sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / edac / i7core_edac.c
blob465cbc25149fffab899997e3d133cacacd5bad5f
1 /* Intel i7 core/Nehalem Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6 * and Westmere-EP.
8 * This file may be distributed under the terms of the
9 * GNU General Public License version 2 only.
11 * Copyright (c) 2009-2010 by:
12 * Mauro Carvalho Chehab <mchehab@redhat.com>
14 * Red Hat Inc. http://www.redhat.com
16 * Forked and adapted from the i5400_edac driver
18 * Based on the following public Intel datasheets:
19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20 * Datasheet, Volume 2:
21 * http://download.intel.com/design/processor/datashts/320835.pdf
22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24 * also available at:
25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/pci_ids.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/edac.h>
35 #include <linux/mmzone.h>
36 #include <linux/edac_mce.h>
37 #include <linux/smp.h>
38 #include <asm/processor.h>
40 #include "edac_core.h"
42 /* Static vars */
43 static LIST_HEAD(i7core_edac_list);
44 static DEFINE_MUTEX(i7core_edac_lock);
45 static int probed;
47 static int use_pci_fixup;
48 module_param(use_pci_fixup, int, 0444);
49 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
51 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
52 * registers start at bus 255, and are not reported by BIOS.
53 * We currently find devices with only 2 sockets. In order to support more QPI
54 * Quick Path Interconnect, just increment this number.
56 #define MAX_SOCKET_BUSES 2
60 * Alter this version for the module when modifications are made
62 #define I7CORE_REVISION " Ver: 1.0.0 " __DATE__
63 #define EDAC_MOD_STR "i7core_edac"
66 * Debug macros
68 #define i7core_printk(level, fmt, arg...) \
69 edac_printk(level, "i7core", fmt, ##arg)
71 #define i7core_mc_printk(mci, level, fmt, arg...) \
72 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
75 * i7core Memory Controller Registers
78 /* OFFSETS for Device 0 Function 0 */
80 #define MC_CFG_CONTROL 0x90
82 /* OFFSETS for Device 3 Function 0 */
84 #define MC_CONTROL 0x48
85 #define MC_STATUS 0x4c
86 #define MC_MAX_DOD 0x64
89 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
90 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
93 #define MC_TEST_ERR_RCV1 0x60
94 #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
96 #define MC_TEST_ERR_RCV0 0x64
97 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
98 #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
100 /* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
101 #define MC_COR_ECC_CNT_0 0x80
102 #define MC_COR_ECC_CNT_1 0x84
103 #define MC_COR_ECC_CNT_2 0x88
104 #define MC_COR_ECC_CNT_3 0x8c
105 #define MC_COR_ECC_CNT_4 0x90
106 #define MC_COR_ECC_CNT_5 0x94
108 #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
109 #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
112 /* OFFSETS for Devices 4,5 and 6 Function 0 */
114 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
115 #define THREE_DIMMS_PRESENT (1 << 24)
116 #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
117 #define QUAD_RANK_PRESENT (1 << 22)
118 #define REGISTERED_DIMM (1 << 15)
120 #define MC_CHANNEL_MAPPER 0x60
121 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
122 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
124 #define MC_CHANNEL_RANK_PRESENT 0x7c
125 #define RANK_PRESENT_MASK 0xffff
127 #define MC_CHANNEL_ADDR_MATCH 0xf0
128 #define MC_CHANNEL_ERROR_MASK 0xf8
129 #define MC_CHANNEL_ERROR_INJECT 0xfc
130 #define INJECT_ADDR_PARITY 0x10
131 #define INJECT_ECC 0x08
132 #define MASK_CACHELINE 0x06
133 #define MASK_FULL_CACHELINE 0x06
134 #define MASK_MSB32_CACHELINE 0x04
135 #define MASK_LSB32_CACHELINE 0x02
136 #define NO_MASK_CACHELINE 0x00
137 #define REPEAT_EN 0x01
139 /* OFFSETS for Devices 4,5 and 6 Function 1 */
141 #define MC_DOD_CH_DIMM0 0x48
142 #define MC_DOD_CH_DIMM1 0x4c
143 #define MC_DOD_CH_DIMM2 0x50
144 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
145 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
146 #define DIMM_PRESENT_MASK (1 << 9)
147 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
148 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
149 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
150 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
151 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
152 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
153 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
154 #define MC_DOD_NUMCOL_MASK 3
155 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
157 #define MC_RANK_PRESENT 0x7c
159 #define MC_SAG_CH_0 0x80
160 #define MC_SAG_CH_1 0x84
161 #define MC_SAG_CH_2 0x88
162 #define MC_SAG_CH_3 0x8c
163 #define MC_SAG_CH_4 0x90
164 #define MC_SAG_CH_5 0x94
165 #define MC_SAG_CH_6 0x98
166 #define MC_SAG_CH_7 0x9c
168 #define MC_RIR_LIMIT_CH_0 0x40
169 #define MC_RIR_LIMIT_CH_1 0x44
170 #define MC_RIR_LIMIT_CH_2 0x48
171 #define MC_RIR_LIMIT_CH_3 0x4C
172 #define MC_RIR_LIMIT_CH_4 0x50
173 #define MC_RIR_LIMIT_CH_5 0x54
174 #define MC_RIR_LIMIT_CH_6 0x58
175 #define MC_RIR_LIMIT_CH_7 0x5C
176 #define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
178 #define MC_RIR_WAY_CH 0x80
179 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
180 #define MC_RIR_WAY_RANK_MASK 0x7
183 * i7core structs
186 #define NUM_CHANS 3
187 #define MAX_DIMMS 3 /* Max DIMMS per channel */
188 #define MAX_MCR_FUNC 4
189 #define MAX_CHAN_FUNC 3
191 struct i7core_info {
192 u32 mc_control;
193 u32 mc_status;
194 u32 max_dod;
195 u32 ch_map;
199 struct i7core_inject {
200 int enable;
202 u32 section;
203 u32 type;
204 u32 eccmask;
206 /* Error address mask */
207 int channel, dimm, rank, bank, page, col;
210 struct i7core_channel {
211 u32 ranks;
212 u32 dimms;
215 struct pci_id_descr {
216 int dev;
217 int func;
218 int dev_id;
219 int optional;
222 struct pci_id_table {
223 const struct pci_id_descr *descr;
224 int n_devs;
227 struct i7core_dev {
228 struct list_head list;
229 u8 socket;
230 struct pci_dev **pdev;
231 int n_devs;
232 struct mem_ctl_info *mci;
235 struct i7core_pvt {
236 struct pci_dev *pci_noncore;
237 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
238 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
240 struct i7core_dev *i7core_dev;
242 struct i7core_info info;
243 struct i7core_inject inject;
244 struct i7core_channel channel[NUM_CHANS];
246 int ce_count_available;
247 int csrow_map[NUM_CHANS][MAX_DIMMS];
249 /* ECC corrected errors counts per udimm */
250 unsigned long udimm_ce_count[MAX_DIMMS];
251 int udimm_last_ce_count[MAX_DIMMS];
252 /* ECC corrected errors counts per rdimm */
253 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
254 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
256 unsigned int is_registered;
258 /* mcelog glue */
259 struct edac_mce edac_mce;
261 /* Fifo double buffers */
262 struct mce mce_entry[MCE_LOG_LEN];
263 struct mce mce_outentry[MCE_LOG_LEN];
265 /* Fifo in/out counters */
266 unsigned mce_in, mce_out;
268 /* Count indicator to show errors not got */
269 unsigned mce_overrun;
271 /* Struct to control EDAC polling */
272 struct edac_pci_ctl_info *i7core_pci;
275 #define PCI_DESCR(device, function, device_id) \
276 .dev = (device), \
277 .func = (function), \
278 .dev_id = (device_id)
280 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
281 /* Memory controller */
282 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
283 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
285 /* Exists only for RDIMM */
286 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
287 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
289 /* Channel 0 */
290 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
291 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
292 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
293 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
295 /* Channel 1 */
296 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
297 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
298 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
299 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
301 /* Channel 2 */
302 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
303 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
304 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
305 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
308 static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
309 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
310 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
311 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
313 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
314 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
315 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
316 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
318 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
319 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
320 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
321 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
324 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
325 /* Memory controller */
326 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
327 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
328 /* Exists only for RDIMM */
329 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
330 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
332 /* Channel 0 */
333 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
334 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
335 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
336 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
338 /* Channel 1 */
339 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
340 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
341 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
342 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
344 /* Channel 2 */
345 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
346 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
347 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
348 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
351 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
352 static const struct pci_id_table pci_dev_table[] = {
353 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
354 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
355 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
356 {0,} /* 0 terminated list. */
360 * pci_device_id table for which devices we are looking for
362 static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
363 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
364 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
365 {0,} /* 0 terminated list. */
368 /****************************************************************************
369 Anciliary status routines
370 ****************************************************************************/
372 /* MC_CONTROL bits */
373 #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
374 #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
376 /* MC_STATUS bits */
377 #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
378 #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
380 /* MC_MAX_DOD read functions */
381 static inline int numdimms(u32 dimms)
383 return (dimms & 0x3) + 1;
386 static inline int numrank(u32 rank)
388 static int ranks[4] = { 1, 2, 4, -EINVAL };
390 return ranks[rank & 0x3];
393 static inline int numbank(u32 bank)
395 static int banks[4] = { 4, 8, 16, -EINVAL };
397 return banks[bank & 0x3];
400 static inline int numrow(u32 row)
402 static int rows[8] = {
403 1 << 12, 1 << 13, 1 << 14, 1 << 15,
404 1 << 16, -EINVAL, -EINVAL, -EINVAL,
407 return rows[row & 0x7];
410 static inline int numcol(u32 col)
412 static int cols[8] = {
413 1 << 10, 1 << 11, 1 << 12, -EINVAL,
415 return cols[col & 0x3];
418 static struct i7core_dev *get_i7core_dev(u8 socket)
420 struct i7core_dev *i7core_dev;
422 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
423 if (i7core_dev->socket == socket)
424 return i7core_dev;
427 return NULL;
430 static struct i7core_dev *alloc_i7core_dev(u8 socket,
431 const struct pci_id_table *table)
433 struct i7core_dev *i7core_dev;
435 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
436 if (!i7core_dev)
437 return NULL;
439 i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
440 GFP_KERNEL);
441 if (!i7core_dev->pdev) {
442 kfree(i7core_dev);
443 return NULL;
446 i7core_dev->socket = socket;
447 i7core_dev->n_devs = table->n_devs;
448 list_add_tail(&i7core_dev->list, &i7core_edac_list);
450 return i7core_dev;
453 static void free_i7core_dev(struct i7core_dev *i7core_dev)
455 list_del(&i7core_dev->list);
456 kfree(i7core_dev->pdev);
457 kfree(i7core_dev);
460 /****************************************************************************
461 Memory check routines
462 ****************************************************************************/
463 static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
464 unsigned func)
466 struct i7core_dev *i7core_dev = get_i7core_dev(socket);
467 int i;
469 if (!i7core_dev)
470 return NULL;
472 for (i = 0; i < i7core_dev->n_devs; i++) {
473 if (!i7core_dev->pdev[i])
474 continue;
476 if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
477 PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
478 return i7core_dev->pdev[i];
482 return NULL;
486 * i7core_get_active_channels() - gets the number of channels and csrows
487 * @socket: Quick Path Interconnect socket
488 * @channels: Number of channels that will be returned
489 * @csrows: Number of csrows found
491 * Since EDAC core needs to know in advance the number of available channels
492 * and csrows, in order to allocate memory for csrows/channels, it is needed
493 * to run two similar steps. At the first step, implemented on this function,
494 * it checks the number of csrows/channels present at one socket.
495 * this is used in order to properly allocate the size of mci components.
497 * It should be noticed that none of the current available datasheets explain
498 * or even mention how csrows are seen by the memory controller. So, we need
499 * to add a fake description for csrows.
500 * So, this driver is attributing one DIMM memory for one csrow.
502 static int i7core_get_active_channels(const u8 socket, unsigned *channels,
503 unsigned *csrows)
505 struct pci_dev *pdev = NULL;
506 int i, j;
507 u32 status, control;
509 *channels = 0;
510 *csrows = 0;
512 pdev = get_pdev_slot_func(socket, 3, 0);
513 if (!pdev) {
514 i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
515 socket);
516 return -ENODEV;
519 /* Device 3 function 0 reads */
520 pci_read_config_dword(pdev, MC_STATUS, &status);
521 pci_read_config_dword(pdev, MC_CONTROL, &control);
523 for (i = 0; i < NUM_CHANS; i++) {
524 u32 dimm_dod[3];
525 /* Check if the channel is active */
526 if (!(control & (1 << (8 + i))))
527 continue;
529 /* Check if the channel is disabled */
530 if (status & (1 << i))
531 continue;
533 pdev = get_pdev_slot_func(socket, i + 4, 1);
534 if (!pdev) {
535 i7core_printk(KERN_ERR, "Couldn't find socket %d "
536 "fn %d.%d!!!\n",
537 socket, i + 4, 1);
538 return -ENODEV;
540 /* Devices 4-6 function 1 */
541 pci_read_config_dword(pdev,
542 MC_DOD_CH_DIMM0, &dimm_dod[0]);
543 pci_read_config_dword(pdev,
544 MC_DOD_CH_DIMM1, &dimm_dod[1]);
545 pci_read_config_dword(pdev,
546 MC_DOD_CH_DIMM2, &dimm_dod[2]);
548 (*channels)++;
550 for (j = 0; j < 3; j++) {
551 if (!DIMM_PRESENT(dimm_dod[j]))
552 continue;
553 (*csrows)++;
557 debugf0("Number of active channels on socket %d: %d\n",
558 socket, *channels);
560 return 0;
563 static int get_dimm_config(const struct mem_ctl_info *mci)
565 struct i7core_pvt *pvt = mci->pvt_info;
566 struct csrow_info *csr;
567 struct pci_dev *pdev;
568 int i, j;
569 int csrow = 0;
570 unsigned long last_page = 0;
571 enum edac_type mode;
572 enum mem_type mtype;
574 /* Get data from the MC register, function 0 */
575 pdev = pvt->pci_mcr[0];
576 if (!pdev)
577 return -ENODEV;
579 /* Device 3 function 0 reads */
580 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
581 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
582 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
583 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
585 debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
586 pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
587 pvt->info.max_dod, pvt->info.ch_map);
589 if (ECC_ENABLED(pvt)) {
590 debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
591 if (ECCx8(pvt))
592 mode = EDAC_S8ECD8ED;
593 else
594 mode = EDAC_S4ECD4ED;
595 } else {
596 debugf0("ECC disabled\n");
597 mode = EDAC_NONE;
600 /* FIXME: need to handle the error codes */
601 debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
602 "x%x x 0x%x\n",
603 numdimms(pvt->info.max_dod),
604 numrank(pvt->info.max_dod >> 2),
605 numbank(pvt->info.max_dod >> 4),
606 numrow(pvt->info.max_dod >> 6),
607 numcol(pvt->info.max_dod >> 9));
609 for (i = 0; i < NUM_CHANS; i++) {
610 u32 data, dimm_dod[3], value[8];
612 if (!pvt->pci_ch[i][0])
613 continue;
615 if (!CH_ACTIVE(pvt, i)) {
616 debugf0("Channel %i is not active\n", i);
617 continue;
619 if (CH_DISABLED(pvt, i)) {
620 debugf0("Channel %i is disabled\n", i);
621 continue;
624 /* Devices 4-6 function 0 */
625 pci_read_config_dword(pvt->pci_ch[i][0],
626 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
628 pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
629 4 : 2;
631 if (data & REGISTERED_DIMM)
632 mtype = MEM_RDDR3;
633 else
634 mtype = MEM_DDR3;
635 #if 0
636 if (data & THREE_DIMMS_PRESENT)
637 pvt->channel[i].dimms = 3;
638 else if (data & SINGLE_QUAD_RANK_PRESENT)
639 pvt->channel[i].dimms = 1;
640 else
641 pvt->channel[i].dimms = 2;
642 #endif
644 /* Devices 4-6 function 1 */
645 pci_read_config_dword(pvt->pci_ch[i][1],
646 MC_DOD_CH_DIMM0, &dimm_dod[0]);
647 pci_read_config_dword(pvt->pci_ch[i][1],
648 MC_DOD_CH_DIMM1, &dimm_dod[1]);
649 pci_read_config_dword(pvt->pci_ch[i][1],
650 MC_DOD_CH_DIMM2, &dimm_dod[2]);
652 debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
653 "%d ranks, %cDIMMs\n",
655 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
656 data,
657 pvt->channel[i].ranks,
658 (data & REGISTERED_DIMM) ? 'R' : 'U');
660 for (j = 0; j < 3; j++) {
661 u32 banks, ranks, rows, cols;
662 u32 size, npages;
664 if (!DIMM_PRESENT(dimm_dod[j]))
665 continue;
667 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
668 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
669 rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
670 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
672 /* DDR3 has 8 I/O banks */
673 size = (rows * cols * banks * ranks) >> (20 - 3);
675 pvt->channel[i].dimms++;
677 debugf0("\tdimm %d %d Mb offset: %x, "
678 "bank: %d, rank: %d, row: %#x, col: %#x\n",
679 j, size,
680 RANKOFFSET(dimm_dod[j]),
681 banks, ranks, rows, cols);
683 npages = MiB_TO_PAGES(size);
685 csr = &mci->csrows[csrow];
686 csr->first_page = last_page + 1;
687 last_page += npages;
688 csr->last_page = last_page;
689 csr->nr_pages = npages;
691 csr->page_mask = 0;
692 csr->grain = 8;
693 csr->csrow_idx = csrow;
694 csr->nr_channels = 1;
696 csr->channels[0].chan_idx = i;
697 csr->channels[0].ce_count = 0;
699 pvt->csrow_map[i][j] = csrow;
701 switch (banks) {
702 case 4:
703 csr->dtype = DEV_X4;
704 break;
705 case 8:
706 csr->dtype = DEV_X8;
707 break;
708 case 16:
709 csr->dtype = DEV_X16;
710 break;
711 default:
712 csr->dtype = DEV_UNKNOWN;
715 csr->edac_mode = mode;
716 csr->mtype = mtype;
718 csrow++;
721 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
722 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
723 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
724 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
725 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
726 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
727 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
728 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
729 debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
730 for (j = 0; j < 8; j++)
731 debugf1("\t\t%#x\t%#x\t%#x\n",
732 (value[j] >> 27) & 0x1,
733 (value[j] >> 24) & 0x7,
734 (value[j] && ((1 << 24) - 1)));
737 return 0;
740 /****************************************************************************
741 Error insertion routines
742 ****************************************************************************/
744 /* The i7core has independent error injection features per channel.
745 However, to have a simpler code, we don't allow enabling error injection
746 on more than one channel.
747 Also, since a change at an inject parameter will be applied only at enable,
748 we're disabling error injection on all write calls to the sysfs nodes that
749 controls the error code injection.
751 static int disable_inject(const struct mem_ctl_info *mci)
753 struct i7core_pvt *pvt = mci->pvt_info;
755 pvt->inject.enable = 0;
757 if (!pvt->pci_ch[pvt->inject.channel][0])
758 return -ENODEV;
760 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
761 MC_CHANNEL_ERROR_INJECT, 0);
763 return 0;
767 * i7core inject inject.section
769 * accept and store error injection inject.section value
770 * bit 0 - refers to the lower 32-byte half cacheline
771 * bit 1 - refers to the upper 32-byte half cacheline
773 static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
774 const char *data, size_t count)
776 struct i7core_pvt *pvt = mci->pvt_info;
777 unsigned long value;
778 int rc;
780 if (pvt->inject.enable)
781 disable_inject(mci);
783 rc = strict_strtoul(data, 10, &value);
784 if ((rc < 0) || (value > 3))
785 return -EIO;
787 pvt->inject.section = (u32) value;
788 return count;
791 static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
792 char *data)
794 struct i7core_pvt *pvt = mci->pvt_info;
795 return sprintf(data, "0x%08x\n", pvt->inject.section);
799 * i7core inject.type
801 * accept and store error injection inject.section value
802 * bit 0 - repeat enable - Enable error repetition
803 * bit 1 - inject ECC error
804 * bit 2 - inject parity error
806 static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
807 const char *data, size_t count)
809 struct i7core_pvt *pvt = mci->pvt_info;
810 unsigned long value;
811 int rc;
813 if (pvt->inject.enable)
814 disable_inject(mci);
816 rc = strict_strtoul(data, 10, &value);
817 if ((rc < 0) || (value > 7))
818 return -EIO;
820 pvt->inject.type = (u32) value;
821 return count;
824 static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
825 char *data)
827 struct i7core_pvt *pvt = mci->pvt_info;
828 return sprintf(data, "0x%08x\n", pvt->inject.type);
832 * i7core_inject_inject.eccmask_store
834 * The type of error (UE/CE) will depend on the inject.eccmask value:
835 * Any bits set to a 1 will flip the corresponding ECC bit
836 * Correctable errors can be injected by flipping 1 bit or the bits within
837 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
838 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
839 * uncorrectable error to be injected.
841 static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
842 const char *data, size_t count)
844 struct i7core_pvt *pvt = mci->pvt_info;
845 unsigned long value;
846 int rc;
848 if (pvt->inject.enable)
849 disable_inject(mci);
851 rc = strict_strtoul(data, 10, &value);
852 if (rc < 0)
853 return -EIO;
855 pvt->inject.eccmask = (u32) value;
856 return count;
859 static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
860 char *data)
862 struct i7core_pvt *pvt = mci->pvt_info;
863 return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
867 * i7core_addrmatch
869 * The type of error (UE/CE) will depend on the inject.eccmask value:
870 * Any bits set to a 1 will flip the corresponding ECC bit
871 * Correctable errors can be injected by flipping 1 bit or the bits within
872 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
873 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
874 * uncorrectable error to be injected.
877 #define DECLARE_ADDR_MATCH(param, limit) \
878 static ssize_t i7core_inject_store_##param( \
879 struct mem_ctl_info *mci, \
880 const char *data, size_t count) \
882 struct i7core_pvt *pvt; \
883 long value; \
884 int rc; \
886 debugf1("%s()\n", __func__); \
887 pvt = mci->pvt_info; \
889 if (pvt->inject.enable) \
890 disable_inject(mci); \
892 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
893 value = -1; \
894 else { \
895 rc = strict_strtoul(data, 10, &value); \
896 if ((rc < 0) || (value >= limit)) \
897 return -EIO; \
900 pvt->inject.param = value; \
902 return count; \
905 static ssize_t i7core_inject_show_##param( \
906 struct mem_ctl_info *mci, \
907 char *data) \
909 struct i7core_pvt *pvt; \
911 pvt = mci->pvt_info; \
912 debugf1("%s() pvt=%p\n", __func__, pvt); \
913 if (pvt->inject.param < 0) \
914 return sprintf(data, "any\n"); \
915 else \
916 return sprintf(data, "%d\n", pvt->inject.param);\
919 #define ATTR_ADDR_MATCH(param) \
921 .attr = { \
922 .name = #param, \
923 .mode = (S_IRUGO | S_IWUSR) \
924 }, \
925 .show = i7core_inject_show_##param, \
926 .store = i7core_inject_store_##param, \
929 DECLARE_ADDR_MATCH(channel, 3);
930 DECLARE_ADDR_MATCH(dimm, 3);
931 DECLARE_ADDR_MATCH(rank, 4);
932 DECLARE_ADDR_MATCH(bank, 32);
933 DECLARE_ADDR_MATCH(page, 0x10000);
934 DECLARE_ADDR_MATCH(col, 0x4000);
936 static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
938 u32 read;
939 int count;
941 debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
942 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
943 where, val);
945 for (count = 0; count < 10; count++) {
946 if (count)
947 msleep(100);
948 pci_write_config_dword(dev, where, val);
949 pci_read_config_dword(dev, where, &read);
951 if (read == val)
952 return 0;
955 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
956 "write=%08x. Read=%08x\n",
957 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
958 where, val, read);
960 return -EINVAL;
964 * This routine prepares the Memory Controller for error injection.
965 * The error will be injected when some process tries to write to the
966 * memory that matches the given criteria.
967 * The criteria can be set in terms of a mask where dimm, rank, bank, page
968 * and col can be specified.
969 * A -1 value for any of the mask items will make the MCU to ignore
970 * that matching criteria for error injection.
972 * It should be noticed that the error will only happen after a write operation
973 * on a memory that matches the condition. if REPEAT_EN is not enabled at
974 * inject mask, then it will produce just one error. Otherwise, it will repeat
975 * until the injectmask would be cleaned.
977 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
978 * is reliable enough to check if the MC is using the
979 * three channels. However, this is not clear at the datasheet.
981 static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
982 const char *data, size_t count)
984 struct i7core_pvt *pvt = mci->pvt_info;
985 u32 injectmask;
986 u64 mask = 0;
987 int rc;
988 long enable;
990 if (!pvt->pci_ch[pvt->inject.channel][0])
991 return 0;
993 rc = strict_strtoul(data, 10, &enable);
994 if ((rc < 0))
995 return 0;
997 if (enable) {
998 pvt->inject.enable = 1;
999 } else {
1000 disable_inject(mci);
1001 return count;
1004 /* Sets pvt->inject.dimm mask */
1005 if (pvt->inject.dimm < 0)
1006 mask |= 1LL << 41;
1007 else {
1008 if (pvt->channel[pvt->inject.channel].dimms > 2)
1009 mask |= (pvt->inject.dimm & 0x3LL) << 35;
1010 else
1011 mask |= (pvt->inject.dimm & 0x1LL) << 36;
1014 /* Sets pvt->inject.rank mask */
1015 if (pvt->inject.rank < 0)
1016 mask |= 1LL << 40;
1017 else {
1018 if (pvt->channel[pvt->inject.channel].dimms > 2)
1019 mask |= (pvt->inject.rank & 0x1LL) << 34;
1020 else
1021 mask |= (pvt->inject.rank & 0x3LL) << 34;
1024 /* Sets pvt->inject.bank mask */
1025 if (pvt->inject.bank < 0)
1026 mask |= 1LL << 39;
1027 else
1028 mask |= (pvt->inject.bank & 0x15LL) << 30;
1030 /* Sets pvt->inject.page mask */
1031 if (pvt->inject.page < 0)
1032 mask |= 1LL << 38;
1033 else
1034 mask |= (pvt->inject.page & 0xffff) << 14;
1036 /* Sets pvt->inject.column mask */
1037 if (pvt->inject.col < 0)
1038 mask |= 1LL << 37;
1039 else
1040 mask |= (pvt->inject.col & 0x3fff);
1043 * bit 0: REPEAT_EN
1044 * bits 1-2: MASK_HALF_CACHELINE
1045 * bit 3: INJECT_ECC
1046 * bit 4: INJECT_ADDR_PARITY
1049 injectmask = (pvt->inject.type & 1) |
1050 (pvt->inject.section & 0x3) << 1 |
1051 (pvt->inject.type & 0x6) << (3 - 1);
1053 /* Unlock writes to registers - this register is write only */
1054 pci_write_config_dword(pvt->pci_noncore,
1055 MC_CFG_CONTROL, 0x2);
1057 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1058 MC_CHANNEL_ADDR_MATCH, mask);
1059 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1060 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
1062 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1063 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1065 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1066 MC_CHANNEL_ERROR_INJECT, injectmask);
1069 * This is something undocumented, based on my tests
1070 * Without writing 8 to this register, errors aren't injected. Not sure
1071 * why.
1073 pci_write_config_dword(pvt->pci_noncore,
1074 MC_CFG_CONTROL, 8);
1076 debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
1077 " inject 0x%08x\n",
1078 mask, pvt->inject.eccmask, injectmask);
1081 return count;
1084 static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
1085 char *data)
1087 struct i7core_pvt *pvt = mci->pvt_info;
1088 u32 injectmask;
1090 if (!pvt->pci_ch[pvt->inject.channel][0])
1091 return 0;
1093 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1094 MC_CHANNEL_ERROR_INJECT, &injectmask);
1096 debugf0("Inject error read: 0x%018x\n", injectmask);
1098 if (injectmask & 0x0c)
1099 pvt->inject.enable = 1;
1101 return sprintf(data, "%d\n", pvt->inject.enable);
1104 #define DECLARE_COUNTER(param) \
1105 static ssize_t i7core_show_counter_##param( \
1106 struct mem_ctl_info *mci, \
1107 char *data) \
1109 struct i7core_pvt *pvt = mci->pvt_info; \
1111 debugf1("%s() \n", __func__); \
1112 if (!pvt->ce_count_available || (pvt->is_registered)) \
1113 return sprintf(data, "data unavailable\n"); \
1114 return sprintf(data, "%lu\n", \
1115 pvt->udimm_ce_count[param]); \
1118 #define ATTR_COUNTER(param) \
1120 .attr = { \
1121 .name = __stringify(udimm##param), \
1122 .mode = (S_IRUGO | S_IWUSR) \
1123 }, \
1124 .show = i7core_show_counter_##param \
1127 DECLARE_COUNTER(0);
1128 DECLARE_COUNTER(1);
1129 DECLARE_COUNTER(2);
1132 * Sysfs struct
1135 static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1136 ATTR_ADDR_MATCH(channel),
1137 ATTR_ADDR_MATCH(dimm),
1138 ATTR_ADDR_MATCH(rank),
1139 ATTR_ADDR_MATCH(bank),
1140 ATTR_ADDR_MATCH(page),
1141 ATTR_ADDR_MATCH(col),
1142 { } /* End of list */
1145 static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1146 .name = "inject_addrmatch",
1147 .mcidev_attr = i7core_addrmatch_attrs,
1150 static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1151 ATTR_COUNTER(0),
1152 ATTR_COUNTER(1),
1153 ATTR_COUNTER(2),
1154 { .attr = { .name = NULL } }
1157 static const struct mcidev_sysfs_group i7core_udimm_counters = {
1158 .name = "all_channel_counts",
1159 .mcidev_attr = i7core_udimm_counters_attrs,
1162 static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1164 .attr = {
1165 .name = "inject_section",
1166 .mode = (S_IRUGO | S_IWUSR)
1168 .show = i7core_inject_section_show,
1169 .store = i7core_inject_section_store,
1170 }, {
1171 .attr = {
1172 .name = "inject_type",
1173 .mode = (S_IRUGO | S_IWUSR)
1175 .show = i7core_inject_type_show,
1176 .store = i7core_inject_type_store,
1177 }, {
1178 .attr = {
1179 .name = "inject_eccmask",
1180 .mode = (S_IRUGO | S_IWUSR)
1182 .show = i7core_inject_eccmask_show,
1183 .store = i7core_inject_eccmask_store,
1184 }, {
1185 .grp = &i7core_inject_addrmatch,
1186 }, {
1187 .attr = {
1188 .name = "inject_enable",
1189 .mode = (S_IRUGO | S_IWUSR)
1191 .show = i7core_inject_enable_show,
1192 .store = i7core_inject_enable_store,
1194 { } /* End of list */
1197 static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
1199 .attr = {
1200 .name = "inject_section",
1201 .mode = (S_IRUGO | S_IWUSR)
1203 .show = i7core_inject_section_show,
1204 .store = i7core_inject_section_store,
1205 }, {
1206 .attr = {
1207 .name = "inject_type",
1208 .mode = (S_IRUGO | S_IWUSR)
1210 .show = i7core_inject_type_show,
1211 .store = i7core_inject_type_store,
1212 }, {
1213 .attr = {
1214 .name = "inject_eccmask",
1215 .mode = (S_IRUGO | S_IWUSR)
1217 .show = i7core_inject_eccmask_show,
1218 .store = i7core_inject_eccmask_store,
1219 }, {
1220 .grp = &i7core_inject_addrmatch,
1221 }, {
1222 .attr = {
1223 .name = "inject_enable",
1224 .mode = (S_IRUGO | S_IWUSR)
1226 .show = i7core_inject_enable_show,
1227 .store = i7core_inject_enable_store,
1228 }, {
1229 .grp = &i7core_udimm_counters,
1231 { } /* End of list */
1234 /****************************************************************************
1235 Device initialization routines: put/get, init/exit
1236 ****************************************************************************/
1239 * i7core_put_all_devices 'put' all the devices that we have
1240 * reserved via 'get'
1242 static void i7core_put_devices(struct i7core_dev *i7core_dev)
1244 int i;
1246 debugf0(__FILE__ ": %s()\n", __func__);
1247 for (i = 0; i < i7core_dev->n_devs; i++) {
1248 struct pci_dev *pdev = i7core_dev->pdev[i];
1249 if (!pdev)
1250 continue;
1251 debugf0("Removing dev %02x:%02x.%d\n",
1252 pdev->bus->number,
1253 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1254 pci_dev_put(pdev);
1258 static void i7core_put_all_devices(void)
1260 struct i7core_dev *i7core_dev, *tmp;
1262 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1263 i7core_put_devices(i7core_dev);
1264 free_i7core_dev(i7core_dev);
1268 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1270 struct pci_dev *pdev = NULL;
1271 int i;
1274 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1275 * aren't announced by acpi. So, we need to use a legacy scan probing
1276 * to detect them
1278 while (table && table->descr) {
1279 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1280 if (unlikely(!pdev)) {
1281 for (i = 0; i < MAX_SOCKET_BUSES; i++)
1282 pcibios_scan_specific_bus(255-i);
1284 pci_dev_put(pdev);
1285 table++;
1289 static unsigned i7core_pci_lastbus(void)
1291 int last_bus = 0, bus;
1292 struct pci_bus *b = NULL;
1294 while ((b = pci_find_next_bus(b)) != NULL) {
1295 bus = b->number;
1296 debugf0("Found bus %d\n", bus);
1297 if (bus > last_bus)
1298 last_bus = bus;
1301 debugf0("Last bus %d\n", last_bus);
1303 return last_bus;
1307 * i7core_get_all_devices Find and perform 'get' operation on the MCH's
1308 * device/functions we want to reference for this driver
1310 * Need to 'get' device 16 func 1 and func 2
1312 static int i7core_get_onedevice(struct pci_dev **prev,
1313 const struct pci_id_table *table,
1314 const unsigned devno,
1315 const unsigned last_bus)
1317 struct i7core_dev *i7core_dev;
1318 const struct pci_id_descr *dev_descr = &table->descr[devno];
1320 struct pci_dev *pdev = NULL;
1321 u8 bus = 0;
1322 u8 socket = 0;
1324 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1325 dev_descr->dev_id, *prev);
1327 if (!pdev) {
1328 if (*prev) {
1329 *prev = pdev;
1330 return 0;
1333 if (dev_descr->optional)
1334 return 0;
1336 if (devno == 0)
1337 return -ENODEV;
1339 i7core_printk(KERN_INFO,
1340 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1341 dev_descr->dev, dev_descr->func,
1342 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1344 /* End of list, leave */
1345 return -ENODEV;
1347 bus = pdev->bus->number;
1349 socket = last_bus - bus;
1351 i7core_dev = get_i7core_dev(socket);
1352 if (!i7core_dev) {
1353 i7core_dev = alloc_i7core_dev(socket, table);
1354 if (!i7core_dev) {
1355 pci_dev_put(pdev);
1356 return -ENOMEM;
1360 if (i7core_dev->pdev[devno]) {
1361 i7core_printk(KERN_ERR,
1362 "Duplicated device for "
1363 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1364 bus, dev_descr->dev, dev_descr->func,
1365 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1366 pci_dev_put(pdev);
1367 return -ENODEV;
1370 i7core_dev->pdev[devno] = pdev;
1372 /* Sanity check */
1373 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1374 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1375 i7core_printk(KERN_ERR,
1376 "Device PCI ID %04x:%04x "
1377 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1378 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1379 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1380 bus, dev_descr->dev, dev_descr->func);
1381 return -ENODEV;
1384 /* Be sure that the device is enabled */
1385 if (unlikely(pci_enable_device(pdev) < 0)) {
1386 i7core_printk(KERN_ERR,
1387 "Couldn't enable "
1388 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1389 bus, dev_descr->dev, dev_descr->func,
1390 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1391 return -ENODEV;
1394 debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1395 socket, bus, dev_descr->dev,
1396 dev_descr->func,
1397 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1400 * As stated on drivers/pci/search.c, the reference count for
1401 * @from is always decremented if it is not %NULL. So, as we need
1402 * to get all devices up to null, we need to do a get for the device
1404 pci_dev_get(pdev);
1406 *prev = pdev;
1408 return 0;
1411 static int i7core_get_all_devices(void)
1413 int i, rc, last_bus;
1414 struct pci_dev *pdev = NULL;
1415 const struct pci_id_table *table = pci_dev_table;
1417 last_bus = i7core_pci_lastbus();
1419 while (table && table->descr) {
1420 for (i = 0; i < table->n_devs; i++) {
1421 pdev = NULL;
1422 do {
1423 rc = i7core_get_onedevice(&pdev, table, i,
1424 last_bus);
1425 if (rc < 0) {
1426 if (i == 0) {
1427 i = table->n_devs;
1428 break;
1430 i7core_put_all_devices();
1431 return -ENODEV;
1433 } while (pdev);
1435 table++;
1438 return 0;
1441 static int mci_bind_devs(struct mem_ctl_info *mci,
1442 struct i7core_dev *i7core_dev)
1444 struct i7core_pvt *pvt = mci->pvt_info;
1445 struct pci_dev *pdev;
1446 int i, func, slot;
1448 pvt->is_registered = 0;
1449 for (i = 0; i < i7core_dev->n_devs; i++) {
1450 pdev = i7core_dev->pdev[i];
1451 if (!pdev)
1452 continue;
1454 func = PCI_FUNC(pdev->devfn);
1455 slot = PCI_SLOT(pdev->devfn);
1456 if (slot == 3) {
1457 if (unlikely(func > MAX_MCR_FUNC))
1458 goto error;
1459 pvt->pci_mcr[func] = pdev;
1460 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1461 if (unlikely(func > MAX_CHAN_FUNC))
1462 goto error;
1463 pvt->pci_ch[slot - 4][func] = pdev;
1464 } else if (!slot && !func)
1465 pvt->pci_noncore = pdev;
1466 else
1467 goto error;
1469 debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
1470 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1471 pdev, i7core_dev->socket);
1473 if (PCI_SLOT(pdev->devfn) == 3 &&
1474 PCI_FUNC(pdev->devfn) == 2)
1475 pvt->is_registered = 1;
1478 return 0;
1480 error:
1481 i7core_printk(KERN_ERR, "Device %d, function %d "
1482 "is out of the expected range\n",
1483 slot, func);
1484 return -EINVAL;
1487 /****************************************************************************
1488 Error check routines
1489 ****************************************************************************/
1490 static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1491 const int chan,
1492 const int dimm,
1493 const int add)
1495 char *msg;
1496 struct i7core_pvt *pvt = mci->pvt_info;
1497 int row = pvt->csrow_map[chan][dimm], i;
1499 for (i = 0; i < add; i++) {
1500 msg = kasprintf(GFP_KERNEL, "Corrected error "
1501 "(Socket=%d channel=%d dimm=%d)",
1502 pvt->i7core_dev->socket, chan, dimm);
1504 edac_mc_handle_fbd_ce(mci, row, 0, msg);
1505 kfree (msg);
1509 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1510 const int chan,
1511 const int new0,
1512 const int new1,
1513 const int new2)
1515 struct i7core_pvt *pvt = mci->pvt_info;
1516 int add0 = 0, add1 = 0, add2 = 0;
1517 /* Updates CE counters if it is not the first time here */
1518 if (pvt->ce_count_available) {
1519 /* Updates CE counters */
1521 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1522 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1523 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1525 if (add2 < 0)
1526 add2 += 0x7fff;
1527 pvt->rdimm_ce_count[chan][2] += add2;
1529 if (add1 < 0)
1530 add1 += 0x7fff;
1531 pvt->rdimm_ce_count[chan][1] += add1;
1533 if (add0 < 0)
1534 add0 += 0x7fff;
1535 pvt->rdimm_ce_count[chan][0] += add0;
1536 } else
1537 pvt->ce_count_available = 1;
1539 /* Store the new values */
1540 pvt->rdimm_last_ce_count[chan][2] = new2;
1541 pvt->rdimm_last_ce_count[chan][1] = new1;
1542 pvt->rdimm_last_ce_count[chan][0] = new0;
1544 /*updated the edac core */
1545 if (add0 != 0)
1546 i7core_rdimm_update_csrow(mci, chan, 0, add0);
1547 if (add1 != 0)
1548 i7core_rdimm_update_csrow(mci, chan, 1, add1);
1549 if (add2 != 0)
1550 i7core_rdimm_update_csrow(mci, chan, 2, add2);
1554 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1556 struct i7core_pvt *pvt = mci->pvt_info;
1557 u32 rcv[3][2];
1558 int i, new0, new1, new2;
1560 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
1561 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1562 &rcv[0][0]);
1563 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1564 &rcv[0][1]);
1565 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1566 &rcv[1][0]);
1567 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1568 &rcv[1][1]);
1569 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1570 &rcv[2][0]);
1571 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1572 &rcv[2][1]);
1573 for (i = 0 ; i < 3; i++) {
1574 debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1575 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1576 /*if the channel has 3 dimms*/
1577 if (pvt->channel[i].dimms > 2) {
1578 new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1579 new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1580 new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1581 } else {
1582 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1583 DIMM_BOT_COR_ERR(rcv[i][0]);
1584 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1585 DIMM_BOT_COR_ERR(rcv[i][1]);
1586 new2 = 0;
1589 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1593 /* This function is based on the device 3 function 4 registers as described on:
1594 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1595 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1596 * also available at:
1597 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1599 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1601 struct i7core_pvt *pvt = mci->pvt_info;
1602 u32 rcv1, rcv0;
1603 int new0, new1, new2;
1605 if (!pvt->pci_mcr[4]) {
1606 debugf0("%s MCR registers not found\n", __func__);
1607 return;
1610 /* Corrected test errors */
1611 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1612 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1614 /* Store the new values */
1615 new2 = DIMM2_COR_ERR(rcv1);
1616 new1 = DIMM1_COR_ERR(rcv0);
1617 new0 = DIMM0_COR_ERR(rcv0);
1619 /* Updates CE counters if it is not the first time here */
1620 if (pvt->ce_count_available) {
1621 /* Updates CE counters */
1622 int add0, add1, add2;
1624 add2 = new2 - pvt->udimm_last_ce_count[2];
1625 add1 = new1 - pvt->udimm_last_ce_count[1];
1626 add0 = new0 - pvt->udimm_last_ce_count[0];
1628 if (add2 < 0)
1629 add2 += 0x7fff;
1630 pvt->udimm_ce_count[2] += add2;
1632 if (add1 < 0)
1633 add1 += 0x7fff;
1634 pvt->udimm_ce_count[1] += add1;
1636 if (add0 < 0)
1637 add0 += 0x7fff;
1638 pvt->udimm_ce_count[0] += add0;
1640 if (add0 | add1 | add2)
1641 i7core_printk(KERN_ERR, "New Corrected error(s): "
1642 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1643 add0, add1, add2);
1644 } else
1645 pvt->ce_count_available = 1;
1647 /* Store the new values */
1648 pvt->udimm_last_ce_count[2] = new2;
1649 pvt->udimm_last_ce_count[1] = new1;
1650 pvt->udimm_last_ce_count[0] = new0;
1654 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1655 * Architectures Software Developer’s Manual Volume 3B.
1656 * Nehalem are defined as family 0x06, model 0x1a
1658 * The MCA registers used here are the following ones:
1659 * struct mce field MCA Register
1660 * m->status MSR_IA32_MC8_STATUS
1661 * m->addr MSR_IA32_MC8_ADDR
1662 * m->misc MSR_IA32_MC8_MISC
1663 * In the case of Nehalem, the error information is masked at .status and .misc
1664 * fields
1666 static void i7core_mce_output_error(struct mem_ctl_info *mci,
1667 const struct mce *m)
1669 struct i7core_pvt *pvt = mci->pvt_info;
1670 char *type, *optype, *err, *msg;
1671 unsigned long error = m->status & 0x1ff0000l;
1672 u32 optypenum = (m->status >> 4) & 0x07;
1673 u32 core_err_cnt = (m->status >> 38) && 0x7fff;
1674 u32 dimm = (m->misc >> 16) & 0x3;
1675 u32 channel = (m->misc >> 18) & 0x3;
1676 u32 syndrome = m->misc >> 32;
1677 u32 errnum = find_first_bit(&error, 32);
1678 int csrow;
1680 if (m->mcgstatus & 1)
1681 type = "FATAL";
1682 else
1683 type = "NON_FATAL";
1685 switch (optypenum) {
1686 case 0:
1687 optype = "generic undef request";
1688 break;
1689 case 1:
1690 optype = "read error";
1691 break;
1692 case 2:
1693 optype = "write error";
1694 break;
1695 case 3:
1696 optype = "addr/cmd error";
1697 break;
1698 case 4:
1699 optype = "scrubbing error";
1700 break;
1701 default:
1702 optype = "reserved";
1703 break;
1706 switch (errnum) {
1707 case 16:
1708 err = "read ECC error";
1709 break;
1710 case 17:
1711 err = "RAS ECC error";
1712 break;
1713 case 18:
1714 err = "write parity error";
1715 break;
1716 case 19:
1717 err = "redundacy loss";
1718 break;
1719 case 20:
1720 err = "reserved";
1721 break;
1722 case 21:
1723 err = "memory range error";
1724 break;
1725 case 22:
1726 err = "RTID out of range";
1727 break;
1728 case 23:
1729 err = "address parity error";
1730 break;
1731 case 24:
1732 err = "byte enable parity error";
1733 break;
1734 default:
1735 err = "unknown";
1738 /* FIXME: should convert addr into bank and rank information */
1739 msg = kasprintf(GFP_ATOMIC,
1740 "%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1741 "syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1742 type, (long long) m->addr, m->cpu, dimm, channel,
1743 syndrome, core_err_cnt, (long long)m->status,
1744 (long long)m->misc, optype, err);
1746 debugf0("%s", msg);
1748 csrow = pvt->csrow_map[channel][dimm];
1750 /* Call the helper to output message */
1751 if (m->mcgstatus & 1)
1752 edac_mc_handle_fbd_ue(mci, csrow, 0,
1753 0 /* FIXME: should be channel here */, msg);
1754 else if (!pvt->is_registered)
1755 edac_mc_handle_fbd_ce(mci, csrow,
1756 0 /* FIXME: should be channel here */, msg);
1758 kfree(msg);
1762 * i7core_check_error Retrieve and process errors reported by the
1763 * hardware. Called by the Core module.
1765 static void i7core_check_error(struct mem_ctl_info *mci)
1767 struct i7core_pvt *pvt = mci->pvt_info;
1768 int i;
1769 unsigned count = 0;
1770 struct mce *m;
1773 * MCE first step: Copy all mce errors into a temporary buffer
1774 * We use a double buffering here, to reduce the risk of
1775 * losing an error.
1777 smp_rmb();
1778 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1779 % MCE_LOG_LEN;
1780 if (!count)
1781 goto check_ce_error;
1783 m = pvt->mce_outentry;
1784 if (pvt->mce_in + count > MCE_LOG_LEN) {
1785 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1787 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1788 smp_wmb();
1789 pvt->mce_in = 0;
1790 count -= l;
1791 m += l;
1793 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1794 smp_wmb();
1795 pvt->mce_in += count;
1797 smp_rmb();
1798 if (pvt->mce_overrun) {
1799 i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1800 pvt->mce_overrun);
1801 smp_wmb();
1802 pvt->mce_overrun = 0;
1806 * MCE second step: parse errors and display
1808 for (i = 0; i < count; i++)
1809 i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1812 * Now, let's increment CE error counts
1814 check_ce_error:
1815 if (!pvt->is_registered)
1816 i7core_udimm_check_mc_ecc_err(mci);
1817 else
1818 i7core_rdimm_check_mc_ecc_err(mci);
1822 * i7core_mce_check_error Replicates mcelog routine to get errors
1823 * This routine simply queues mcelog errors, and
1824 * return. The error itself should be handled later
1825 * by i7core_check_error.
1826 * WARNING: As this routine should be called at NMI time, extra care should
1827 * be taken to avoid deadlocks, and to be as fast as possible.
1829 static int i7core_mce_check_error(void *priv, struct mce *mce)
1831 struct mem_ctl_info *mci = priv;
1832 struct i7core_pvt *pvt = mci->pvt_info;
1835 * Just let mcelog handle it if the error is
1836 * outside the memory controller
1838 if (((mce->status & 0xffff) >> 7) != 1)
1839 return 0;
1841 /* Bank 8 registers are the only ones that we know how to handle */
1842 if (mce->bank != 8)
1843 return 0;
1845 #ifdef CONFIG_SMP
1846 /* Only handle if it is the right mc controller */
1847 if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1848 return 0;
1849 #endif
1851 smp_rmb();
1852 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1853 smp_wmb();
1854 pvt->mce_overrun++;
1855 return 0;
1858 /* Copy memory error at the ringbuffer */
1859 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1860 smp_wmb();
1861 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1863 /* Handle fatal errors immediately */
1864 if (mce->mcgstatus & 1)
1865 i7core_check_error(mci);
1867 /* Advise mcelog that the errors were handled */
1868 return 1;
1871 static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
1873 pvt->i7core_pci = edac_pci_create_generic_ctl(
1874 &pvt->i7core_dev->pdev[0]->dev,
1875 EDAC_MOD_STR);
1876 if (unlikely(!pvt->i7core_pci))
1877 pr_warn("Unable to setup PCI error report via EDAC\n");
1880 static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
1882 if (likely(pvt->i7core_pci))
1883 edac_pci_release_generic_ctl(pvt->i7core_pci);
1884 else
1885 i7core_printk(KERN_ERR,
1886 "Couldn't find mem_ctl_info for socket %d\n",
1887 pvt->i7core_dev->socket);
1888 pvt->i7core_pci = NULL;
1891 static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
1893 struct mem_ctl_info *mci = i7core_dev->mci;
1894 struct i7core_pvt *pvt;
1896 if (unlikely(!mci || !mci->pvt_info)) {
1897 debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
1898 __func__, &i7core_dev->pdev[0]->dev);
1900 i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
1901 return;
1904 pvt = mci->pvt_info;
1906 debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1907 __func__, mci, &i7core_dev->pdev[0]->dev);
1909 /* Disable MCE NMI handler */
1910 edac_mce_unregister(&pvt->edac_mce);
1912 /* Disable EDAC polling */
1913 i7core_pci_ctl_release(pvt);
1915 /* Remove MC sysfs nodes */
1916 edac_mc_del_mc(mci->dev);
1918 debugf1("%s: free mci struct\n", mci->ctl_name);
1919 kfree(mci->ctl_name);
1920 edac_mc_free(mci);
1921 i7core_dev->mci = NULL;
1924 static int i7core_register_mci(struct i7core_dev *i7core_dev)
1926 struct mem_ctl_info *mci;
1927 struct i7core_pvt *pvt;
1928 int rc, channels, csrows;
1930 /* Check the number of active and not disabled channels */
1931 rc = i7core_get_active_channels(i7core_dev->socket, &channels, &csrows);
1932 if (unlikely(rc < 0))
1933 return rc;
1935 /* allocate a new MC control structure */
1936 mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, i7core_dev->socket);
1937 if (unlikely(!mci))
1938 return -ENOMEM;
1940 debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1941 __func__, mci, &i7core_dev->pdev[0]->dev);
1943 pvt = mci->pvt_info;
1944 memset(pvt, 0, sizeof(*pvt));
1946 /* Associates i7core_dev and mci for future usage */
1947 pvt->i7core_dev = i7core_dev;
1948 i7core_dev->mci = mci;
1951 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
1952 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
1953 * memory channels
1955 mci->mtype_cap = MEM_FLAG_DDR3;
1956 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1957 mci->edac_cap = EDAC_FLAG_NONE;
1958 mci->mod_name = "i7core_edac.c";
1959 mci->mod_ver = I7CORE_REVISION;
1960 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
1961 i7core_dev->socket);
1962 mci->dev_name = pci_name(i7core_dev->pdev[0]);
1963 mci->ctl_page_to_phys = NULL;
1965 /* Store pci devices at mci for faster access */
1966 rc = mci_bind_devs(mci, i7core_dev);
1967 if (unlikely(rc < 0))
1968 goto fail0;
1970 if (pvt->is_registered)
1971 mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
1972 else
1973 mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;
1975 /* Get dimm basic config */
1976 get_dimm_config(mci);
1977 /* record ptr to the generic device */
1978 mci->dev = &i7core_dev->pdev[0]->dev;
1979 /* Set the function pointer to an actual operation function */
1980 mci->edac_check = i7core_check_error;
1982 /* add this new MC control structure to EDAC's list of MCs */
1983 if (unlikely(edac_mc_add_mc(mci))) {
1984 debugf0("MC: " __FILE__
1985 ": %s(): failed edac_mc_add_mc()\n", __func__);
1986 /* FIXME: perhaps some code should go here that disables error
1987 * reporting if we just enabled it
1990 rc = -EINVAL;
1991 goto fail0;
1994 /* Default error mask is any memory */
1995 pvt->inject.channel = 0;
1996 pvt->inject.dimm = -1;
1997 pvt->inject.rank = -1;
1998 pvt->inject.bank = -1;
1999 pvt->inject.page = -1;
2000 pvt->inject.col = -1;
2002 /* allocating generic PCI control info */
2003 i7core_pci_ctl_create(pvt);
2005 /* Registers on edac_mce in order to receive memory errors */
2006 pvt->edac_mce.priv = mci;
2007 pvt->edac_mce.check_error = i7core_mce_check_error;
2008 rc = edac_mce_register(&pvt->edac_mce);
2009 if (unlikely(rc < 0)) {
2010 debugf0("MC: " __FILE__
2011 ": %s(): failed edac_mce_register()\n", __func__);
2012 goto fail1;
2015 return 0;
2017 fail1:
2018 i7core_pci_ctl_release(pvt);
2019 edac_mc_del_mc(mci->dev);
2020 fail0:
2021 kfree(mci->ctl_name);
2022 edac_mc_free(mci);
2023 i7core_dev->mci = NULL;
2024 return rc;
2028 * i7core_probe Probe for ONE instance of device to see if it is
2029 * present.
2030 * return:
2031 * 0 for FOUND a device
2032 * < 0 for error code
2035 static int __devinit i7core_probe(struct pci_dev *pdev,
2036 const struct pci_device_id *id)
2038 int rc;
2039 struct i7core_dev *i7core_dev;
2041 /* get the pci devices we want to reserve for our use */
2042 mutex_lock(&i7core_edac_lock);
2045 * All memory controllers are allocated at the first pass.
2047 if (unlikely(probed >= 1)) {
2048 mutex_unlock(&i7core_edac_lock);
2049 return -ENODEV;
2051 probed++;
2053 rc = i7core_get_all_devices();
2054 if (unlikely(rc < 0))
2055 goto fail0;
2057 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2058 rc = i7core_register_mci(i7core_dev);
2059 if (unlikely(rc < 0))
2060 goto fail1;
2063 i7core_printk(KERN_INFO, "Driver loaded.\n");
2065 mutex_unlock(&i7core_edac_lock);
2066 return 0;
2068 fail1:
2069 list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2070 i7core_unregister_mci(i7core_dev);
2072 i7core_put_all_devices();
2073 fail0:
2074 mutex_unlock(&i7core_edac_lock);
2075 return rc;
2079 * i7core_remove destructor for one instance of device
2082 static void __devexit i7core_remove(struct pci_dev *pdev)
2084 struct i7core_dev *i7core_dev;
2086 debugf0(__FILE__ ": %s()\n", __func__);
2089 * we have a trouble here: pdev value for removal will be wrong, since
2090 * it will point to the X58 register used to detect that the machine
2091 * is a Nehalem or upper design. However, due to the way several PCI
2092 * devices are grouped together to provide MC functionality, we need
2093 * to use a different method for releasing the devices
2096 mutex_lock(&i7core_edac_lock);
2098 if (unlikely(!probed)) {
2099 mutex_unlock(&i7core_edac_lock);
2100 return;
2103 list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2104 i7core_unregister_mci(i7core_dev);
2106 /* Release PCI resources */
2107 i7core_put_all_devices();
2109 probed--;
2111 mutex_unlock(&i7core_edac_lock);
2114 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2117 * i7core_driver pci_driver structure for this module
2120 static struct pci_driver i7core_driver = {
2121 .name = "i7core_edac",
2122 .probe = i7core_probe,
2123 .remove = __devexit_p(i7core_remove),
2124 .id_table = i7core_pci_tbl,
2128 * i7core_init Module entry function
2129 * Try to initialize this module for its devices
2131 static int __init i7core_init(void)
2133 int pci_rc;
2135 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2137 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2138 opstate_init();
2140 if (use_pci_fixup)
2141 i7core_xeon_pci_fixup(pci_dev_table);
2143 pci_rc = pci_register_driver(&i7core_driver);
2145 if (pci_rc >= 0)
2146 return 0;
2148 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2149 pci_rc);
2151 return pci_rc;
2155 * i7core_exit() Module exit function
2156 * Unregister the driver
2158 static void __exit i7core_exit(void)
2160 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2161 pci_unregister_driver(&i7core_driver);
2164 module_init(i7core_init);
2165 module_exit(i7core_exit);
2167 MODULE_LICENSE("GPL");
2168 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2169 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2170 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2171 I7CORE_REVISION);
2173 module_param(edac_op_state, int, 0444);
2174 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");