sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
blob6f714dd723653032c0622b8821852749b4254f38
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "ar9002_phy.h"
20 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
25 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
30 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 struct ath_common *common = ath9k_hw_common(ah);
35 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
36 int addr, eep_start_loc = 64;
38 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
39 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
40 ath_dbg(common, ATH_DBG_EEPROM,
41 "Unable to read eeprom region\n");
42 return false;
44 eep_data++;
47 return true;
50 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
52 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
54 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
56 return true;
59 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
61 struct ath_common *common = ath9k_hw_common(ah);
63 if (!ath9k_hw_use_flash(ah)) {
64 ath_dbg(common, ATH_DBG_EEPROM,
65 "Reading from EEPROM, not flash\n");
68 if (common->bus_ops->ath_bus_type == ATH_USB)
69 return __ath9k_hw_usb_4k_fill_eeprom(ah);
70 else
71 return __ath9k_hw_4k_fill_eeprom(ah);
74 #undef SIZE_EEPROM_4K
76 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
78 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
79 struct ath_common *common = ath9k_hw_common(ah);
80 struct ar5416_eeprom_4k *eep =
81 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
82 u16 *eepdata, temp, magic, magic2;
83 u32 sum = 0, el;
84 bool need_swap = false;
85 int i, addr;
88 if (!ath9k_hw_use_flash(ah)) {
89 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
90 &magic)) {
91 ath_err(common, "Reading Magic # failed\n");
92 return false;
95 ath_dbg(common, ATH_DBG_EEPROM,
96 "Read Magic = 0x%04X\n", magic);
98 if (magic != AR5416_EEPROM_MAGIC) {
99 magic2 = swab16(magic);
101 if (magic2 == AR5416_EEPROM_MAGIC) {
102 need_swap = true;
103 eepdata = (u16 *) (&ah->eeprom);
105 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
106 temp = swab16(*eepdata);
107 *eepdata = temp;
108 eepdata++;
110 } else {
111 ath_err(common,
112 "Invalid EEPROM Magic. Endianness mismatch.\n");
113 return -EINVAL;
118 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
119 need_swap ? "True" : "False");
121 if (need_swap)
122 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
123 else
124 el = ah->eeprom.map4k.baseEepHeader.length;
126 if (el > sizeof(struct ar5416_eeprom_4k))
127 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
128 else
129 el = el / sizeof(u16);
131 eepdata = (u16 *)(&ah->eeprom);
133 for (i = 0; i < el; i++)
134 sum ^= *eepdata++;
136 if (need_swap) {
137 u32 integer;
138 u16 word;
140 ath_dbg(common, ATH_DBG_EEPROM,
141 "EEPROM Endianness is not native.. Changing\n");
143 word = swab16(eep->baseEepHeader.length);
144 eep->baseEepHeader.length = word;
146 word = swab16(eep->baseEepHeader.checksum);
147 eep->baseEepHeader.checksum = word;
149 word = swab16(eep->baseEepHeader.version);
150 eep->baseEepHeader.version = word;
152 word = swab16(eep->baseEepHeader.regDmn[0]);
153 eep->baseEepHeader.regDmn[0] = word;
155 word = swab16(eep->baseEepHeader.regDmn[1]);
156 eep->baseEepHeader.regDmn[1] = word;
158 word = swab16(eep->baseEepHeader.rfSilent);
159 eep->baseEepHeader.rfSilent = word;
161 word = swab16(eep->baseEepHeader.blueToothOptions);
162 eep->baseEepHeader.blueToothOptions = word;
164 word = swab16(eep->baseEepHeader.deviceCap);
165 eep->baseEepHeader.deviceCap = word;
167 integer = swab32(eep->modalHeader.antCtrlCommon);
168 eep->modalHeader.antCtrlCommon = integer;
170 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
171 integer = swab32(eep->modalHeader.antCtrlChain[i]);
172 eep->modalHeader.antCtrlChain[i] = integer;
175 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
176 word = swab16(eep->modalHeader.spurChans[i].spurChan);
177 eep->modalHeader.spurChans[i].spurChan = word;
181 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
182 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
183 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
184 sum, ah->eep_ops->get_eeprom_ver(ah));
185 return -EINVAL;
188 return 0;
189 #undef EEPROM_4K_SIZE
192 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
193 enum eeprom_param param)
195 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
196 struct modal_eep_4k_header *pModal = &eep->modalHeader;
197 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
198 u16 ver_minor;
200 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
202 switch (param) {
203 case EEP_NFTHRESH_2:
204 return pModal->noiseFloorThreshCh[0];
205 case EEP_MAC_LSW:
206 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
207 case EEP_MAC_MID:
208 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
209 case EEP_MAC_MSW:
210 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
211 case EEP_REG_0:
212 return pBase->regDmn[0];
213 case EEP_REG_1:
214 return pBase->regDmn[1];
215 case EEP_OP_CAP:
216 return pBase->deviceCap;
217 case EEP_OP_MODE:
218 return pBase->opCapFlags;
219 case EEP_RF_SILENT:
220 return pBase->rfSilent;
221 case EEP_OB_2:
222 return pModal->ob_0;
223 case EEP_DB_2:
224 return pModal->db1_1;
225 case EEP_MINOR_REV:
226 return ver_minor;
227 case EEP_TX_MASK:
228 return pBase->txMask;
229 case EEP_RX_MASK:
230 return pBase->rxMask;
231 case EEP_FRAC_N_5G:
232 return 0;
233 case EEP_PWR_TABLE_OFFSET:
234 return AR5416_PWR_TABLE_OFFSET_DB;
235 case EEP_MODAL_VER:
236 return pModal->version;
237 case EEP_ANT_DIV_CTL1:
238 return pModal->antdiv_ctl1;
239 case EEP_TXGAIN_TYPE:
240 if (ver_minor >= AR5416_EEP_MINOR_VER_19)
241 return pBase->txGainType;
242 else
243 return AR5416_EEP_TXGAIN_ORIGINAL;
244 default:
245 return 0;
249 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
250 struct ath9k_channel *chan,
251 int16_t *pTxPowerIndexOffset)
253 struct ath_common *common = ath9k_hw_common(ah);
254 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
255 struct cal_data_per_freq_4k *pRawDataset;
256 u8 *pCalBChans = NULL;
257 u16 pdGainOverlap_t2;
258 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
259 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
260 u16 numPiers, i, j;
261 u16 numXpdGain, xpdMask;
262 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
263 u32 reg32, regOffset, regChainOffset;
265 xpdMask = pEepData->modalHeader.xpdGain;
267 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
268 AR5416_EEP_MINOR_VER_2) {
269 pdGainOverlap_t2 =
270 pEepData->modalHeader.pdGainOverlap;
271 } else {
272 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
273 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
276 pCalBChans = pEepData->calFreqPier2G;
277 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
279 numXpdGain = 0;
281 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
282 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
283 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
284 break;
285 xpdGainValues[numXpdGain] =
286 (u16)(AR5416_PD_GAINS_IN_MASK - i);
287 numXpdGain++;
291 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
292 (numXpdGain - 1) & 0x3);
293 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
294 xpdGainValues[0]);
295 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
296 xpdGainValues[1]);
297 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
299 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
300 if (AR_SREV_5416_20_OR_LATER(ah) &&
301 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
302 (i != 0)) {
303 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
304 } else
305 regChainOffset = i * 0x1000;
307 if (pEepData->baseEepHeader.txMask & (1 << i)) {
308 pRawDataset = pEepData->calPierData2G[i];
310 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
311 pRawDataset, pCalBChans,
312 numPiers, pdGainOverlap_t2,
313 gainBoundaries,
314 pdadcValues, numXpdGain);
316 ENABLE_REGWRITE_BUFFER(ah);
318 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
319 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
320 SM(pdGainOverlap_t2,
321 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
322 | SM(gainBoundaries[0],
323 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
324 | SM(gainBoundaries[1],
325 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
326 | SM(gainBoundaries[2],
327 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
328 | SM(gainBoundaries[3],
329 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
332 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
333 for (j = 0; j < 32; j++) {
334 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
335 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
336 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
337 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
338 REG_WRITE(ah, regOffset, reg32);
340 ath_dbg(common, ATH_DBG_EEPROM,
341 "PDADC (%d,%4x): %4.4x %8.8x\n",
342 i, regChainOffset, regOffset,
343 reg32);
344 ath_dbg(common, ATH_DBG_EEPROM,
345 "PDADC: Chain %d | "
346 "PDADC %3d Value %3d | "
347 "PDADC %3d Value %3d | "
348 "PDADC %3d Value %3d | "
349 "PDADC %3d Value %3d |\n",
350 i, 4 * j, pdadcValues[4 * j],
351 4 * j + 1, pdadcValues[4 * j + 1],
352 4 * j + 2, pdadcValues[4 * j + 2],
353 4 * j + 3, pdadcValues[4 * j + 3]);
355 regOffset += 4;
358 REGWRITE_BUFFER_FLUSH(ah);
362 *pTxPowerIndexOffset = 0;
365 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
366 struct ath9k_channel *chan,
367 int16_t *ratesArray,
368 u16 cfgCtl,
369 u16 AntennaReduction,
370 u16 twiceMaxRegulatoryPower,
371 u16 powerLimit)
373 #define CMP_TEST_GRP \
374 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
375 pEepData->ctlIndex[i]) \
376 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
377 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
379 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
380 int i;
381 int16_t twiceLargestAntenna;
382 u16 twiceMinEdgePower;
383 u16 twiceMaxEdgePower = MAX_RATE_POWER;
384 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
385 u16 numCtlModes;
386 const u16 *pCtlMode;
387 u16 ctlMode, freq;
388 struct chan_centers centers;
389 struct cal_ctl_data_4k *rep;
390 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
391 static const u16 tpScaleReductionTable[5] =
392 { 0, 3, 6, 9, MAX_RATE_POWER };
393 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
394 0, { 0, 0, 0, 0}
396 struct cal_target_power_leg targetPowerOfdmExt = {
397 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
398 0, { 0, 0, 0, 0 }
400 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
401 0, {0, 0, 0, 0}
403 static const u16 ctlModesFor11g[] = {
404 CTL_11B, CTL_11G, CTL_2GHT20,
405 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
408 ath9k_hw_get_channel_centers(ah, chan, &centers);
410 twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
411 twiceLargestAntenna = (int16_t)min(AntennaReduction -
412 twiceLargestAntenna, 0);
414 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
415 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
416 maxRegAllowedPower -=
417 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
420 scaledPower = min(powerLimit, maxRegAllowedPower);
421 scaledPower = max((u16)0, scaledPower);
423 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
424 pCtlMode = ctlModesFor11g;
426 ath9k_hw_get_legacy_target_powers(ah, chan,
427 pEepData->calTargetPowerCck,
428 AR5416_NUM_2G_CCK_TARGET_POWERS,
429 &targetPowerCck, 4, false);
430 ath9k_hw_get_legacy_target_powers(ah, chan,
431 pEepData->calTargetPower2G,
432 AR5416_NUM_2G_20_TARGET_POWERS,
433 &targetPowerOfdm, 4, false);
434 ath9k_hw_get_target_powers(ah, chan,
435 pEepData->calTargetPower2GHT20,
436 AR5416_NUM_2G_20_TARGET_POWERS,
437 &targetPowerHt20, 8, false);
439 if (IS_CHAN_HT40(chan)) {
440 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
441 ath9k_hw_get_target_powers(ah, chan,
442 pEepData->calTargetPower2GHT40,
443 AR5416_NUM_2G_40_TARGET_POWERS,
444 &targetPowerHt40, 8, true);
445 ath9k_hw_get_legacy_target_powers(ah, chan,
446 pEepData->calTargetPowerCck,
447 AR5416_NUM_2G_CCK_TARGET_POWERS,
448 &targetPowerCckExt, 4, true);
449 ath9k_hw_get_legacy_target_powers(ah, chan,
450 pEepData->calTargetPower2G,
451 AR5416_NUM_2G_20_TARGET_POWERS,
452 &targetPowerOfdmExt, 4, true);
455 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
456 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
457 (pCtlMode[ctlMode] == CTL_2GHT40);
459 if (isHt40CtlMode)
460 freq = centers.synth_center;
461 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
462 freq = centers.ext_center;
463 else
464 freq = centers.ctl_center;
466 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
467 ah->eep_ops->get_eeprom_rev(ah) <= 2)
468 twiceMaxEdgePower = MAX_RATE_POWER;
470 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
471 pEepData->ctlIndex[i]; i++) {
473 if (CMP_TEST_GRP) {
474 rep = &(pEepData->ctlData[i]);
476 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
477 freq,
478 rep->ctlEdges[
479 ar5416_get_ntxchains(ah->txchainmask) - 1],
480 IS_CHAN_2GHZ(chan),
481 AR5416_EEP4K_NUM_BAND_EDGES);
483 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
484 twiceMaxEdgePower =
485 min(twiceMaxEdgePower,
486 twiceMinEdgePower);
487 } else {
488 twiceMaxEdgePower = twiceMinEdgePower;
489 break;
494 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
496 switch (pCtlMode[ctlMode]) {
497 case CTL_11B:
498 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
499 targetPowerCck.tPow2x[i] =
500 min((u16)targetPowerCck.tPow2x[i],
501 minCtlPower);
503 break;
504 case CTL_11G:
505 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
506 targetPowerOfdm.tPow2x[i] =
507 min((u16)targetPowerOfdm.tPow2x[i],
508 minCtlPower);
510 break;
511 case CTL_2GHT20:
512 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
513 targetPowerHt20.tPow2x[i] =
514 min((u16)targetPowerHt20.tPow2x[i],
515 minCtlPower);
517 break;
518 case CTL_11B_EXT:
519 targetPowerCckExt.tPow2x[0] =
520 min((u16)targetPowerCckExt.tPow2x[0],
521 minCtlPower);
522 break;
523 case CTL_11G_EXT:
524 targetPowerOfdmExt.tPow2x[0] =
525 min((u16)targetPowerOfdmExt.tPow2x[0],
526 minCtlPower);
527 break;
528 case CTL_2GHT40:
529 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
530 targetPowerHt40.tPow2x[i] =
531 min((u16)targetPowerHt40.tPow2x[i],
532 minCtlPower);
534 break;
535 default:
536 break;
540 ratesArray[rate6mb] =
541 ratesArray[rate9mb] =
542 ratesArray[rate12mb] =
543 ratesArray[rate18mb] =
544 ratesArray[rate24mb] =
545 targetPowerOfdm.tPow2x[0];
547 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
548 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
549 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
550 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
552 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
553 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
555 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
556 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
557 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
558 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
560 if (IS_CHAN_HT40(chan)) {
561 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
562 ratesArray[rateHt40_0 + i] =
563 targetPowerHt40.tPow2x[i];
565 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
566 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
567 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
568 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
571 #undef CMP_TEST_GRP
574 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
575 struct ath9k_channel *chan,
576 u16 cfgCtl,
577 u8 twiceAntennaReduction,
578 u8 twiceMaxRegulatoryPower,
579 u8 powerLimit, bool test)
581 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
582 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
583 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
584 int16_t ratesArray[Ar5416RateSize];
585 int16_t txPowerIndexOffset = 0;
586 u8 ht40PowerIncForPdadc = 2;
587 int i;
589 memset(ratesArray, 0, sizeof(ratesArray));
591 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
592 AR5416_EEP_MINOR_VER_2) {
593 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
596 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
597 &ratesArray[0], cfgCtl,
598 twiceAntennaReduction,
599 twiceMaxRegulatoryPower,
600 powerLimit);
602 ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
604 regulatory->max_power_level = 0;
605 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
606 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
607 if (ratesArray[i] > MAX_RATE_POWER)
608 ratesArray[i] = MAX_RATE_POWER;
610 if (ratesArray[i] > regulatory->max_power_level)
611 regulatory->max_power_level = ratesArray[i];
614 if (test)
615 return;
617 /* Update regulatory */
618 i = rate6mb;
619 if (IS_CHAN_HT40(chan))
620 i = rateHt40_0;
621 else if (IS_CHAN_HT20(chan))
622 i = rateHt20_0;
624 regulatory->max_power_level = ratesArray[i];
626 if (AR_SREV_9280_20_OR_LATER(ah)) {
627 for (i = 0; i < Ar5416RateSize; i++)
628 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
631 ENABLE_REGWRITE_BUFFER(ah);
633 /* OFDM power per rate */
634 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
635 ATH9K_POW_SM(ratesArray[rate18mb], 24)
636 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
637 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
638 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
639 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
640 ATH9K_POW_SM(ratesArray[rate54mb], 24)
641 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
642 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
643 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
645 /* CCK power per rate */
646 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
647 ATH9K_POW_SM(ratesArray[rate2s], 24)
648 | ATH9K_POW_SM(ratesArray[rate2l], 16)
649 | ATH9K_POW_SM(ratesArray[rateXr], 8)
650 | ATH9K_POW_SM(ratesArray[rate1l], 0));
651 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
652 ATH9K_POW_SM(ratesArray[rate11s], 24)
653 | ATH9K_POW_SM(ratesArray[rate11l], 16)
654 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
655 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
657 /* HT20 power per rate */
658 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
659 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
660 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
661 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
662 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
663 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
664 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
665 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
666 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
667 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
669 /* HT40 power per rate */
670 if (IS_CHAN_HT40(chan)) {
671 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
672 ATH9K_POW_SM(ratesArray[rateHt40_3] +
673 ht40PowerIncForPdadc, 24)
674 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
675 ht40PowerIncForPdadc, 16)
676 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
677 ht40PowerIncForPdadc, 8)
678 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
679 ht40PowerIncForPdadc, 0));
680 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
681 ATH9K_POW_SM(ratesArray[rateHt40_7] +
682 ht40PowerIncForPdadc, 24)
683 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
684 ht40PowerIncForPdadc, 16)
685 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
686 ht40PowerIncForPdadc, 8)
687 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
688 ht40PowerIncForPdadc, 0));
689 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
690 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
691 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
692 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
693 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
696 REGWRITE_BUFFER_FLUSH(ah);
699 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
700 struct ath9k_channel *chan)
702 struct modal_eep_4k_header *pModal;
703 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
704 u8 biaslevel;
706 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
707 return;
709 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
710 return;
712 pModal = &eep->modalHeader;
714 if (pModal->xpaBiasLvl != 0xff) {
715 biaslevel = pModal->xpaBiasLvl;
716 INI_RA(&ah->iniAddac, 7, 1) =
717 (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
721 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
722 struct modal_eep_4k_header *pModal,
723 struct ar5416_eeprom_4k *eep,
724 u8 txRxAttenLocal)
726 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
727 pModal->antCtrlChain[0]);
729 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
730 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
731 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
732 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
733 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
734 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
736 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
737 AR5416_EEP_MINOR_VER_3) {
738 txRxAttenLocal = pModal->txRxAttenCh[0];
740 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
741 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
742 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
743 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
744 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
745 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
746 pModal->xatten2Margin[0]);
747 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
748 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
750 /* Set the block 1 value to block 0 value */
751 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
752 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
753 pModal->bswMargin[0]);
754 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
755 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
756 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
757 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
758 pModal->xatten2Margin[0]);
759 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
760 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
761 pModal->xatten2Db[0]);
764 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
765 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
766 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
767 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
769 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
770 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
771 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
772 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
776 * Read EEPROM header info and program the device for correct operation
777 * given the channel value.
779 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
780 struct ath9k_channel *chan)
782 struct modal_eep_4k_header *pModal;
783 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
784 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
785 u8 txRxAttenLocal;
786 u8 ob[5], db1[5], db2[5];
787 u8 ant_div_control1, ant_div_control2;
788 u32 regVal;
790 pModal = &eep->modalHeader;
791 txRxAttenLocal = 23;
793 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
795 /* Single chain for 4K EEPROM*/
796 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
798 /* Initialize Ant Diversity settings from EEPROM */
799 if (pModal->version >= 3) {
800 ant_div_control1 = pModal->antdiv_ctl1;
801 ant_div_control2 = pModal->antdiv_ctl2;
803 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
804 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
806 regVal |= SM(ant_div_control1,
807 AR_PHY_9285_ANT_DIV_CTL);
808 regVal |= SM(ant_div_control2,
809 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
810 regVal |= SM((ant_div_control2 >> 2),
811 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
812 regVal |= SM((ant_div_control1 >> 1),
813 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
814 regVal |= SM((ant_div_control1 >> 2),
815 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
818 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
819 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
820 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
821 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
822 regVal |= SM((ant_div_control1 >> 3),
823 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
825 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
826 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
829 if (pModal->version >= 2) {
830 ob[0] = pModal->ob_0;
831 ob[1] = pModal->ob_1;
832 ob[2] = pModal->ob_2;
833 ob[3] = pModal->ob_3;
834 ob[4] = pModal->ob_4;
836 db1[0] = pModal->db1_0;
837 db1[1] = pModal->db1_1;
838 db1[2] = pModal->db1_2;
839 db1[3] = pModal->db1_3;
840 db1[4] = pModal->db1_4;
842 db2[0] = pModal->db2_0;
843 db2[1] = pModal->db2_1;
844 db2[2] = pModal->db2_2;
845 db2[3] = pModal->db2_3;
846 db2[4] = pModal->db2_4;
847 } else if (pModal->version == 1) {
848 ob[0] = pModal->ob_0;
849 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
850 db1[0] = pModal->db1_0;
851 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
852 db2[0] = pModal->db2_0;
853 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
854 } else {
855 int i;
857 for (i = 0; i < 5; i++) {
858 ob[i] = pModal->ob_0;
859 db1[i] = pModal->db1_0;
860 db2[i] = pModal->db1_0;
864 if (AR_SREV_9271(ah)) {
865 ath9k_hw_analog_shift_rmw(ah,
866 AR9285_AN_RF2G3,
867 AR9271_AN_RF2G3_OB_cck,
868 AR9271_AN_RF2G3_OB_cck_S,
869 ob[0]);
870 ath9k_hw_analog_shift_rmw(ah,
871 AR9285_AN_RF2G3,
872 AR9271_AN_RF2G3_OB_psk,
873 AR9271_AN_RF2G3_OB_psk_S,
874 ob[1]);
875 ath9k_hw_analog_shift_rmw(ah,
876 AR9285_AN_RF2G3,
877 AR9271_AN_RF2G3_OB_qam,
878 AR9271_AN_RF2G3_OB_qam_S,
879 ob[2]);
880 ath9k_hw_analog_shift_rmw(ah,
881 AR9285_AN_RF2G3,
882 AR9271_AN_RF2G3_DB_1,
883 AR9271_AN_RF2G3_DB_1_S,
884 db1[0]);
885 ath9k_hw_analog_shift_rmw(ah,
886 AR9285_AN_RF2G4,
887 AR9271_AN_RF2G4_DB_2,
888 AR9271_AN_RF2G4_DB_2_S,
889 db2[0]);
890 } else {
891 ath9k_hw_analog_shift_rmw(ah,
892 AR9285_AN_RF2G3,
893 AR9285_AN_RF2G3_OB_0,
894 AR9285_AN_RF2G3_OB_0_S,
895 ob[0]);
896 ath9k_hw_analog_shift_rmw(ah,
897 AR9285_AN_RF2G3,
898 AR9285_AN_RF2G3_OB_1,
899 AR9285_AN_RF2G3_OB_1_S,
900 ob[1]);
901 ath9k_hw_analog_shift_rmw(ah,
902 AR9285_AN_RF2G3,
903 AR9285_AN_RF2G3_OB_2,
904 AR9285_AN_RF2G3_OB_2_S,
905 ob[2]);
906 ath9k_hw_analog_shift_rmw(ah,
907 AR9285_AN_RF2G3,
908 AR9285_AN_RF2G3_OB_3,
909 AR9285_AN_RF2G3_OB_3_S,
910 ob[3]);
911 ath9k_hw_analog_shift_rmw(ah,
912 AR9285_AN_RF2G3,
913 AR9285_AN_RF2G3_OB_4,
914 AR9285_AN_RF2G3_OB_4_S,
915 ob[4]);
917 ath9k_hw_analog_shift_rmw(ah,
918 AR9285_AN_RF2G3,
919 AR9285_AN_RF2G3_DB1_0,
920 AR9285_AN_RF2G3_DB1_0_S,
921 db1[0]);
922 ath9k_hw_analog_shift_rmw(ah,
923 AR9285_AN_RF2G3,
924 AR9285_AN_RF2G3_DB1_1,
925 AR9285_AN_RF2G3_DB1_1_S,
926 db1[1]);
927 ath9k_hw_analog_shift_rmw(ah,
928 AR9285_AN_RF2G3,
929 AR9285_AN_RF2G3_DB1_2,
930 AR9285_AN_RF2G3_DB1_2_S,
931 db1[2]);
932 ath9k_hw_analog_shift_rmw(ah,
933 AR9285_AN_RF2G4,
934 AR9285_AN_RF2G4_DB1_3,
935 AR9285_AN_RF2G4_DB1_3_S,
936 db1[3]);
937 ath9k_hw_analog_shift_rmw(ah,
938 AR9285_AN_RF2G4,
939 AR9285_AN_RF2G4_DB1_4,
940 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
942 ath9k_hw_analog_shift_rmw(ah,
943 AR9285_AN_RF2G4,
944 AR9285_AN_RF2G4_DB2_0,
945 AR9285_AN_RF2G4_DB2_0_S,
946 db2[0]);
947 ath9k_hw_analog_shift_rmw(ah,
948 AR9285_AN_RF2G4,
949 AR9285_AN_RF2G4_DB2_1,
950 AR9285_AN_RF2G4_DB2_1_S,
951 db2[1]);
952 ath9k_hw_analog_shift_rmw(ah,
953 AR9285_AN_RF2G4,
954 AR9285_AN_RF2G4_DB2_2,
955 AR9285_AN_RF2G4_DB2_2_S,
956 db2[2]);
957 ath9k_hw_analog_shift_rmw(ah,
958 AR9285_AN_RF2G4,
959 AR9285_AN_RF2G4_DB2_3,
960 AR9285_AN_RF2G4_DB2_3_S,
961 db2[3]);
962 ath9k_hw_analog_shift_rmw(ah,
963 AR9285_AN_RF2G4,
964 AR9285_AN_RF2G4_DB2_4,
965 AR9285_AN_RF2G4_DB2_4_S,
966 db2[4]);
970 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
971 pModal->switchSettling);
972 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
973 pModal->adcDesiredSize);
975 REG_WRITE(ah, AR_PHY_RF_CTL4,
976 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
977 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
978 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
979 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
981 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
982 pModal->txEndToRxOn);
984 if (AR_SREV_9271_10(ah))
985 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
986 pModal->txEndToRxOn);
987 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
988 pModal->thresh62);
989 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
990 pModal->thresh62);
992 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
993 AR5416_EEP_MINOR_VER_2) {
994 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
995 pModal->txFrameToDataStart);
996 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
997 pModal->txFrameToPaOn);
1000 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1001 AR5416_EEP_MINOR_VER_3) {
1002 if (IS_CHAN_HT40(chan))
1003 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1004 AR_PHY_SETTLING_SWITCH,
1005 pModal->swSettleHt40);
1007 if (AR_SREV_9271(ah) || AR_SREV_9285(ah)) {
1008 u8 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1009 EEP_4K_BB_DESIRED_SCALE_MASK);
1010 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1011 u32 pwrctrl, mask, clr;
1013 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1014 pwrctrl = mask * bb_desired_scale;
1015 clr = mask * 0x1f;
1016 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1017 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1018 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1020 mask = BIT(0)|BIT(5)|BIT(15);
1021 pwrctrl = mask * bb_desired_scale;
1022 clr = mask * 0x1f;
1023 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1025 mask = BIT(0)|BIT(5);
1026 pwrctrl = mask * bb_desired_scale;
1027 clr = mask * 0x1f;
1028 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1029 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1034 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1036 #define EEP_MAP4K_SPURCHAN \
1037 (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1038 struct ath_common *common = ath9k_hw_common(ah);
1040 u16 spur_val = AR_NO_SPUR;
1042 ath_dbg(common, ATH_DBG_ANI,
1043 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1044 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1046 switch (ah->config.spurmode) {
1047 case SPUR_DISABLE:
1048 break;
1049 case SPUR_ENABLE_IOCTL:
1050 spur_val = ah->config.spurchans[i][is2GHz];
1051 ath_dbg(common, ATH_DBG_ANI,
1052 "Getting spur val from new loc. %d\n", spur_val);
1053 break;
1054 case SPUR_ENABLE_EEPROM:
1055 spur_val = EEP_MAP4K_SPURCHAN;
1056 break;
1059 return spur_val;
1061 #undef EEP_MAP4K_SPURCHAN
1064 const struct eeprom_ops eep_4k_ops = {
1065 .check_eeprom = ath9k_hw_4k_check_eeprom,
1066 .get_eeprom = ath9k_hw_4k_get_eeprom,
1067 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1068 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1069 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1070 .set_board_values = ath9k_hw_4k_set_board_values,
1071 .set_addac = ath9k_hw_4k_set_addac,
1072 .set_txpower = ath9k_hw_4k_set_txpower,
1073 .get_spur_channel = ath9k_hw_4k_get_spur_channel