_readyTime
-
481 (ah
->config
.sw_beacon_response_time
-
482 ah
->config
.dma_beacon_response_time
) -
483 ah
->config
.additional_swba_backoff
) * 1024;
484 REG_WRITE(ah
, AR_QRDYTIMECFG(q
),
485 value
| AR_Q_RDYTIMECFG_EN
);
486 REG_SET_BIT(ah
, AR_DMISC(q
),
487 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
<<
488 AR_D_MISC_ARB_LOCKOUT_CNTRL_S
));
490 REGWRITE_BUFFER_FLUSH(ah
);
493 case ATH9K_TX_QUEUE_PSPOLL
:
494 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_CBR_INCR_DIS1
);
496 case ATH9K_TX_QUEUE_UAPSD
:
497 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_POST_FR_BKOFF_DIS
);
503 if (qi
->tqi_intFlags
& ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS
) {
504 REG_SET_BIT(ah
, AR_DMISC(q
),
505 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
,
506 AR_D_MISC_ARB_LOCKOUT_CNTRL
) |
507 AR_D_MISC_POST_FR_BKOFF_DIS
);
510 if (AR_SREV_9300_20_OR_LATER(ah
))
511 REG_WRITE(ah
, AR_Q_DESC_CRCCHK
, AR_Q_DESC_CRCCHK_EN
);
513 if (qi
->tqi_qflags
& TXQ_FLAG_TXOKINT_ENABLE
)
514 ah
->txok_interrupt_mask
|= 1 << q
;
516 ah
->txok_interrupt_mask
&= ~(1 << q
);
517 if (qi
->tqi_qflags
& TXQ_FLAG_TXERRINT_ENABLE
)
518 ah
->txerr_interrupt_mask
|= 1 << q
;
520 ah
->txerr_interrupt_mask
&= ~(1 << q
);
521 if (qi
->tqi_qflags
& TXQ_FLAG_TXDESCINT_ENABLE
)
522 ah
->txdesc_interrupt_mask
|= 1 << q
;
524 ah
->txdesc_interrupt_mask
&= ~(1 << q
);
525 if (qi
->tqi_qflags
& TXQ_FLAG_TXEOLINT_ENABLE
)
526 ah
->txeol_interrupt_mask
|= 1 << q
;
528 ah
->txeol_interrupt_mask
&= ~(1 << q
);
529 if (qi
->tqi_qflags
& TXQ_FLAG_TXURNINT_ENABLE
)
530 ah
->txurn_interrupt_mask
|= 1 << q
;
532 ah
->txurn_interrupt_mask
&= ~(1 << q
);
533 ath9k_hw_set_txq_interrupts(ah
, qi
);
537 EXPORT_SYMBOL(ath9k_hw_resettxqueue
);
539 int ath9k_hw_rxprocdesc(struct ath_hw
*ah
, struct ath_desc
*ds
,
540 struct ath_rx_status
*rs
)
542 struct ar5416_desc ads
;
543 struct ar5416_desc
*adsp
= AR5416DESC(ds
);
546 if ((adsp
->ds_rxstatus8
& AR_RxDone
) == 0)
549 ads
.u
.rx
= adsp
->u
.rx
;
554 rs
->rs_datalen
= ads
.ds_rxstatus1
& AR_DataLen
;
555 rs
->rs_tstamp
= ads
.AR_RcvTimestamp
;
557 if (ads
.ds_rxstatus8
& AR_PostDelimCRCErr
) {
558 rs
->rs_rssi
= ATH9K_RSSI_BAD
;
559 rs
->rs_rssi_ctl0
= ATH9K_RSSI_BAD
;
560 rs
->rs_rssi_ctl1
= ATH9K_RSSI_BAD
;
561 rs
->rs_rssi_ctl2
= ATH9K_RSSI_BAD
;
562 rs
->rs_rssi_ext0
= ATH9K_RSSI_BAD
;
563 rs
->rs_rssi_ext1
= ATH9K_RSSI_BAD
;
564 rs
->rs_rssi_ext2
= ATH9K_RSSI_BAD
;
566 rs
->rs_rssi
= MS(ads
.ds_rxstatus4
, AR_RxRSSICombined
);
567 rs
->rs_rssi_ctl0
= MS(ads
.ds_rxstatus0
,
569 rs
->rs_rssi_ctl1
= MS(ads
.ds_rxstatus0
,
571 rs
->rs_rssi_ctl2
= MS(ads
.ds_rxstatus0
,
573 rs
->rs_rssi_ext0
= MS(ads
.ds_rxstatus4
,
575 rs
->rs_rssi_ext1
= MS(ads
.ds_rxstatus4
,
577 rs
->rs_rssi_ext2
= MS(ads
.ds_rxstatus4
,
580 if (ads
.ds_rxstatus8
& AR_RxKeyIdxValid
)
581 rs
->rs_keyix
= MS(ads
.ds_rxstatus8
, AR_KeyIdx
);
583 rs
->rs_keyix
= ATH9K_RXKEYIX_INVALID
;
585 rs
->rs_rate
= MS(ads
.ds_rxstatus0
, AR_RxRate
);
586 rs
->rs_more
= (ads
.ds_rxstatus1
& AR_RxMore
) ? 1 : 0;
588 rs
->rs_isaggr
= (ads
.ds_rxstatus8
& AR_RxAggr
) ? 1 : 0;
590 (ads
.ds_rxstatus8
& AR_RxMoreAggr
) ? 1 : 0;
591 rs
->rs_antenna
= MS(ads
.ds_rxstatus3
, AR_RxAntenna
);
593 (ads
.ds_rxstatus3
& AR_GI
) ? ATH9K_RX_GI
: 0;
595 (ads
.ds_rxstatus3
& AR_2040
) ? ATH9K_RX_2040
: 0;
597 if (ads
.ds_rxstatus8
& AR_PreDelimCRCErr
)
598 rs
->rs_flags
|= ATH9K_RX_DELIM_CRC_PRE
;
599 if (ads
.ds_rxstatus8
& AR_PostDelimCRCErr
)
600 rs
->rs_flags
|= ATH9K_RX_DELIM_CRC_POST
;
601 if (ads
.ds_rxstatus8
& AR_DecryptBusyErr
)
602 rs
->rs_flags
|= ATH9K_RX_DECRYPT_BUSY
;
604 if ((ads
.ds_rxstatus8
& AR_RxFrameOK
) == 0) {
606 * Treat these errors as mutually exclusive to avoid spurious
607 * extra error reports from the hardware. If a CRC error is
608 * reported, then decryption and MIC errors are irrelevant,
609 * the frame is going to be dropped either way
611 if (ads
.ds_rxstatus8
& AR_CRCErr
)
612 rs
->rs_status
|= ATH9K_RXERR_CRC
;
613 else if (ads
.ds_rxstatus8
& AR_PHYErr
) {
614 rs
->rs_status
|= ATH9K_RXERR_PHY
;
615 phyerr
= MS(ads
.ds_rxstatus8
, AR_PHYErrCode
);
616 rs
->rs_phyerr
= phyerr
;
617 } else if (ads
.ds_rxstatus8
& AR_DecryptCRCErr
)
618 rs
->rs_status
|= ATH9K_RXERR_DECRYPT
;
619 else if (ads
.ds_rxstatus8
& AR_MichaelErr
)
620 rs
->rs_status
|= ATH9K_RXERR_MIC
;
623 if (ads
.ds_rxstatus8
& AR_KeyMiss
)
624 rs
->rs_status
|= ATH9K_RXERR_KEYMISS
;
628 EXPORT_SYMBOL(ath9k_hw_rxprocdesc
);
631 * This can stop or re-enables RX.
633 * If bool is set this will kill any frame which is currently being
634 * transferred between the MAC and baseband and also prevent any new
635 * frames from getting started.
637 bool ath9k_hw_setrxabort(struct ath_hw
*ah
, bool set
)
642 REG_SET_BIT(ah
, AR_DIAG_SW
,
643 (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
645 if (!ath9k_hw_wait(ah
, AR_OBS_BUS_1
, AR_OBS_BUS_1_RX_STATE
,
646 0, AH_WAIT_TIMEOUT
)) {
647 REG_CLR_BIT(ah
, AR_DIAG_SW
,
651 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
652 ath_err(ath9k_hw_common(ah
),
653 "RX failed to go idle in 10 ms RXSM=0x%x\n",
659 REG_CLR_BIT(ah
, AR_DIAG_SW
,
660 (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
665 EXPORT_SYMBOL(ath9k_hw_setrxabort
);
667 void ath9k_hw_putrxbuf(struct ath_hw
*ah
, u32 rxdp
)
669 REG_WRITE(ah
, AR_RXDP
, rxdp
);
671 EXPORT_SYMBOL(ath9k_hw_putrxbuf
);
673 void ath9k_hw_startpcureceive(struct ath_hw
*ah
, bool is_scanning
)
675 ath9k_enable_mib_counters(ah
);
677 ath9k_ani_reset(ah
, is_scanning
);
679 REG_CLR_BIT(ah
, AR_DIAG_SW
, (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
681 EXPORT_SYMBOL(ath9k_hw_startpcureceive
);
683 void ath9k_hw_abortpcurecv(struct ath_hw
*ah
)
685 REG_SET_BIT(ah
, AR_DIAG_SW
, AR_DIAG_RX_ABORT
| AR_DIAG_RX_DIS
);
687 ath9k_hw_disable_mib_counters(ah
);
689 EXPORT_SYMBOL(ath9k_hw_abortpcurecv
);
691 bool ath9k_hw_stopdmarecv(struct ath_hw
*ah
, bool *reset
)
693 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
694 struct ath_common
*common
= ath9k_hw_common(ah
);
695 u32 mac_status
, last_mac_status
= 0;
698 /* Enable access to the DMA observation bus */
699 REG_WRITE(ah
, AR_MACMISC
,
700 ((AR_MACMISC_DMA_OBS_LINE_8
<< AR_MACMISC_DMA_OBS_S
) |
701 (AR_MACMISC_MISC_OBS_BUS_1
<<
702 AR_MACMISC_MISC_OBS_BUS_MSB_S
)));
704 REG_WRITE(ah
, AR_CR
, AR_CR_RXD
);
706 /* Wait for rx enable bit to go low */
707 for (i
= AH_RX_STOP_DMA_TIMEOUT
/ AH_TIME_QUANTUM
; i
!= 0; i
--) {
708 if ((REG_READ(ah
, AR_CR
) & AR_CR_RXE
) == 0)
711 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
712 mac_status
= REG_READ(ah
, AR_DMADBG_7
) & 0x7f0;
713 if (mac_status
== 0x1c0 && mac_status
== last_mac_status
) {
718 last_mac_status
= mac_status
;
721 udelay(AH_TIME_QUANTUM
);
726 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
727 AH_RX_STOP_DMA_TIMEOUT
/ 1000,
729 REG_READ(ah
, AR_DIAG_SW
),
730 REG_READ(ah
, AR_DMADBG_7
));
736 #undef AH_RX_STOP_DMA_TIMEOUT
738 EXPORT_SYMBOL(ath9k_hw_stopdmarecv
);
740 int ath9k_hw_beaconq_setup(struct ath_hw
*ah
)
742 struct ath9k_tx_queue_info qi
;
744 memset(&qi
, 0, sizeof(qi
));
748 /* NB: don't enable any interrupts */
749 return ath9k_hw_setuptxqueue(ah
, ATH9K_TX_QUEUE_BEACON
, &qi
);
751 EXPORT_SYMBOL(ath9k_hw_beaconq_setup
);
753 bool ath9k_hw_intrpend(struct ath_hw
*ah
)
757 if (AR_SREV_9100(ah
))
760 host_isr
= REG_READ(ah
, AR_INTR_ASYNC_CAUSE
);
762 if (((host_isr
& AR_INTR_MAC_IRQ
) ||
763 (host_isr
& AR_INTR_ASYNC_MASK_MCI
)) &&
764 (host_isr
!= AR_INTR_SPURIOUS
))
767 host_isr
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
768 if ((host_isr
& AR_INTR_SYNC_DEFAULT
)
769 && (host_isr
!= AR_INTR_SPURIOUS
))
774 EXPORT_SYMBOL(ath9k_hw_intrpend
);
776 void ath9k_hw_disable_interrupts(struct ath_hw
*ah
)
778 struct ath_common
*common
= ath9k_hw_common(ah
);
780 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
781 atomic_set(&ah
->intr_ref_cnt
, -1);
783 atomic_dec(&ah
->intr_ref_cnt
);
785 ath_dbg(common
, INTERRUPT
, "disable IER\n");
786 REG_WRITE(ah
, AR_IER
, AR_IER_DISABLE
);
787 (void) REG_READ(ah
, AR_IER
);
788 if (!AR_SREV_9100(ah
)) {
789 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, 0);
790 (void) REG_READ(ah
, AR_INTR_ASYNC_ENABLE
);
792 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
793 (void) REG_READ(ah
, AR_INTR_SYNC_ENABLE
);
796 EXPORT_SYMBOL(ath9k_hw_disable_interrupts
);
798 void ath9k_hw_enable_interrupts(struct ath_hw
*ah
)
800 struct ath_common
*common
= ath9k_hw_common(ah
);
801 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
804 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
807 if (!atomic_inc_and_test(&ah
->intr_ref_cnt
)) {
808 ath_dbg(common
, INTERRUPT
, "Do not enable IER ref count %d\n",
809 atomic_read(&ah
->intr_ref_cnt
));
813 if (AR_SREV_9340(ah
))
814 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
816 async_mask
= AR_INTR_MAC_IRQ
;
818 if (ah
->imask
& ATH9K_INT_MCI
)
819 async_mask
|= AR_INTR_ASYNC_MASK_MCI
;
821 ath_dbg(common
, INTERRUPT
, "enable IER\n");
822 REG_WRITE(ah
, AR_IER
, AR_IER_ENABLE
);
823 if (!AR_SREV_9100(ah
)) {
824 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, async_mask
);
825 REG_WRITE(ah
, AR_INTR_ASYNC_MASK
, async_mask
);
827 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
828 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, sync_default
);
830 ath_dbg(common
, INTERRUPT
, "AR_IMR 0x%x IER 0x%x\n",
831 REG_READ(ah
, AR_IMR
), REG_READ(ah
, AR_IER
));
833 EXPORT_SYMBOL(ath9k_hw_enable_interrupts
);
835 void ath9k_hw_set_interrupts(struct ath_hw
*ah
)
837 enum ath9k_int ints
= ah
->imask
;
839 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
840 struct ath_common
*common
= ath9k_hw_common(ah
);
842 if (!(ints
& ATH9K_INT_GLOBAL
))
843 ath9k_hw_disable_interrupts(ah
);
845 ath_dbg(common
, INTERRUPT
, "New interrupt mask 0x%x\n", ints
);
847 mask
= ints
& ATH9K_INT_COMMON
;
850 if (ints
& ATH9K_INT_TX
) {
851 if (ah
->config
.tx_intr_mitigation
)
852 mask
|= AR_IMR_TXMINTR
| AR_IMR_TXINTM
;
854 if (ah
->txok_interrupt_mask
)
856 if (ah
->txdesc_interrupt_mask
)
857 mask
|= AR_IMR_TXDESC
;
859 if (ah
->txerr_interrupt_mask
)
860 mask
|= AR_IMR_TXERR
;
861 if (ah
->txeol_interrupt_mask
)
862 mask
|= AR_IMR_TXEOL
;
864 if (ints
& ATH9K_INT_RX
) {
865 if (AR_SREV_9300_20_OR_LATER(ah
)) {
866 mask
|= AR_IMR_RXERR
| AR_IMR_RXOK_HP
;
867 if (ah
->config
.rx_intr_mitigation
) {
868 mask
&= ~AR_IMR_RXOK_LP
;
869 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
871 mask
|= AR_IMR_RXOK_LP
;
874 if (ah
->config
.rx_intr_mitigation
)
875 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
877 mask
|= AR_IMR_RXOK
| AR_IMR_RXDESC
;
879 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
880 mask
|= AR_IMR_GENTMR
;
883 if (ints
& ATH9K_INT_GENTIMER
)
884 mask
|= AR_IMR_GENTMR
;
886 if (ints
& (ATH9K_INT_BMISC
)) {
887 mask
|= AR_IMR_BCNMISC
;
888 if (ints
& ATH9K_INT_TIM
)
889 mask2
|= AR_IMR_S2_TIM
;
890 if (ints
& ATH9K_INT_DTIM
)
891 mask2
|= AR_IMR_S2_DTIM
;
892 if (ints
& ATH9K_INT_DTIMSYNC
)
893 mask2
|= AR_IMR_S2_DTIMSYNC
;
894 if (ints
& ATH9K_INT_CABEND
)
895 mask2
|= AR_IMR_S2_CABEND
;
896 if (ints
& ATH9K_INT_TSFOOR
)
897 mask2
|= AR_IMR_S2_TSFOOR
;
900 if (ints
& (ATH9K_INT_GTT
| ATH9K_INT_CST
)) {
901 mask
|= AR_IMR_BCNMISC
;
902 if (ints
& ATH9K_INT_GTT
)
903 mask2
|= AR_IMR_S2_GTT
;
904 if (ints
& ATH9K_INT_CST
)
905 mask2
|= AR_IMR_S2_CST
;
908 ath_dbg(common
, INTERRUPT
, "new IMR 0x%x\n", mask
);
909 REG_WRITE(ah
, AR_IMR
, mask
);
910 ah
->imrs2_reg
&= ~(AR_IMR_S2_TIM
| AR_IMR_S2_DTIM
| AR_IMR_S2_DTIMSYNC
|
911 AR_IMR_S2_CABEND
| AR_IMR_S2_CABTO
|
912 AR_IMR_S2_TSFOOR
| AR_IMR_S2_GTT
| AR_IMR_S2_CST
);
913 ah
->imrs2_reg
|= mask2
;
914 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
916 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
917 if (ints
& ATH9K_INT_TIM_TIMER
)
918 REG_SET_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
920 REG_CLR_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
925 EXPORT_SYMBOL(ath9k_hw_set_interrupts
);