4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
39 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
41 static void free_swap_count_continuations(struct swap_info_struct
*);
42 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
44 static DEFINE_SPINLOCK(swap_lock
);
45 static unsigned int nr_swapfiles
;
47 long total_swap_pages
;
48 static int least_priority
;
50 static const char Bad_file
[] = "Bad swap file entry ";
51 static const char Unused_file
[] = "Unused swap file entry ";
52 static const char Bad_offset
[] = "Bad swap offset entry ";
53 static const char Unused_offset
[] = "Unused swap offset entry ";
55 static struct swap_list_t swap_list
= {-1, -1};
57 static struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
59 static DEFINE_MUTEX(swapon_mutex
);
61 static inline unsigned char swap_count(unsigned char ent
)
63 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
66 /* returns 1 if swap entry is freed */
68 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
70 swp_entry_t entry
= swp_entry(si
->type
, offset
);
74 page
= find_get_page(&swapper_space
, entry
.val
);
78 * This function is called from scan_swap_map() and it's called
79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 * We have to use trylock for avoiding deadlock. This is a special
81 * case and you should use try_to_free_swap() with explicit lock_page()
82 * in usual operations.
84 if (trylock_page(page
)) {
85 ret
= try_to_free_swap(page
);
88 page_cache_release(page
);
93 * We need this because the bdev->unplug_fn can sleep and we cannot
94 * hold swap_lock while calling the unplug_fn. And swap_lock
95 * cannot be turned into a mutex.
97 static DECLARE_RWSEM(swap_unplug_sem
);
99 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
103 down_read(&swap_unplug_sem
);
104 entry
.val
= page_private(page
);
105 if (PageSwapCache(page
)) {
106 struct block_device
*bdev
= swap_info
[swp_type(entry
)]->bdev
;
107 struct backing_dev_info
*bdi
;
110 * If the page is removed from swapcache from under us (with a
111 * racy try_to_unuse/swapoff) we need an additional reference
112 * count to avoid reading garbage from page_private(page) above.
113 * If the WARN_ON triggers during a swapoff it maybe the race
114 * condition and it's harmless. However if it triggers without
115 * swapoff it signals a problem.
117 WARN_ON(page_count(page
) <= 1);
119 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
120 blk_run_backing_dev(bdi
, page
);
122 up_read(&swap_unplug_sem
);
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
129 static int discard_swap(struct swap_info_struct
*si
)
131 struct swap_extent
*se
;
132 sector_t start_block
;
136 /* Do not discard the swap header page! */
137 se
= &si
->first_swap_extent
;
138 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
139 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
141 err
= blkdev_issue_discard(si
->bdev
, start_block
,
142 nr_blocks
, GFP_KERNEL
, 0);
148 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
149 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
150 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
152 err
= blkdev_issue_discard(si
->bdev
, start_block
,
153 nr_blocks
, GFP_KERNEL
, 0);
159 return err
; /* That will often be -EOPNOTSUPP */
163 * swap allocation tell device that a cluster of swap can now be discarded,
164 * to allow the swap device to optimize its wear-levelling.
166 static void discard_swap_cluster(struct swap_info_struct
*si
,
167 pgoff_t start_page
, pgoff_t nr_pages
)
169 struct swap_extent
*se
= si
->curr_swap_extent
;
170 int found_extent
= 0;
173 struct list_head
*lh
;
175 if (se
->start_page
<= start_page
&&
176 start_page
< se
->start_page
+ se
->nr_pages
) {
177 pgoff_t offset
= start_page
- se
->start_page
;
178 sector_t start_block
= se
->start_block
+ offset
;
179 sector_t nr_blocks
= se
->nr_pages
- offset
;
181 if (nr_blocks
> nr_pages
)
182 nr_blocks
= nr_pages
;
183 start_page
+= nr_blocks
;
184 nr_pages
-= nr_blocks
;
187 si
->curr_swap_extent
= se
;
189 start_block
<<= PAGE_SHIFT
- 9;
190 nr_blocks
<<= PAGE_SHIFT
- 9;
191 if (blkdev_issue_discard(si
->bdev
, start_block
,
192 nr_blocks
, GFP_NOIO
, 0))
197 se
= list_entry(lh
, struct swap_extent
, list
);
201 static int wait_for_discard(void *word
)
207 #define SWAPFILE_CLUSTER 256
208 #define LATENCY_LIMIT 256
210 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
,
213 unsigned long offset
;
214 unsigned long scan_base
;
215 unsigned long last_in_cluster
= 0;
216 int latency_ration
= LATENCY_LIMIT
;
217 int found_free_cluster
= 0;
220 * We try to cluster swap pages by allocating them sequentially
221 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
222 * way, however, we resort to first-free allocation, starting
223 * a new cluster. This prevents us from scattering swap pages
224 * all over the entire swap partition, so that we reduce
225 * overall disk seek times between swap pages. -- sct
226 * But we do now try to find an empty cluster. -Andrea
227 * And we let swap pages go all over an SSD partition. Hugh
230 si
->flags
+= SWP_SCANNING
;
231 scan_base
= offset
= si
->cluster_next
;
233 if (unlikely(!si
->cluster_nr
--)) {
234 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
235 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
238 if (si
->flags
& SWP_DISCARDABLE
) {
240 * Start range check on racing allocations, in case
241 * they overlap the cluster we eventually decide on
242 * (we scan without swap_lock to allow preemption).
243 * It's hardly conceivable that cluster_nr could be
244 * wrapped during our scan, but don't depend on it.
246 if (si
->lowest_alloc
)
248 si
->lowest_alloc
= si
->max
;
249 si
->highest_alloc
= 0;
251 spin_unlock(&swap_lock
);
254 * If seek is expensive, start searching for new cluster from
255 * start of partition, to minimize the span of allocated swap.
256 * But if seek is cheap, search from our current position, so
257 * that swap is allocated from all over the partition: if the
258 * Flash Translation Layer only remaps within limited zones,
259 * we don't want to wear out the first zone too quickly.
261 if (!(si
->flags
& SWP_SOLIDSTATE
))
262 scan_base
= offset
= si
->lowest_bit
;
263 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
265 /* Locate the first empty (unaligned) cluster */
266 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
267 if (si
->swap_map
[offset
])
268 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
269 else if (offset
== last_in_cluster
) {
270 spin_lock(&swap_lock
);
271 offset
-= SWAPFILE_CLUSTER
- 1;
272 si
->cluster_next
= offset
;
273 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
274 found_free_cluster
= 1;
277 if (unlikely(--latency_ration
< 0)) {
279 latency_ration
= LATENCY_LIMIT
;
283 offset
= si
->lowest_bit
;
284 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
286 /* Locate the first empty (unaligned) cluster */
287 for (; last_in_cluster
< scan_base
; offset
++) {
288 if (si
->swap_map
[offset
])
289 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
290 else if (offset
== last_in_cluster
) {
291 spin_lock(&swap_lock
);
292 offset
-= SWAPFILE_CLUSTER
- 1;
293 si
->cluster_next
= offset
;
294 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
295 found_free_cluster
= 1;
298 if (unlikely(--latency_ration
< 0)) {
300 latency_ration
= LATENCY_LIMIT
;
305 spin_lock(&swap_lock
);
306 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
307 si
->lowest_alloc
= 0;
311 if (!(si
->flags
& SWP_WRITEOK
))
313 if (!si
->highest_bit
)
315 if (offset
> si
->highest_bit
)
316 scan_base
= offset
= si
->lowest_bit
;
318 /* reuse swap entry of cache-only swap if not busy. */
319 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
321 spin_unlock(&swap_lock
);
322 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
323 spin_lock(&swap_lock
);
324 /* entry was freed successfully, try to use this again */
327 goto scan
; /* check next one */
330 if (si
->swap_map
[offset
])
333 if (offset
== si
->lowest_bit
)
335 if (offset
== si
->highest_bit
)
338 if (si
->inuse_pages
== si
->pages
) {
339 si
->lowest_bit
= si
->max
;
342 si
->swap_map
[offset
] = usage
;
343 si
->cluster_next
= offset
+ 1;
344 si
->flags
-= SWP_SCANNING
;
346 if (si
->lowest_alloc
) {
348 * Only set when SWP_DISCARDABLE, and there's a scan
349 * for a free cluster in progress or just completed.
351 if (found_free_cluster
) {
353 * To optimize wear-levelling, discard the
354 * old data of the cluster, taking care not to
355 * discard any of its pages that have already
356 * been allocated by racing tasks (offset has
357 * already stepped over any at the beginning).
359 if (offset
< si
->highest_alloc
&&
360 si
->lowest_alloc
<= last_in_cluster
)
361 last_in_cluster
= si
->lowest_alloc
- 1;
362 si
->flags
|= SWP_DISCARDING
;
363 spin_unlock(&swap_lock
);
365 if (offset
< last_in_cluster
)
366 discard_swap_cluster(si
, offset
,
367 last_in_cluster
- offset
+ 1);
369 spin_lock(&swap_lock
);
370 si
->lowest_alloc
= 0;
371 si
->flags
&= ~SWP_DISCARDING
;
373 smp_mb(); /* wake_up_bit advises this */
374 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
376 } else if (si
->flags
& SWP_DISCARDING
) {
378 * Delay using pages allocated by racing tasks
379 * until the whole discard has been issued. We
380 * could defer that delay until swap_writepage,
381 * but it's easier to keep this self-contained.
383 spin_unlock(&swap_lock
);
384 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
385 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
386 spin_lock(&swap_lock
);
389 * Note pages allocated by racing tasks while
390 * scan for a free cluster is in progress, so
391 * that its final discard can exclude them.
393 if (offset
< si
->lowest_alloc
)
394 si
->lowest_alloc
= offset
;
395 if (offset
> si
->highest_alloc
)
396 si
->highest_alloc
= offset
;
402 spin_unlock(&swap_lock
);
403 while (++offset
<= si
->highest_bit
) {
404 if (!si
->swap_map
[offset
]) {
405 spin_lock(&swap_lock
);
408 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
409 spin_lock(&swap_lock
);
412 if (unlikely(--latency_ration
< 0)) {
414 latency_ration
= LATENCY_LIMIT
;
417 offset
= si
->lowest_bit
;
418 while (++offset
< scan_base
) {
419 if (!si
->swap_map
[offset
]) {
420 spin_lock(&swap_lock
);
423 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
424 spin_lock(&swap_lock
);
427 if (unlikely(--latency_ration
< 0)) {
429 latency_ration
= LATENCY_LIMIT
;
432 spin_lock(&swap_lock
);
435 si
->flags
-= SWP_SCANNING
;
439 swp_entry_t
get_swap_page(void)
441 struct swap_info_struct
*si
;
446 spin_lock(&swap_lock
);
447 if (nr_swap_pages
<= 0)
451 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
452 si
= swap_info
[type
];
455 (!wrapped
&& si
->prio
!= swap_info
[next
]->prio
)) {
456 next
= swap_list
.head
;
460 if (!si
->highest_bit
)
462 if (!(si
->flags
& SWP_WRITEOK
))
465 swap_list
.next
= next
;
466 /* This is called for allocating swap entry for cache */
467 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
469 spin_unlock(&swap_lock
);
470 return swp_entry(type
, offset
);
472 next
= swap_list
.next
;
477 spin_unlock(&swap_lock
);
478 return (swp_entry_t
) {0};
481 /* The only caller of this function is now susupend routine */
482 swp_entry_t
get_swap_page_of_type(int type
)
484 struct swap_info_struct
*si
;
487 spin_lock(&swap_lock
);
488 si
= swap_info
[type
];
489 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
491 /* This is called for allocating swap entry, not cache */
492 offset
= scan_swap_map(si
, 1);
494 spin_unlock(&swap_lock
);
495 return swp_entry(type
, offset
);
499 spin_unlock(&swap_lock
);
500 return (swp_entry_t
) {0};
503 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
505 struct swap_info_struct
*p
;
506 unsigned long offset
, type
;
510 type
= swp_type(entry
);
511 if (type
>= nr_swapfiles
)
514 if (!(p
->flags
& SWP_USED
))
516 offset
= swp_offset(entry
);
517 if (offset
>= p
->max
)
519 if (!p
->swap_map
[offset
])
521 spin_lock(&swap_lock
);
525 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
528 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
531 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
534 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
539 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
540 swp_entry_t entry
, unsigned char usage
)
542 unsigned long offset
= swp_offset(entry
);
544 unsigned char has_cache
;
546 count
= p
->swap_map
[offset
];
547 has_cache
= count
& SWAP_HAS_CACHE
;
548 count
&= ~SWAP_HAS_CACHE
;
550 if (usage
== SWAP_HAS_CACHE
) {
551 VM_BUG_ON(!has_cache
);
553 } else if (count
== SWAP_MAP_SHMEM
) {
555 * Or we could insist on shmem.c using a special
556 * swap_shmem_free() and free_shmem_swap_and_cache()...
559 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
560 if (count
== COUNT_CONTINUED
) {
561 if (swap_count_continued(p
, offset
, count
))
562 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
564 count
= SWAP_MAP_MAX
;
570 mem_cgroup_uncharge_swap(entry
);
572 usage
= count
| has_cache
;
573 p
->swap_map
[offset
] = usage
;
575 /* free if no reference */
577 struct gendisk
*disk
= p
->bdev
->bd_disk
;
578 if (offset
< p
->lowest_bit
)
579 p
->lowest_bit
= offset
;
580 if (offset
> p
->highest_bit
)
581 p
->highest_bit
= offset
;
582 if (swap_list
.next
>= 0 &&
583 p
->prio
> swap_info
[swap_list
.next
]->prio
)
584 swap_list
.next
= p
->type
;
587 if ((p
->flags
& SWP_BLKDEV
) &&
588 disk
->fops
->swap_slot_free_notify
)
589 disk
->fops
->swap_slot_free_notify(p
->bdev
, offset
);
596 * Caller has made sure that the swapdevice corresponding to entry
597 * is still around or has not been recycled.
599 void swap_free(swp_entry_t entry
)
601 struct swap_info_struct
*p
;
603 p
= swap_info_get(entry
);
605 swap_entry_free(p
, entry
, 1);
606 spin_unlock(&swap_lock
);
611 * Called after dropping swapcache to decrease refcnt to swap entries.
613 void swapcache_free(swp_entry_t entry
, struct page
*page
)
615 struct swap_info_struct
*p
;
618 p
= swap_info_get(entry
);
620 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
622 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
623 spin_unlock(&swap_lock
);
628 * How many references to page are currently swapped out?
629 * This does not give an exact answer when swap count is continued,
630 * but does include the high COUNT_CONTINUED flag to allow for that.
632 static inline int page_swapcount(struct page
*page
)
635 struct swap_info_struct
*p
;
638 entry
.val
= page_private(page
);
639 p
= swap_info_get(entry
);
641 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
642 spin_unlock(&swap_lock
);
648 * We can write to an anon page without COW if there are no other references
649 * to it. And as a side-effect, free up its swap: because the old content
650 * on disk will never be read, and seeking back there to write new content
651 * later would only waste time away from clustering.
653 int reuse_swap_page(struct page
*page
)
657 VM_BUG_ON(!PageLocked(page
));
658 if (unlikely(PageKsm(page
)))
660 count
= page_mapcount(page
);
661 if (count
<= 1 && PageSwapCache(page
)) {
662 count
+= page_swapcount(page
);
663 if (count
== 1 && !PageWriteback(page
)) {
664 delete_from_swap_cache(page
);
672 * If swap is getting full, or if there are no more mappings of this page,
673 * then try_to_free_swap is called to free its swap space.
675 int try_to_free_swap(struct page
*page
)
677 VM_BUG_ON(!PageLocked(page
));
679 if (!PageSwapCache(page
))
681 if (PageWriteback(page
))
683 if (page_swapcount(page
))
687 * Once hibernation has begun to create its image of memory,
688 * there's a danger that one of the calls to try_to_free_swap()
689 * - most probably a call from __try_to_reclaim_swap() while
690 * hibernation is allocating its own swap pages for the image,
691 * but conceivably even a call from memory reclaim - will free
692 * the swap from a page which has already been recorded in the
693 * image as a clean swapcache page, and then reuse its swap for
694 * another page of the image. On waking from hibernation, the
695 * original page might be freed under memory pressure, then
696 * later read back in from swap, now with the wrong data.
698 * Hibernation clears bits from gfp_allowed_mask to prevent
699 * memory reclaim from writing to disk, so check that here.
701 if (!(gfp_allowed_mask
& __GFP_IO
))
704 delete_from_swap_cache(page
);
710 * Free the swap entry like above, but also try to
711 * free the page cache entry if it is the last user.
713 int free_swap_and_cache(swp_entry_t entry
)
715 struct swap_info_struct
*p
;
716 struct page
*page
= NULL
;
718 if (non_swap_entry(entry
))
721 p
= swap_info_get(entry
);
723 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
724 page
= find_get_page(&swapper_space
, entry
.val
);
725 if (page
&& !trylock_page(page
)) {
726 page_cache_release(page
);
730 spin_unlock(&swap_lock
);
734 * Not mapped elsewhere, or swap space full? Free it!
735 * Also recheck PageSwapCache now page is locked (above).
737 if (PageSwapCache(page
) && !PageWriteback(page
) &&
738 (!page_mapped(page
) || vm_swap_full())) {
739 delete_from_swap_cache(page
);
743 page_cache_release(page
);
748 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
750 * mem_cgroup_count_swap_user - count the user of a swap entry
751 * @ent: the swap entry to be checked
752 * @pagep: the pointer for the swap cache page of the entry to be stored
754 * Returns the number of the user of the swap entry. The number is valid only
755 * for swaps of anonymous pages.
756 * If the entry is found on swap cache, the page is stored to pagep with
757 * refcount of it being incremented.
759 int mem_cgroup_count_swap_user(swp_entry_t ent
, struct page
**pagep
)
762 struct swap_info_struct
*p
;
765 page
= find_get_page(&swapper_space
, ent
.val
);
767 count
+= page_mapcount(page
);
768 p
= swap_info_get(ent
);
770 count
+= swap_count(p
->swap_map
[swp_offset(ent
)]);
771 spin_unlock(&swap_lock
);
779 #ifdef CONFIG_HIBERNATION
781 * Find the swap type that corresponds to given device (if any).
783 * @offset - number of the PAGE_SIZE-sized block of the device, starting
784 * from 0, in which the swap header is expected to be located.
786 * This is needed for the suspend to disk (aka swsusp).
788 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
790 struct block_device
*bdev
= NULL
;
794 bdev
= bdget(device
);
796 spin_lock(&swap_lock
);
797 for (type
= 0; type
< nr_swapfiles
; type
++) {
798 struct swap_info_struct
*sis
= swap_info
[type
];
800 if (!(sis
->flags
& SWP_WRITEOK
))
805 *bdev_p
= bdgrab(sis
->bdev
);
807 spin_unlock(&swap_lock
);
810 if (bdev
== sis
->bdev
) {
811 struct swap_extent
*se
= &sis
->first_swap_extent
;
813 if (se
->start_block
== offset
) {
815 *bdev_p
= bdgrab(sis
->bdev
);
817 spin_unlock(&swap_lock
);
823 spin_unlock(&swap_lock
);
831 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
832 * corresponding to given index in swap_info (swap type).
834 sector_t
swapdev_block(int type
, pgoff_t offset
)
836 struct block_device
*bdev
;
838 if ((unsigned int)type
>= nr_swapfiles
)
840 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
842 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
846 * Return either the total number of swap pages of given type, or the number
847 * of free pages of that type (depending on @free)
849 * This is needed for software suspend
851 unsigned int count_swap_pages(int type
, int free
)
855 spin_lock(&swap_lock
);
856 if ((unsigned int)type
< nr_swapfiles
) {
857 struct swap_info_struct
*sis
= swap_info
[type
];
859 if (sis
->flags
& SWP_WRITEOK
) {
862 n
-= sis
->inuse_pages
;
865 spin_unlock(&swap_lock
);
868 #endif /* CONFIG_HIBERNATION */
871 * No need to decide whether this PTE shares the swap entry with others,
872 * just let do_wp_page work it out if a write is requested later - to
873 * force COW, vm_page_prot omits write permission from any private vma.
875 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
876 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
878 struct mem_cgroup
*ptr
= NULL
;
883 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
, GFP_KERNEL
, &ptr
)) {
888 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
889 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
891 mem_cgroup_cancel_charge_swapin(ptr
);
896 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
897 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
899 set_pte_at(vma
->vm_mm
, addr
, pte
,
900 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
901 page_add_anon_rmap(page
, vma
, addr
);
902 mem_cgroup_commit_charge_swapin(page
, ptr
);
905 * Move the page to the active list so it is not
906 * immediately swapped out again after swapon.
910 pte_unmap_unlock(pte
, ptl
);
915 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
916 unsigned long addr
, unsigned long end
,
917 swp_entry_t entry
, struct page
*page
)
919 pte_t swp_pte
= swp_entry_to_pte(entry
);
924 * We don't actually need pte lock while scanning for swp_pte: since
925 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
926 * page table while we're scanning; though it could get zapped, and on
927 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
928 * of unmatched parts which look like swp_pte, so unuse_pte must
929 * recheck under pte lock. Scanning without pte lock lets it be
930 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
932 pte
= pte_offset_map(pmd
, addr
);
935 * swapoff spends a _lot_ of time in this loop!
936 * Test inline before going to call unuse_pte.
938 if (unlikely(pte_same(*pte
, swp_pte
))) {
940 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
943 pte
= pte_offset_map(pmd
, addr
);
945 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
951 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
952 unsigned long addr
, unsigned long end
,
953 swp_entry_t entry
, struct page
*page
)
959 pmd
= pmd_offset(pud
, addr
);
961 next
= pmd_addr_end(addr
, end
);
962 if (pmd_none_or_clear_bad(pmd
))
964 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
967 } while (pmd
++, addr
= next
, addr
!= end
);
971 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
972 unsigned long addr
, unsigned long end
,
973 swp_entry_t entry
, struct page
*page
)
979 pud
= pud_offset(pgd
, addr
);
981 next
= pud_addr_end(addr
, end
);
982 if (pud_none_or_clear_bad(pud
))
984 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
987 } while (pud
++, addr
= next
, addr
!= end
);
991 static int unuse_vma(struct vm_area_struct
*vma
,
992 swp_entry_t entry
, struct page
*page
)
995 unsigned long addr
, end
, next
;
998 if (page_anon_vma(page
)) {
999 addr
= page_address_in_vma(page
, vma
);
1000 if (addr
== -EFAULT
)
1003 end
= addr
+ PAGE_SIZE
;
1005 addr
= vma
->vm_start
;
1009 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1011 next
= pgd_addr_end(addr
, end
);
1012 if (pgd_none_or_clear_bad(pgd
))
1014 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1017 } while (pgd
++, addr
= next
, addr
!= end
);
1021 static int unuse_mm(struct mm_struct
*mm
,
1022 swp_entry_t entry
, struct page
*page
)
1024 struct vm_area_struct
*vma
;
1027 if (!down_read_trylock(&mm
->mmap_sem
)) {
1029 * Activate page so shrink_inactive_list is unlikely to unmap
1030 * its ptes while lock is dropped, so swapoff can make progress.
1032 activate_page(page
);
1034 down_read(&mm
->mmap_sem
);
1037 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1038 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1041 up_read(&mm
->mmap_sem
);
1042 return (ret
< 0)? ret
: 0;
1046 * Scan swap_map from current position to next entry still in use.
1047 * Recycle to start on reaching the end, returning 0 when empty.
1049 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1052 unsigned int max
= si
->max
;
1053 unsigned int i
= prev
;
1054 unsigned char count
;
1057 * No need for swap_lock here: we're just looking
1058 * for whether an entry is in use, not modifying it; false
1059 * hits are okay, and sys_swapoff() has already prevented new
1060 * allocations from this area (while holding swap_lock).
1069 * No entries in use at top of swap_map,
1070 * loop back to start and recheck there.
1076 count
= si
->swap_map
[i
];
1077 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1084 * We completely avoid races by reading each swap page in advance,
1085 * and then search for the process using it. All the necessary
1086 * page table adjustments can then be made atomically.
1088 static int try_to_unuse(unsigned int type
)
1090 struct swap_info_struct
*si
= swap_info
[type
];
1091 struct mm_struct
*start_mm
;
1092 unsigned char *swap_map
;
1093 unsigned char swcount
;
1100 * When searching mms for an entry, a good strategy is to
1101 * start at the first mm we freed the previous entry from
1102 * (though actually we don't notice whether we or coincidence
1103 * freed the entry). Initialize this start_mm with a hold.
1105 * A simpler strategy would be to start at the last mm we
1106 * freed the previous entry from; but that would take less
1107 * advantage of mmlist ordering, which clusters forked mms
1108 * together, child after parent. If we race with dup_mmap(), we
1109 * prefer to resolve parent before child, lest we miss entries
1110 * duplicated after we scanned child: using last mm would invert
1113 start_mm
= &init_mm
;
1114 atomic_inc(&init_mm
.mm_users
);
1117 * Keep on scanning until all entries have gone. Usually,
1118 * one pass through swap_map is enough, but not necessarily:
1119 * there are races when an instance of an entry might be missed.
1121 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
1122 if (signal_pending(current
)) {
1128 * Get a page for the entry, using the existing swap
1129 * cache page if there is one. Otherwise, get a clean
1130 * page and read the swap into it.
1132 swap_map
= &si
->swap_map
[i
];
1133 entry
= swp_entry(type
, i
);
1134 page
= read_swap_cache_async(entry
,
1135 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1138 * Either swap_duplicate() failed because entry
1139 * has been freed independently, and will not be
1140 * reused since sys_swapoff() already disabled
1141 * allocation from here, or alloc_page() failed.
1150 * Don't hold on to start_mm if it looks like exiting.
1152 if (atomic_read(&start_mm
->mm_users
) == 1) {
1154 start_mm
= &init_mm
;
1155 atomic_inc(&init_mm
.mm_users
);
1159 * Wait for and lock page. When do_swap_page races with
1160 * try_to_unuse, do_swap_page can handle the fault much
1161 * faster than try_to_unuse can locate the entry. This
1162 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1163 * defer to do_swap_page in such a case - in some tests,
1164 * do_swap_page and try_to_unuse repeatedly compete.
1166 wait_on_page_locked(page
);
1167 wait_on_page_writeback(page
);
1169 wait_on_page_writeback(page
);
1172 * Remove all references to entry.
1174 swcount
= *swap_map
;
1175 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1176 retval
= shmem_unuse(entry
, page
);
1177 /* page has already been unlocked and released */
1182 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1183 retval
= unuse_mm(start_mm
, entry
, page
);
1185 if (swap_count(*swap_map
)) {
1186 int set_start_mm
= (*swap_map
>= swcount
);
1187 struct list_head
*p
= &start_mm
->mmlist
;
1188 struct mm_struct
*new_start_mm
= start_mm
;
1189 struct mm_struct
*prev_mm
= start_mm
;
1190 struct mm_struct
*mm
;
1192 atomic_inc(&new_start_mm
->mm_users
);
1193 atomic_inc(&prev_mm
->mm_users
);
1194 spin_lock(&mmlist_lock
);
1195 while (swap_count(*swap_map
) && !retval
&&
1196 (p
= p
->next
) != &start_mm
->mmlist
) {
1197 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1198 if (!atomic_inc_not_zero(&mm
->mm_users
))
1200 spin_unlock(&mmlist_lock
);
1206 swcount
= *swap_map
;
1207 if (!swap_count(swcount
)) /* any usage ? */
1209 else if (mm
== &init_mm
)
1212 retval
= unuse_mm(mm
, entry
, page
);
1214 if (set_start_mm
&& *swap_map
< swcount
) {
1215 mmput(new_start_mm
);
1216 atomic_inc(&mm
->mm_users
);
1220 spin_lock(&mmlist_lock
);
1222 spin_unlock(&mmlist_lock
);
1225 start_mm
= new_start_mm
;
1229 page_cache_release(page
);
1234 * If a reference remains (rare), we would like to leave
1235 * the page in the swap cache; but try_to_unmap could
1236 * then re-duplicate the entry once we drop page lock,
1237 * so we might loop indefinitely; also, that page could
1238 * not be swapped out to other storage meanwhile. So:
1239 * delete from cache even if there's another reference,
1240 * after ensuring that the data has been saved to disk -
1241 * since if the reference remains (rarer), it will be
1242 * read from disk into another page. Splitting into two
1243 * pages would be incorrect if swap supported "shared
1244 * private" pages, but they are handled by tmpfs files.
1246 * Given how unuse_vma() targets one particular offset
1247 * in an anon_vma, once the anon_vma has been determined,
1248 * this splitting happens to be just what is needed to
1249 * handle where KSM pages have been swapped out: re-reading
1250 * is unnecessarily slow, but we can fix that later on.
1252 if (swap_count(*swap_map
) &&
1253 PageDirty(page
) && PageSwapCache(page
)) {
1254 struct writeback_control wbc
= {
1255 .sync_mode
= WB_SYNC_NONE
,
1258 swap_writepage(page
, &wbc
);
1260 wait_on_page_writeback(page
);
1264 * It is conceivable that a racing task removed this page from
1265 * swap cache just before we acquired the page lock at the top,
1266 * or while we dropped it in unuse_mm(). The page might even
1267 * be back in swap cache on another swap area: that we must not
1268 * delete, since it may not have been written out to swap yet.
1270 if (PageSwapCache(page
) &&
1271 likely(page_private(page
) == entry
.val
))
1272 delete_from_swap_cache(page
);
1275 * So we could skip searching mms once swap count went
1276 * to 1, we did not mark any present ptes as dirty: must
1277 * mark page dirty so shrink_page_list will preserve it.
1281 page_cache_release(page
);
1284 * Make sure that we aren't completely killing
1285 * interactive performance.
1295 * After a successful try_to_unuse, if no swap is now in use, we know
1296 * we can empty the mmlist. swap_lock must be held on entry and exit.
1297 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1298 * added to the mmlist just after page_duplicate - before would be racy.
1300 static void drain_mmlist(void)
1302 struct list_head
*p
, *next
;
1305 for (type
= 0; type
< nr_swapfiles
; type
++)
1306 if (swap_info
[type
]->inuse_pages
)
1308 spin_lock(&mmlist_lock
);
1309 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1311 spin_unlock(&mmlist_lock
);
1315 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1316 * corresponds to page offset for the specified swap entry.
1317 * Note that the type of this function is sector_t, but it returns page offset
1318 * into the bdev, not sector offset.
1320 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1322 struct swap_info_struct
*sis
;
1323 struct swap_extent
*start_se
;
1324 struct swap_extent
*se
;
1327 sis
= swap_info
[swp_type(entry
)];
1330 offset
= swp_offset(entry
);
1331 start_se
= sis
->curr_swap_extent
;
1335 struct list_head
*lh
;
1337 if (se
->start_page
<= offset
&&
1338 offset
< (se
->start_page
+ se
->nr_pages
)) {
1339 return se
->start_block
+ (offset
- se
->start_page
);
1342 se
= list_entry(lh
, struct swap_extent
, list
);
1343 sis
->curr_swap_extent
= se
;
1344 BUG_ON(se
== start_se
); /* It *must* be present */
1349 * Returns the page offset into bdev for the specified page's swap entry.
1351 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1354 entry
.val
= page_private(page
);
1355 return map_swap_entry(entry
, bdev
);
1359 * Free all of a swapdev's extent information
1361 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1363 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1364 struct swap_extent
*se
;
1366 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1367 struct swap_extent
, list
);
1368 list_del(&se
->list
);
1374 * Add a block range (and the corresponding page range) into this swapdev's
1375 * extent list. The extent list is kept sorted in page order.
1377 * This function rather assumes that it is called in ascending page order.
1380 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1381 unsigned long nr_pages
, sector_t start_block
)
1383 struct swap_extent
*se
;
1384 struct swap_extent
*new_se
;
1385 struct list_head
*lh
;
1387 if (start_page
== 0) {
1388 se
= &sis
->first_swap_extent
;
1389 sis
->curr_swap_extent
= se
;
1391 se
->nr_pages
= nr_pages
;
1392 se
->start_block
= start_block
;
1395 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1396 se
= list_entry(lh
, struct swap_extent
, list
);
1397 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1398 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1400 se
->nr_pages
+= nr_pages
;
1406 * No merge. Insert a new extent, preserving ordering.
1408 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1411 new_se
->start_page
= start_page
;
1412 new_se
->nr_pages
= nr_pages
;
1413 new_se
->start_block
= start_block
;
1415 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1420 * A `swap extent' is a simple thing which maps a contiguous range of pages
1421 * onto a contiguous range of disk blocks. An ordered list of swap extents
1422 * is built at swapon time and is then used at swap_writepage/swap_readpage
1423 * time for locating where on disk a page belongs.
1425 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1426 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1427 * swap files identically.
1429 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1430 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1431 * swapfiles are handled *identically* after swapon time.
1433 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1434 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1435 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1436 * requirements, they are simply tossed out - we will never use those blocks
1439 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1440 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1441 * which will scribble on the fs.
1443 * The amount of disk space which a single swap extent represents varies.
1444 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1445 * extents in the list. To avoid much list walking, we cache the previous
1446 * search location in `curr_swap_extent', and start new searches from there.
1447 * This is extremely effective. The average number of iterations in
1448 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1450 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1452 struct inode
*inode
;
1453 unsigned blocks_per_page
;
1454 unsigned long page_no
;
1456 sector_t probe_block
;
1457 sector_t last_block
;
1458 sector_t lowest_block
= -1;
1459 sector_t highest_block
= 0;
1463 inode
= sis
->swap_file
->f_mapping
->host
;
1464 if (S_ISBLK(inode
->i_mode
)) {
1465 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1470 blkbits
= inode
->i_blkbits
;
1471 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1474 * Map all the blocks into the extent list. This code doesn't try
1479 last_block
= i_size_read(inode
) >> blkbits
;
1480 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1481 page_no
< sis
->max
) {
1482 unsigned block_in_page
;
1483 sector_t first_block
;
1485 first_block
= bmap(inode
, probe_block
);
1486 if (first_block
== 0)
1490 * It must be PAGE_SIZE aligned on-disk
1492 if (first_block
& (blocks_per_page
- 1)) {
1497 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1501 block
= bmap(inode
, probe_block
+ block_in_page
);
1504 if (block
!= first_block
+ block_in_page
) {
1511 first_block
>>= (PAGE_SHIFT
- blkbits
);
1512 if (page_no
) { /* exclude the header page */
1513 if (first_block
< lowest_block
)
1514 lowest_block
= first_block
;
1515 if (first_block
> highest_block
)
1516 highest_block
= first_block
;
1520 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1522 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1527 probe_block
+= blocks_per_page
;
1532 *span
= 1 + highest_block
- lowest_block
;
1534 page_no
= 1; /* force Empty message */
1536 sis
->pages
= page_no
- 1;
1537 sis
->highest_bit
= page_no
- 1;
1541 printk(KERN_ERR
"swapon: swapfile has holes\n");
1546 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1548 struct swap_info_struct
*p
= NULL
;
1549 unsigned char *swap_map
;
1550 struct file
*swap_file
, *victim
;
1551 struct address_space
*mapping
;
1552 struct inode
*inode
;
1557 if (!capable(CAP_SYS_ADMIN
))
1560 pathname
= getname(specialfile
);
1561 err
= PTR_ERR(pathname
);
1562 if (IS_ERR(pathname
))
1565 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1567 err
= PTR_ERR(victim
);
1571 mapping
= victim
->f_mapping
;
1573 spin_lock(&swap_lock
);
1574 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
]->next
) {
1575 p
= swap_info
[type
];
1576 if (p
->flags
& SWP_WRITEOK
) {
1577 if (p
->swap_file
->f_mapping
== mapping
)
1584 spin_unlock(&swap_lock
);
1587 if (!security_vm_enough_memory(p
->pages
))
1588 vm_unacct_memory(p
->pages
);
1591 spin_unlock(&swap_lock
);
1595 swap_list
.head
= p
->next
;
1597 swap_info
[prev
]->next
= p
->next
;
1598 if (type
== swap_list
.next
) {
1599 /* just pick something that's safe... */
1600 swap_list
.next
= swap_list
.head
;
1603 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
]->next
)
1604 swap_info
[i
]->prio
= p
->prio
--;
1607 nr_swap_pages
-= p
->pages
;
1608 total_swap_pages
-= p
->pages
;
1609 p
->flags
&= ~SWP_WRITEOK
;
1610 spin_unlock(&swap_lock
);
1612 current
->flags
|= PF_OOM_ORIGIN
;
1613 err
= try_to_unuse(type
);
1614 current
->flags
&= ~PF_OOM_ORIGIN
;
1617 /* re-insert swap space back into swap_list */
1618 spin_lock(&swap_lock
);
1620 p
->prio
= --least_priority
;
1622 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
1623 if (p
->prio
>= swap_info
[i
]->prio
)
1629 swap_list
.head
= swap_list
.next
= type
;
1631 swap_info
[prev
]->next
= type
;
1632 nr_swap_pages
+= p
->pages
;
1633 total_swap_pages
+= p
->pages
;
1634 p
->flags
|= SWP_WRITEOK
;
1635 spin_unlock(&swap_lock
);
1639 /* wait for any unplug function to finish */
1640 down_write(&swap_unplug_sem
);
1641 up_write(&swap_unplug_sem
);
1643 destroy_swap_extents(p
);
1644 if (p
->flags
& SWP_CONTINUED
)
1645 free_swap_count_continuations(p
);
1647 mutex_lock(&swapon_mutex
);
1648 spin_lock(&swap_lock
);
1651 /* wait for anyone still in scan_swap_map */
1652 p
->highest_bit
= 0; /* cuts scans short */
1653 while (p
->flags
>= SWP_SCANNING
) {
1654 spin_unlock(&swap_lock
);
1655 schedule_timeout_uninterruptible(1);
1656 spin_lock(&swap_lock
);
1659 swap_file
= p
->swap_file
;
1660 p
->swap_file
= NULL
;
1662 swap_map
= p
->swap_map
;
1665 spin_unlock(&swap_lock
);
1666 mutex_unlock(&swapon_mutex
);
1668 /* Destroy swap account informatin */
1669 swap_cgroup_swapoff(type
);
1671 inode
= mapping
->host
;
1672 if (S_ISBLK(inode
->i_mode
)) {
1673 struct block_device
*bdev
= I_BDEV(inode
);
1674 set_blocksize(bdev
, p
->old_block_size
);
1677 mutex_lock(&inode
->i_mutex
);
1678 inode
->i_flags
&= ~S_SWAPFILE
;
1679 mutex_unlock(&inode
->i_mutex
);
1681 filp_close(swap_file
, NULL
);
1685 filp_close(victim
, NULL
);
1690 #ifdef CONFIG_PROC_FS
1692 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1694 struct swap_info_struct
*si
;
1698 mutex_lock(&swapon_mutex
);
1701 return SEQ_START_TOKEN
;
1703 for (type
= 0; type
< nr_swapfiles
; type
++) {
1704 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1705 si
= swap_info
[type
];
1706 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1715 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1717 struct swap_info_struct
*si
= v
;
1720 if (v
== SEQ_START_TOKEN
)
1723 type
= si
->type
+ 1;
1725 for (; type
< nr_swapfiles
; type
++) {
1726 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1727 si
= swap_info
[type
];
1728 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1737 static void swap_stop(struct seq_file
*swap
, void *v
)
1739 mutex_unlock(&swapon_mutex
);
1742 static int swap_show(struct seq_file
*swap
, void *v
)
1744 struct swap_info_struct
*si
= v
;
1748 if (si
== SEQ_START_TOKEN
) {
1749 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1753 file
= si
->swap_file
;
1754 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1755 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1756 len
< 40 ? 40 - len
: 1, " ",
1757 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1758 "partition" : "file\t",
1759 si
->pages
<< (PAGE_SHIFT
- 10),
1760 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
1765 static const struct seq_operations swaps_op
= {
1766 .start
= swap_start
,
1772 static int swaps_open(struct inode
*inode
, struct file
*file
)
1774 return seq_open(file
, &swaps_op
);
1777 static const struct file_operations proc_swaps_operations
= {
1780 .llseek
= seq_lseek
,
1781 .release
= seq_release
,
1784 static int __init
procswaps_init(void)
1786 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1789 __initcall(procswaps_init
);
1790 #endif /* CONFIG_PROC_FS */
1792 #ifdef MAX_SWAPFILES_CHECK
1793 static int __init
max_swapfiles_check(void)
1795 MAX_SWAPFILES_CHECK();
1798 late_initcall(max_swapfiles_check
);
1802 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1804 * The swapon system call
1806 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
1808 struct swap_info_struct
*p
;
1810 struct block_device
*bdev
= NULL
;
1811 struct file
*swap_file
= NULL
;
1812 struct address_space
*mapping
;
1816 union swap_header
*swap_header
;
1817 unsigned int nr_good_pages
;
1820 unsigned long maxpages
;
1821 unsigned long swapfilepages
;
1822 unsigned char *swap_map
= NULL
;
1823 struct page
*page
= NULL
;
1824 struct inode
*inode
= NULL
;
1827 if (!capable(CAP_SYS_ADMIN
))
1830 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1834 spin_lock(&swap_lock
);
1835 for (type
= 0; type
< nr_swapfiles
; type
++) {
1836 if (!(swap_info
[type
]->flags
& SWP_USED
))
1840 if (type
>= MAX_SWAPFILES
) {
1841 spin_unlock(&swap_lock
);
1845 if (type
>= nr_swapfiles
) {
1847 swap_info
[type
] = p
;
1849 * Write swap_info[type] before nr_swapfiles, in case a
1850 * racing procfs swap_start() or swap_next() is reading them.
1851 * (We never shrink nr_swapfiles, we never free this entry.)
1857 p
= swap_info
[type
];
1859 * Do not memset this entry: a racing procfs swap_next()
1860 * would be relying on p->type to remain valid.
1863 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
1864 p
->flags
= SWP_USED
;
1866 spin_unlock(&swap_lock
);
1868 name
= getname(specialfile
);
1869 error
= PTR_ERR(name
);
1874 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1875 error
= PTR_ERR(swap_file
);
1876 if (IS_ERR(swap_file
)) {
1881 p
->swap_file
= swap_file
;
1882 mapping
= swap_file
->f_mapping
;
1883 inode
= mapping
->host
;
1886 for (i
= 0; i
< nr_swapfiles
; i
++) {
1887 struct swap_info_struct
*q
= swap_info
[i
];
1889 if (i
== type
|| !q
->swap_file
)
1891 if (mapping
== q
->swap_file
->f_mapping
)
1896 if (S_ISBLK(inode
->i_mode
)) {
1897 bdev
= I_BDEV(inode
);
1898 error
= bd_claim(bdev
, sys_swapon
);
1904 p
->old_block_size
= block_size(bdev
);
1905 error
= set_blocksize(bdev
, PAGE_SIZE
);
1909 p
->flags
|= SWP_BLKDEV
;
1910 } else if (S_ISREG(inode
->i_mode
)) {
1911 p
->bdev
= inode
->i_sb
->s_bdev
;
1912 mutex_lock(&inode
->i_mutex
);
1914 if (IS_SWAPFILE(inode
)) {
1922 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1925 * Read the swap header.
1927 if (!mapping
->a_ops
->readpage
) {
1931 page
= read_mapping_page(mapping
, 0, swap_file
);
1933 error
= PTR_ERR(page
);
1936 swap_header
= kmap(page
);
1938 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1939 printk(KERN_ERR
"Unable to find swap-space signature\n");
1944 /* swap partition endianess hack... */
1945 if (swab32(swap_header
->info
.version
) == 1) {
1946 swab32s(&swap_header
->info
.version
);
1947 swab32s(&swap_header
->info
.last_page
);
1948 swab32s(&swap_header
->info
.nr_badpages
);
1949 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1950 swab32s(&swap_header
->info
.badpages
[i
]);
1952 /* Check the swap header's sub-version */
1953 if (swap_header
->info
.version
!= 1) {
1955 "Unable to handle swap header version %d\n",
1956 swap_header
->info
.version
);
1962 p
->cluster_next
= 1;
1966 * Find out how many pages are allowed for a single swap
1967 * device. There are two limiting factors: 1) the number of
1968 * bits for the swap offset in the swp_entry_t type and
1969 * 2) the number of bits in the a swap pte as defined by
1970 * the different architectures. In order to find the
1971 * largest possible bit mask a swap entry with swap type 0
1972 * and swap offset ~0UL is created, encoded to a swap pte,
1973 * decoded to a swp_entry_t again and finally the swap
1974 * offset is extracted. This will mask all the bits from
1975 * the initial ~0UL mask that can't be encoded in either
1976 * the swp_entry_t or the architecture definition of a
1979 maxpages
= swp_offset(pte_to_swp_entry(
1980 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1981 if (maxpages
> swap_header
->info
.last_page
) {
1982 maxpages
= swap_header
->info
.last_page
+ 1;
1983 /* p->max is an unsigned int: don't overflow it */
1984 if ((unsigned int)maxpages
== 0)
1985 maxpages
= UINT_MAX
;
1987 p
->highest_bit
= maxpages
- 1;
1992 if (swapfilepages
&& maxpages
> swapfilepages
) {
1994 "Swap area shorter than signature indicates\n");
1997 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1999 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2002 /* OK, set up the swap map and apply the bad block list */
2003 swap_map
= vmalloc(maxpages
);
2009 memset(swap_map
, 0, maxpages
);
2010 nr_good_pages
= maxpages
- 1; /* omit header page */
2012 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2013 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2014 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
) {
2018 if (page_nr
< maxpages
) {
2019 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2024 error
= swap_cgroup_swapon(type
, maxpages
);
2028 if (nr_good_pages
) {
2029 swap_map
[0] = SWAP_MAP_BAD
;
2031 p
->pages
= nr_good_pages
;
2032 nr_extents
= setup_swap_extents(p
, &span
);
2033 if (nr_extents
< 0) {
2037 nr_good_pages
= p
->pages
;
2039 if (!nr_good_pages
) {
2040 printk(KERN_WARNING
"Empty swap-file\n");
2046 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2047 p
->flags
|= SWP_SOLIDSTATE
;
2048 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
2050 if (discard_swap(p
) == 0 && (swap_flags
& SWAP_FLAG_DISCARD
))
2051 p
->flags
|= SWP_DISCARDABLE
;
2054 mutex_lock(&swapon_mutex
);
2055 spin_lock(&swap_lock
);
2056 if (swap_flags
& SWAP_FLAG_PREFER
)
2058 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2060 p
->prio
= --least_priority
;
2061 p
->swap_map
= swap_map
;
2062 p
->flags
|= SWP_WRITEOK
;
2063 nr_swap_pages
+= nr_good_pages
;
2064 total_swap_pages
+= nr_good_pages
;
2066 printk(KERN_INFO
"Adding %uk swap on %s. "
2067 "Priority:%d extents:%d across:%lluk %s%s\n",
2068 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
2069 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2070 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2071 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "");
2073 /* insert swap space into swap_list: */
2075 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
2076 if (p
->prio
>= swap_info
[i
]->prio
)
2082 swap_list
.head
= swap_list
.next
= type
;
2084 swap_info
[prev
]->next
= type
;
2085 spin_unlock(&swap_lock
);
2086 mutex_unlock(&swapon_mutex
);
2091 set_blocksize(bdev
, p
->old_block_size
);
2094 destroy_swap_extents(p
);
2095 swap_cgroup_swapoff(type
);
2097 spin_lock(&swap_lock
);
2098 p
->swap_file
= NULL
;
2100 spin_unlock(&swap_lock
);
2103 filp_close(swap_file
, NULL
);
2105 if (page
&& !IS_ERR(page
)) {
2107 page_cache_release(page
);
2113 inode
->i_flags
|= S_SWAPFILE
;
2114 mutex_unlock(&inode
->i_mutex
);
2119 void si_swapinfo(struct sysinfo
*val
)
2122 unsigned long nr_to_be_unused
= 0;
2124 spin_lock(&swap_lock
);
2125 for (type
= 0; type
< nr_swapfiles
; type
++) {
2126 struct swap_info_struct
*si
= swap_info
[type
];
2128 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2129 nr_to_be_unused
+= si
->inuse_pages
;
2131 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2132 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2133 spin_unlock(&swap_lock
);
2137 * Verify that a swap entry is valid and increment its swap map count.
2139 * Returns error code in following case.
2141 * - swp_entry is invalid -> EINVAL
2142 * - swp_entry is migration entry -> EINVAL
2143 * - swap-cache reference is requested but there is already one. -> EEXIST
2144 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2145 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2147 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2149 struct swap_info_struct
*p
;
2150 unsigned long offset
, type
;
2151 unsigned char count
;
2152 unsigned char has_cache
;
2155 if (non_swap_entry(entry
))
2158 type
= swp_type(entry
);
2159 if (type
>= nr_swapfiles
)
2161 p
= swap_info
[type
];
2162 offset
= swp_offset(entry
);
2164 spin_lock(&swap_lock
);
2165 if (unlikely(offset
>= p
->max
))
2168 count
= p
->swap_map
[offset
];
2169 has_cache
= count
& SWAP_HAS_CACHE
;
2170 count
&= ~SWAP_HAS_CACHE
;
2173 if (usage
== SWAP_HAS_CACHE
) {
2175 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2176 if (!has_cache
&& count
)
2177 has_cache
= SWAP_HAS_CACHE
;
2178 else if (has_cache
) /* someone else added cache */
2180 else /* no users remaining */
2183 } else if (count
|| has_cache
) {
2185 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2187 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2189 else if (swap_count_continued(p
, offset
, count
))
2190 count
= COUNT_CONTINUED
;
2194 err
= -ENOENT
; /* unused swap entry */
2196 p
->swap_map
[offset
] = count
| has_cache
;
2199 spin_unlock(&swap_lock
);
2204 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2209 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2210 * (in which case its reference count is never incremented).
2212 void swap_shmem_alloc(swp_entry_t entry
)
2214 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2218 * Increase reference count of swap entry by 1.
2219 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2220 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2221 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2222 * might occur if a page table entry has got corrupted.
2224 int swap_duplicate(swp_entry_t entry
)
2228 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2229 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2234 * @entry: swap entry for which we allocate swap cache.
2236 * Called when allocating swap cache for existing swap entry,
2237 * This can return error codes. Returns 0 at success.
2238 * -EBUSY means there is a swap cache.
2239 * Note: return code is different from swap_duplicate().
2241 int swapcache_prepare(swp_entry_t entry
)
2243 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2247 * swap_lock prevents swap_map being freed. Don't grab an extra
2248 * reference on the swaphandle, it doesn't matter if it becomes unused.
2250 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
2252 struct swap_info_struct
*si
;
2253 int our_page_cluster
= page_cluster
;
2254 pgoff_t target
, toff
;
2258 if (!our_page_cluster
) /* no readahead */
2261 si
= swap_info
[swp_type(entry
)];
2262 target
= swp_offset(entry
);
2263 base
= (target
>> our_page_cluster
) << our_page_cluster
;
2264 end
= base
+ (1 << our_page_cluster
);
2265 if (!base
) /* first page is swap header */
2268 spin_lock(&swap_lock
);
2269 if (end
> si
->max
) /* don't go beyond end of map */
2272 /* Count contiguous allocated slots above our target */
2273 for (toff
= target
; ++toff
< end
; nr_pages
++) {
2274 /* Don't read in free or bad pages */
2275 if (!si
->swap_map
[toff
])
2277 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2280 /* Count contiguous allocated slots below our target */
2281 for (toff
= target
; --toff
>= base
; nr_pages
++) {
2282 /* Don't read in free or bad pages */
2283 if (!si
->swap_map
[toff
])
2285 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2288 spin_unlock(&swap_lock
);
2291 * Indicate starting offset, and return number of pages to get:
2292 * if only 1, say 0, since there's then no readahead to be done.
2295 return nr_pages
? ++nr_pages
: 0;
2299 * add_swap_count_continuation - called when a swap count is duplicated
2300 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2301 * page of the original vmalloc'ed swap_map, to hold the continuation count
2302 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2303 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2305 * These continuation pages are seldom referenced: the common paths all work
2306 * on the original swap_map, only referring to a continuation page when the
2307 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2309 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2310 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2311 * can be called after dropping locks.
2313 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2315 struct swap_info_struct
*si
;
2318 struct page
*list_page
;
2320 unsigned char count
;
2323 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2324 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2326 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2328 si
= swap_info_get(entry
);
2331 * An acceptable race has occurred since the failing
2332 * __swap_duplicate(): the swap entry has been freed,
2333 * perhaps even the whole swap_map cleared for swapoff.
2338 offset
= swp_offset(entry
);
2339 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2341 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2343 * The higher the swap count, the more likely it is that tasks
2344 * will race to add swap count continuation: we need to avoid
2345 * over-provisioning.
2351 spin_unlock(&swap_lock
);
2356 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2357 * no architecture is using highmem pages for kernel pagetables: so it
2358 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2360 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2361 offset
&= ~PAGE_MASK
;
2364 * Page allocation does not initialize the page's lru field,
2365 * but it does always reset its private field.
2367 if (!page_private(head
)) {
2368 BUG_ON(count
& COUNT_CONTINUED
);
2369 INIT_LIST_HEAD(&head
->lru
);
2370 set_page_private(head
, SWP_CONTINUED
);
2371 si
->flags
|= SWP_CONTINUED
;
2374 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2378 * If the previous map said no continuation, but we've found
2379 * a continuation page, free our allocation and use this one.
2381 if (!(count
& COUNT_CONTINUED
))
2384 map
= kmap_atomic(list_page
, KM_USER0
) + offset
;
2386 kunmap_atomic(map
, KM_USER0
);
2389 * If this continuation count now has some space in it,
2390 * free our allocation and use this one.
2392 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2396 list_add_tail(&page
->lru
, &head
->lru
);
2397 page
= NULL
; /* now it's attached, don't free it */
2399 spin_unlock(&swap_lock
);
2407 * swap_count_continued - when the original swap_map count is incremented
2408 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2409 * into, carry if so, or else fail until a new continuation page is allocated;
2410 * when the original swap_map count is decremented from 0 with continuation,
2411 * borrow from the continuation and report whether it still holds more.
2412 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2414 static bool swap_count_continued(struct swap_info_struct
*si
,
2415 pgoff_t offset
, unsigned char count
)
2421 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2422 if (page_private(head
) != SWP_CONTINUED
) {
2423 BUG_ON(count
& COUNT_CONTINUED
);
2424 return false; /* need to add count continuation */
2427 offset
&= ~PAGE_MASK
;
2428 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2429 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2431 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2432 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2434 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2436 * Think of how you add 1 to 999
2438 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2439 kunmap_atomic(map
, KM_USER0
);
2440 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2441 BUG_ON(page
== head
);
2442 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2444 if (*map
== SWAP_CONT_MAX
) {
2445 kunmap_atomic(map
, KM_USER0
);
2446 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2448 return false; /* add count continuation */
2449 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2450 init_map
: *map
= 0; /* we didn't zero the page */
2453 kunmap_atomic(map
, KM_USER0
);
2454 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2455 while (page
!= head
) {
2456 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2457 *map
= COUNT_CONTINUED
;
2458 kunmap_atomic(map
, KM_USER0
);
2459 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2461 return true; /* incremented */
2463 } else { /* decrementing */
2465 * Think of how you subtract 1 from 1000
2467 BUG_ON(count
!= COUNT_CONTINUED
);
2468 while (*map
== COUNT_CONTINUED
) {
2469 kunmap_atomic(map
, KM_USER0
);
2470 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2471 BUG_ON(page
== head
);
2472 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2478 kunmap_atomic(map
, KM_USER0
);
2479 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2480 while (page
!= head
) {
2481 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2482 *map
= SWAP_CONT_MAX
| count
;
2483 count
= COUNT_CONTINUED
;
2484 kunmap_atomic(map
, KM_USER0
);
2485 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2487 return count
== COUNT_CONTINUED
;
2492 * free_swap_count_continuations - swapoff free all the continuation pages
2493 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2495 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2499 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2501 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2502 if (page_private(head
)) {
2503 struct list_head
*this, *next
;
2504 list_for_each_safe(this, next
, &head
->lru
) {
2506 page
= list_entry(this, struct page
, lru
);