4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/pipe_fs_i.h>
17 #include <linux/uio.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/audit.h>
21 #include <linux/syscalls.h>
22 #include <linux/fcntl.h>
24 #include <asm/uaccess.h>
25 #include <asm/ioctls.h>
28 * The max size that a non-root user is allowed to grow the pipe. Can
29 * be set by root in /proc/sys/fs/pipe-max-size
31 unsigned int pipe_max_size
= 1048576;
34 * Minimum pipe size, as required by POSIX
36 unsigned int pipe_min_size
= PAGE_SIZE
;
39 * We use a start+len construction, which provides full use of the
41 * -- Florian Coosmann (FGC)
43 * Reads with count = 0 should always return 0.
44 * -- Julian Bradfield 1999-06-07.
46 * FIFOs and Pipes now generate SIGIO for both readers and writers.
47 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
49 * pipe_read & write cleanup
50 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
53 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
56 mutex_lock_nested(&pipe
->inode
->i_mutex
, subclass
);
59 void pipe_lock(struct pipe_inode_info
*pipe
)
62 * pipe_lock() nests non-pipe inode locks (for writing to a file)
64 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
66 EXPORT_SYMBOL(pipe_lock
);
68 void pipe_unlock(struct pipe_inode_info
*pipe
)
71 mutex_unlock(&pipe
->inode
->i_mutex
);
73 EXPORT_SYMBOL(pipe_unlock
);
75 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
76 struct pipe_inode_info
*pipe2
)
78 BUG_ON(pipe1
== pipe2
);
81 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
82 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
84 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
85 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
89 /* Drop the inode semaphore and wait for a pipe event, atomically */
90 void pipe_wait(struct pipe_inode_info
*pipe
)
95 * Pipes are system-local resources, so sleeping on them
96 * is considered a noninteractive wait:
98 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
101 finish_wait(&pipe
->wait
, &wait
);
106 pipe_iov_copy_from_user(void *to
, struct iovec
*iov
, unsigned long len
,
112 while (!iov
->iov_len
)
114 copy
= min_t(unsigned long, len
, iov
->iov_len
);
117 if (__copy_from_user_inatomic(to
, iov
->iov_base
, copy
))
120 if (copy_from_user(to
, iov
->iov_base
, copy
))
125 iov
->iov_base
+= copy
;
126 iov
->iov_len
-= copy
;
132 pipe_iov_copy_to_user(struct iovec
*iov
, const void *from
, unsigned long len
,
138 while (!iov
->iov_len
)
140 copy
= min_t(unsigned long, len
, iov
->iov_len
);
143 if (__copy_to_user_inatomic(iov
->iov_base
, from
, copy
))
146 if (copy_to_user(iov
->iov_base
, from
, copy
))
151 iov
->iov_base
+= copy
;
152 iov
->iov_len
-= copy
;
158 * Attempt to pre-fault in the user memory, so we can use atomic copies.
159 * Returns the number of bytes not faulted in.
161 static int iov_fault_in_pages_write(struct iovec
*iov
, unsigned long len
)
163 while (!iov
->iov_len
)
167 unsigned long this_len
;
169 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
170 if (fault_in_pages_writeable(iov
->iov_base
, this_len
))
181 * Pre-fault in the user memory, so we can use atomic copies.
183 static void iov_fault_in_pages_read(struct iovec
*iov
, unsigned long len
)
185 while (!iov
->iov_len
)
189 unsigned long this_len
;
191 this_len
= min_t(unsigned long, len
, iov
->iov_len
);
192 fault_in_pages_readable(iov
->iov_base
, this_len
);
198 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
199 struct pipe_buffer
*buf
)
201 struct page
*page
= buf
->page
;
204 * If nobody else uses this page, and we don't already have a
205 * temporary page, let's keep track of it as a one-deep
206 * allocation cache. (Otherwise just release our reference to it)
208 if (page_count(page
) == 1 && !pipe
->tmp_page
)
209 pipe
->tmp_page
= page
;
211 page_cache_release(page
);
215 * generic_pipe_buf_map - virtually map a pipe buffer
216 * @pipe: the pipe that the buffer belongs to
217 * @buf: the buffer that should be mapped
218 * @atomic: whether to use an atomic map
221 * This function returns a kernel virtual address mapping for the
222 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
223 * and the caller has to be careful not to fault before calling
224 * the unmap function.
226 * Note that this function occupies KM_USER0 if @atomic != 0.
228 void *generic_pipe_buf_map(struct pipe_inode_info
*pipe
,
229 struct pipe_buffer
*buf
, int atomic
)
232 buf
->flags
|= PIPE_BUF_FLAG_ATOMIC
;
233 return kmap_atomic(buf
->page
, KM_USER0
);
236 return kmap(buf
->page
);
238 EXPORT_SYMBOL(generic_pipe_buf_map
);
241 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
242 * @pipe: the pipe that the buffer belongs to
243 * @buf: the buffer that should be unmapped
244 * @map_data: the data that the mapping function returned
247 * This function undoes the mapping that ->map() provided.
249 void generic_pipe_buf_unmap(struct pipe_inode_info
*pipe
,
250 struct pipe_buffer
*buf
, void *map_data
)
252 if (buf
->flags
& PIPE_BUF_FLAG_ATOMIC
) {
253 buf
->flags
&= ~PIPE_BUF_FLAG_ATOMIC
;
254 kunmap_atomic(map_data
, KM_USER0
);
258 EXPORT_SYMBOL(generic_pipe_buf_unmap
);
261 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
262 * @pipe: the pipe that the buffer belongs to
263 * @buf: the buffer to attempt to steal
266 * This function attempts to steal the &struct page attached to
267 * @buf. If successful, this function returns 0 and returns with
268 * the page locked. The caller may then reuse the page for whatever
269 * he wishes; the typical use is insertion into a different file
272 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
273 struct pipe_buffer
*buf
)
275 struct page
*page
= buf
->page
;
278 * A reference of one is golden, that means that the owner of this
279 * page is the only one holding a reference to it. lock the page
282 if (page_count(page
) == 1) {
289 EXPORT_SYMBOL(generic_pipe_buf_steal
);
292 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
293 * @pipe: the pipe that the buffer belongs to
294 * @buf: the buffer to get a reference to
297 * This function grabs an extra reference to @buf. It's used in
298 * in the tee() system call, when we duplicate the buffers in one
301 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
303 page_cache_get(buf
->page
);
305 EXPORT_SYMBOL(generic_pipe_buf_get
);
308 * generic_pipe_buf_confirm - verify contents of the pipe buffer
309 * @info: the pipe that the buffer belongs to
310 * @buf: the buffer to confirm
313 * This function does nothing, because the generic pipe code uses
314 * pages that are always good when inserted into the pipe.
316 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
317 struct pipe_buffer
*buf
)
321 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
324 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
325 * @pipe: the pipe that the buffer belongs to
326 * @buf: the buffer to put a reference to
329 * This function releases a reference to @buf.
331 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
332 struct pipe_buffer
*buf
)
334 page_cache_release(buf
->page
);
336 EXPORT_SYMBOL(generic_pipe_buf_release
);
338 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
340 .map
= generic_pipe_buf_map
,
341 .unmap
= generic_pipe_buf_unmap
,
342 .confirm
= generic_pipe_buf_confirm
,
343 .release
= anon_pipe_buf_release
,
344 .steal
= generic_pipe_buf_steal
,
345 .get
= generic_pipe_buf_get
,
348 static const struct pipe_buf_operations packet_pipe_buf_ops
= {
350 .map
= generic_pipe_buf_map
,
351 .unmap
= generic_pipe_buf_unmap
,
352 .confirm
= generic_pipe_buf_confirm
,
353 .release
= anon_pipe_buf_release
,
354 .steal
= generic_pipe_buf_steal
,
355 .get
= generic_pipe_buf_get
,
359 pipe_read(struct kiocb
*iocb
, const struct iovec
*_iov
,
360 unsigned long nr_segs
, loff_t pos
)
362 struct file
*filp
= iocb
->ki_filp
;
363 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
364 struct pipe_inode_info
*pipe
;
367 struct iovec
*iov
= (struct iovec
*)_iov
;
370 total_len
= iov_length(iov
, nr_segs
);
371 /* Null read succeeds. */
372 if (unlikely(total_len
== 0))
377 mutex_lock(&inode
->i_mutex
);
378 pipe
= inode
->i_pipe
;
380 int bufs
= pipe
->nrbufs
;
382 int curbuf
= pipe
->curbuf
;
383 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
384 const struct pipe_buf_operations
*ops
= buf
->ops
;
386 size_t chars
= buf
->len
;
389 if (chars
> total_len
)
392 error
= ops
->confirm(pipe
, buf
);
399 atomic
= !iov_fault_in_pages_write(iov
, chars
);
401 addr
= ops
->map(pipe
, buf
, atomic
);
402 error
= pipe_iov_copy_to_user(iov
, addr
+ buf
->offset
, chars
, atomic
);
403 ops
->unmap(pipe
, buf
, addr
);
404 if (unlikely(error
)) {
406 * Just retry with the slow path if we failed.
417 buf
->offset
+= chars
;
420 /* Was it a packet buffer? Clean up and exit */
421 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
428 ops
->release(pipe
, buf
);
429 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
430 pipe
->curbuf
= curbuf
;
431 pipe
->nrbufs
= --bufs
;
436 break; /* common path: read succeeded */
438 if (bufs
) /* More to do? */
442 if (!pipe
->waiting_writers
) {
443 /* syscall merging: Usually we must not sleep
444 * if O_NONBLOCK is set, or if we got some data.
445 * But if a writer sleeps in kernel space, then
446 * we can wait for that data without violating POSIX.
450 if (filp
->f_flags
& O_NONBLOCK
) {
455 if (signal_pending(current
)) {
461 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
462 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
466 mutex_unlock(&inode
->i_mutex
);
468 /* Signal writers asynchronously that there is more room. */
470 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
471 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
478 static inline int is_packetized(struct file
*file
)
480 return (file
->f_flags
& O_DIRECT
) != 0;
484 pipe_write(struct kiocb
*iocb
, const struct iovec
*_iov
,
485 unsigned long nr_segs
, loff_t ppos
)
487 struct file
*filp
= iocb
->ki_filp
;
488 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
489 struct pipe_inode_info
*pipe
;
492 struct iovec
*iov
= (struct iovec
*)_iov
;
496 total_len
= iov_length(iov
, nr_segs
);
497 /* Null write succeeds. */
498 if (unlikely(total_len
== 0))
503 mutex_lock(&inode
->i_mutex
);
504 pipe
= inode
->i_pipe
;
506 if (!pipe
->readers
) {
507 send_sig(SIGPIPE
, current
, 0);
512 /* We try to merge small writes */
513 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
514 if (pipe
->nrbufs
&& chars
!= 0) {
515 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
517 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
518 const struct pipe_buf_operations
*ops
= buf
->ops
;
519 int offset
= buf
->offset
+ buf
->len
;
521 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
522 int error
, atomic
= 1;
525 error
= ops
->confirm(pipe
, buf
);
529 iov_fault_in_pages_read(iov
, chars
);
531 addr
= ops
->map(pipe
, buf
, atomic
);
532 error
= pipe_iov_copy_from_user(offset
+ addr
, iov
,
534 ops
->unmap(pipe
, buf
, addr
);
555 if (!pipe
->readers
) {
556 send_sig(SIGPIPE
, current
, 0);
562 if (bufs
< pipe
->buffers
) {
563 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
564 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
565 struct page
*page
= pipe
->tmp_page
;
567 int error
, atomic
= 1;
570 page
= alloc_page(GFP_HIGHUSER
);
571 if (unlikely(!page
)) {
572 ret
= ret
? : -ENOMEM
;
575 pipe
->tmp_page
= page
;
577 /* Always wake up, even if the copy fails. Otherwise
578 * we lock up (O_NONBLOCK-)readers that sleep due to
580 * FIXME! Is this really true?
584 if (chars
> total_len
)
587 iov_fault_in_pages_read(iov
, chars
);
590 src
= kmap_atomic(page
, KM_USER0
);
594 error
= pipe_iov_copy_from_user(src
, iov
, chars
,
597 kunmap_atomic(src
, KM_USER0
);
601 if (unlikely(error
)) {
612 /* Insert it into the buffer array */
614 buf
->ops
= &anon_pipe_buf_ops
;
618 if (is_packetized(filp
)) {
619 buf
->ops
= &packet_pipe_buf_ops
;
620 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
622 pipe
->nrbufs
= ++bufs
;
623 pipe
->tmp_page
= NULL
;
629 if (bufs
< pipe
->buffers
)
631 if (filp
->f_flags
& O_NONBLOCK
) {
636 if (signal_pending(current
)) {
642 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
643 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
646 pipe
->waiting_writers
++;
648 pipe
->waiting_writers
--;
651 mutex_unlock(&inode
->i_mutex
);
653 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
654 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
657 file_update_time(filp
);
662 bad_pipe_r(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
668 bad_pipe_w(struct file
*filp
, const char __user
*buf
, size_t count
,
674 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
676 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
677 struct pipe_inode_info
*pipe
;
678 int count
, buf
, nrbufs
;
682 mutex_lock(&inode
->i_mutex
);
683 pipe
= inode
->i_pipe
;
686 nrbufs
= pipe
->nrbufs
;
687 while (--nrbufs
>= 0) {
688 count
+= pipe
->bufs
[buf
].len
;
689 buf
= (buf
+1) & (pipe
->buffers
- 1);
691 mutex_unlock(&inode
->i_mutex
);
693 return put_user(count
, (int __user
*)arg
);
699 /* No kernel lock held - fine */
701 pipe_poll(struct file
*filp
, poll_table
*wait
)
704 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
705 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
708 poll_wait(filp
, &pipe
->wait
, wait
);
710 /* Reading only -- no need for acquiring the semaphore. */
711 nrbufs
= pipe
->nrbufs
;
713 if (filp
->f_mode
& FMODE_READ
) {
714 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
715 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
719 if (filp
->f_mode
& FMODE_WRITE
) {
720 mask
|= (nrbufs
< pipe
->buffers
) ? POLLOUT
| POLLWRNORM
: 0;
722 * Most Unices do not set POLLERR for FIFOs but on Linux they
723 * behave exactly like pipes for poll().
733 pipe_release(struct inode
*inode
, int decr
, int decw
)
735 struct pipe_inode_info
*pipe
;
737 mutex_lock(&inode
->i_mutex
);
738 pipe
= inode
->i_pipe
;
739 pipe
->readers
-= decr
;
740 pipe
->writers
-= decw
;
742 if (!pipe
->readers
&& !pipe
->writers
) {
743 free_pipe_info(inode
);
745 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLOUT
| POLLRDNORM
| POLLWRNORM
| POLLERR
| POLLHUP
);
746 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
747 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
749 mutex_unlock(&inode
->i_mutex
);
755 pipe_read_fasync(int fd
, struct file
*filp
, int on
)
757 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
760 mutex_lock(&inode
->i_mutex
);
761 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_readers
);
762 mutex_unlock(&inode
->i_mutex
);
769 pipe_write_fasync(int fd
, struct file
*filp
, int on
)
771 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
774 mutex_lock(&inode
->i_mutex
);
775 retval
= fasync_helper(fd
, filp
, on
, &inode
->i_pipe
->fasync_writers
);
776 mutex_unlock(&inode
->i_mutex
);
783 pipe_rdwr_fasync(int fd
, struct file
*filp
, int on
)
785 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
786 struct pipe_inode_info
*pipe
= inode
->i_pipe
;
789 mutex_lock(&inode
->i_mutex
);
790 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
792 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
793 if (retval
< 0) /* this can happen only if on == T */
794 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
796 mutex_unlock(&inode
->i_mutex
);
802 pipe_read_release(struct inode
*inode
, struct file
*filp
)
804 return pipe_release(inode
, 1, 0);
808 pipe_write_release(struct inode
*inode
, struct file
*filp
)
810 return pipe_release(inode
, 0, 1);
814 pipe_rdwr_release(struct inode
*inode
, struct file
*filp
)
818 decr
= (filp
->f_mode
& FMODE_READ
) != 0;
819 decw
= (filp
->f_mode
& FMODE_WRITE
) != 0;
820 return pipe_release(inode
, decr
, decw
);
824 pipe_read_open(struct inode
*inode
, struct file
*filp
)
828 mutex_lock(&inode
->i_mutex
);
832 inode
->i_pipe
->readers
++;
835 mutex_unlock(&inode
->i_mutex
);
841 pipe_write_open(struct inode
*inode
, struct file
*filp
)
845 mutex_lock(&inode
->i_mutex
);
849 inode
->i_pipe
->writers
++;
852 mutex_unlock(&inode
->i_mutex
);
858 pipe_rdwr_open(struct inode
*inode
, struct file
*filp
)
862 mutex_lock(&inode
->i_mutex
);
866 if (filp
->f_mode
& FMODE_READ
)
867 inode
->i_pipe
->readers
++;
868 if (filp
->f_mode
& FMODE_WRITE
)
869 inode
->i_pipe
->writers
++;
872 mutex_unlock(&inode
->i_mutex
);
878 * The file_operations structs are not static because they
879 * are also used in linux/fs/fifo.c to do operations on FIFOs.
881 * Pipes reuse fifos' file_operations structs.
883 const struct file_operations read_pipefifo_fops
= {
885 .read
= do_sync_read
,
886 .aio_read
= pipe_read
,
889 .unlocked_ioctl
= pipe_ioctl
,
890 .open
= pipe_read_open
,
891 .release
= pipe_read_release
,
892 .fasync
= pipe_read_fasync
,
895 const struct file_operations write_pipefifo_fops
= {
898 .write
= do_sync_write
,
899 .aio_write
= pipe_write
,
901 .unlocked_ioctl
= pipe_ioctl
,
902 .open
= pipe_write_open
,
903 .release
= pipe_write_release
,
904 .fasync
= pipe_write_fasync
,
907 const struct file_operations rdwr_pipefifo_fops
= {
909 .read
= do_sync_read
,
910 .aio_read
= pipe_read
,
911 .write
= do_sync_write
,
912 .aio_write
= pipe_write
,
914 .unlocked_ioctl
= pipe_ioctl
,
915 .open
= pipe_rdwr_open
,
916 .release
= pipe_rdwr_release
,
917 .fasync
= pipe_rdwr_fasync
,
920 struct pipe_inode_info
* alloc_pipe_info(struct inode
*inode
)
922 struct pipe_inode_info
*pipe
;
924 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
926 pipe
->bufs
= kzalloc(sizeof(struct pipe_buffer
) * PIPE_DEF_BUFFERS
, GFP_KERNEL
);
928 init_waitqueue_head(&pipe
->wait
);
929 pipe
->r_counter
= pipe
->w_counter
= 1;
931 pipe
->buffers
= PIPE_DEF_BUFFERS
;
940 void __free_pipe_info(struct pipe_inode_info
*pipe
)
944 for (i
= 0; i
< pipe
->buffers
; i
++) {
945 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
947 buf
->ops
->release(pipe
, buf
);
950 __free_page(pipe
->tmp_page
);
955 void free_pipe_info(struct inode
*inode
)
957 __free_pipe_info(inode
->i_pipe
);
958 inode
->i_pipe
= NULL
;
961 static struct vfsmount
*pipe_mnt __read_mostly
;
964 * pipefs_dname() is called from d_path().
966 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
968 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
969 dentry
->d_inode
->i_ino
);
972 static const struct dentry_operations pipefs_dentry_operations
= {
973 .d_dname
= pipefs_dname
,
976 static struct inode
* get_pipe_inode(void)
978 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
979 struct pipe_inode_info
*pipe
;
984 inode
->i_ino
= get_next_ino();
986 pipe
= alloc_pipe_info(inode
);
989 inode
->i_pipe
= pipe
;
991 pipe
->readers
= pipe
->writers
= 1;
992 inode
->i_fop
= &rdwr_pipefifo_fops
;
995 * Mark the inode dirty from the very beginning,
996 * that way it will never be moved to the dirty
997 * list because "mark_inode_dirty()" will think
998 * that it already _is_ on the dirty list.
1000 inode
->i_state
= I_DIRTY
;
1001 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
1002 inode
->i_uid
= current_fsuid();
1003 inode
->i_gid
= current_fsgid();
1004 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1015 struct file
*create_write_pipe(int flags
)
1018 struct inode
*inode
;
1021 struct qstr name
= { .name
= "" };
1024 inode
= get_pipe_inode();
1029 path
.dentry
= d_alloc_pseudo(pipe_mnt
->mnt_sb
, &name
);
1032 path
.mnt
= mntget(pipe_mnt
);
1034 d_instantiate(path
.dentry
, inode
);
1037 f
= alloc_file(&path
, FMODE_WRITE
, &write_pipefifo_fops
);
1040 f
->f_mapping
= inode
->i_mapping
;
1042 f
->f_flags
= O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
));
1048 free_pipe_info(inode
);
1050 return ERR_PTR(err
);
1053 free_pipe_info(inode
);
1056 return ERR_PTR(err
);
1059 void free_write_pipe(struct file
*f
)
1061 free_pipe_info(f
->f_dentry
->d_inode
);
1062 path_put(&f
->f_path
);
1066 struct file
*create_read_pipe(struct file
*wrf
, int flags
)
1068 /* Grab pipe from the writer */
1069 struct file
*f
= alloc_file(&wrf
->f_path
, FMODE_READ
,
1070 &read_pipefifo_fops
);
1072 return ERR_PTR(-ENFILE
);
1074 path_get(&wrf
->f_path
);
1075 f
->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
1080 int do_pipe_flags(int *fd
, int flags
)
1082 struct file
*fw
, *fr
;
1086 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
))
1089 fw
= create_write_pipe(flags
);
1092 fr
= create_read_pipe(fw
, flags
);
1093 error
= PTR_ERR(fr
);
1095 goto err_write_pipe
;
1097 error
= get_unused_fd_flags(flags
);
1102 error
= get_unused_fd_flags(flags
);
1107 audit_fd_pair(fdr
, fdw
);
1108 fd_install(fdr
, fr
);
1109 fd_install(fdw
, fw
);
1118 path_put(&fr
->f_path
);
1121 free_write_pipe(fw
);
1126 * sys_pipe() is the normal C calling standard for creating
1127 * a pipe. It's not the way Unix traditionally does this, though.
1129 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
1134 error
= do_pipe_flags(fd
, flags
);
1136 if (copy_to_user(fildes
, fd
, sizeof(fd
))) {
1145 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
1147 return sys_pipe2(fildes
, 0);
1151 * Allocate a new array of pipe buffers and copy the info over. Returns the
1152 * pipe size if successful, or return -ERROR on error.
1154 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long nr_pages
)
1156 struct pipe_buffer
*bufs
;
1159 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1160 * expect a lot of shrink+grow operations, just free and allocate
1161 * again like we would do for growing. If the pipe currently
1162 * contains more buffers than arg, then return busy.
1164 if (nr_pages
< pipe
->nrbufs
)
1167 bufs
= kcalloc(nr_pages
, sizeof(*bufs
), GFP_KERNEL
| __GFP_NOWARN
);
1168 if (unlikely(!bufs
))
1172 * The pipe array wraps around, so just start the new one at zero
1173 * and adjust the indexes.
1179 tail
= pipe
->curbuf
+ pipe
->nrbufs
;
1180 if (tail
< pipe
->buffers
)
1183 tail
&= (pipe
->buffers
- 1);
1185 head
= pipe
->nrbufs
- tail
;
1187 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1189 memcpy(bufs
+ head
, pipe
->bufs
, tail
* sizeof(struct pipe_buffer
));
1195 pipe
->buffers
= nr_pages
;
1196 return nr_pages
* PAGE_SIZE
;
1200 * Currently we rely on the pipe array holding a power-of-2 number
1203 static inline unsigned int round_pipe_size(unsigned int size
)
1205 unsigned long nr_pages
;
1207 nr_pages
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1208 return roundup_pow_of_two(nr_pages
) << PAGE_SHIFT
;
1212 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1213 * will return an error.
1215 int pipe_proc_fn(struct ctl_table
*table
, int write
, void __user
*buf
,
1216 size_t *lenp
, loff_t
*ppos
)
1220 ret
= proc_dointvec_minmax(table
, write
, buf
, lenp
, ppos
);
1221 if (ret
< 0 || !write
)
1224 pipe_max_size
= round_pipe_size(pipe_max_size
);
1229 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1230 * location, so checking ->i_pipe is not enough to verify that this is a
1233 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1235 struct inode
*i
= file
->f_path
.dentry
->d_inode
;
1237 return S_ISFIFO(i
->i_mode
) ? i
->i_pipe
: NULL
;
1240 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1242 struct pipe_inode_info
*pipe
;
1245 pipe
= get_pipe_info(file
);
1249 mutex_lock(&pipe
->inode
->i_mutex
);
1252 case F_SETPIPE_SZ
: {
1253 unsigned int size
, nr_pages
;
1255 size
= round_pipe_size(arg
);
1256 nr_pages
= size
>> PAGE_SHIFT
;
1262 if (!capable(CAP_SYS_RESOURCE
) && size
> pipe_max_size
) {
1266 ret
= pipe_set_size(pipe
, nr_pages
);
1270 ret
= pipe
->buffers
* PAGE_SIZE
;
1278 mutex_unlock(&pipe
->inode
->i_mutex
);
1282 static const struct super_operations pipefs_ops
= {
1283 .destroy_inode
= free_inode_nonrcu
,
1284 .statfs
= simple_statfs
,
1288 * pipefs should _never_ be mounted by userland - too much of security hassle,
1289 * no real gain from having the whole whorehouse mounted. So we don't need
1290 * any operations on the root directory. However, we need a non-trivial
1291 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1293 static struct dentry
*pipefs_mount(struct file_system_type
*fs_type
,
1294 int flags
, const char *dev_name
, void *data
)
1296 return mount_pseudo(fs_type
, "pipe:", &pipefs_ops
,
1297 &pipefs_dentry_operations
, PIPEFS_MAGIC
);
1300 static struct file_system_type pipe_fs_type
= {
1302 .mount
= pipefs_mount
,
1303 .kill_sb
= kill_anon_super
,
1306 static int __init
init_pipe_fs(void)
1308 int err
= register_filesystem(&pipe_fs_type
);
1311 pipe_mnt
= kern_mount(&pipe_fs_type
);
1312 if (IS_ERR(pipe_mnt
)) {
1313 err
= PTR_ERR(pipe_mnt
);
1314 unregister_filesystem(&pipe_fs_type
);
1320 fs_initcall(init_pipe_fs
);