1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name
[] = "e1000e";
51 const char e1000e_driver_version
[] = DRV_VERSION
;
53 static const struct e1000_info
*e1000_info_tbl
[] = {
54 [board_82571
] = &e1000_82571_info
,
55 [board_82572
] = &e1000_82572_info
,
56 [board_82573
] = &e1000_82573_info
,
57 [board_80003es2lan
] = &e1000_es2_info
,
58 [board_ich8lan
] = &e1000_ich8_info
,
59 [board_ich9lan
] = &e1000_ich9_info
,
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
67 char *e1000e_get_hw_dev_name(struct e1000_hw
*hw
)
69 return hw
->adapter
->netdev
->name
;
74 * e1000_desc_unused - calculate if we have unused descriptors
76 static int e1000_desc_unused(struct e1000_ring
*ring
)
78 if (ring
->next_to_clean
> ring
->next_to_use
)
79 return ring
->next_to_clean
- ring
->next_to_use
- 1;
81 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
85 * e1000_receive_skb - helper function to handle rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
91 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
92 struct net_device
*netdev
,
94 u8 status
, __le16 vlan
)
96 skb
->protocol
= eth_type_trans(skb
, netdev
);
98 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
99 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
101 E1000_RXD_SPC_VLAN_MASK
);
103 netif_receive_skb(skb
);
105 netdev
->last_rx
= jiffies
;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
116 u32 csum
, struct sk_buff
*skb
)
118 u16 status
= (u16
)status_err
;
119 u8 errors
= (u8
)(status_err
>> 24);
120 skb
->ip_summed
= CHECKSUM_NONE
;
122 /* Ignore Checksum bit is set */
123 if (status
& E1000_RXD_STAT_IXSM
)
125 /* TCP/UDP checksum error bit is set */
126 if (errors
& E1000_RXD_ERR_TCPE
) {
127 /* let the stack verify checksum errors */
128 adapter
->hw_csum_err
++;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status
& E1000_RXD_STAT_TCPCS
) {
138 /* TCP checksum is good */
139 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
141 /* IP fragment with UDP payload */
142 /* Hardware complements the payload checksum, so we undo it
143 * and then put the value in host order for further stack use.
145 __sum16 sum
= (__force __sum16
)htons(csum
);
146 skb
->csum
= csum_unfold(~sum
);
147 skb
->ip_summed
= CHECKSUM_COMPLETE
;
149 adapter
->hw_csum_good
++;
153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154 * @adapter: address of board private structure
156 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
159 struct net_device
*netdev
= adapter
->netdev
;
160 struct pci_dev
*pdev
= adapter
->pdev
;
161 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
162 struct e1000_rx_desc
*rx_desc
;
163 struct e1000_buffer
*buffer_info
;
166 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
168 i
= rx_ring
->next_to_use
;
169 buffer_info
= &rx_ring
->buffer_info
[i
];
171 while (cleaned_count
--) {
172 skb
= buffer_info
->skb
;
178 skb
= netdev_alloc_skb(netdev
, bufsz
);
180 /* Better luck next round */
181 adapter
->alloc_rx_buff_failed
++;
185 /* Make buffer alignment 2 beyond a 16 byte boundary
186 * this will result in a 16 byte aligned IP header after
187 * the 14 byte MAC header is removed
189 skb_reserve(skb
, NET_IP_ALIGN
);
191 buffer_info
->skb
= skb
;
193 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
194 adapter
->rx_buffer_len
,
196 if (pci_dma_mapping_error(buffer_info
->dma
)) {
197 dev_err(&pdev
->dev
, "RX DMA map failed\n");
198 adapter
->rx_dma_failed
++;
202 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
203 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
206 if (i
== rx_ring
->count
)
208 buffer_info
= &rx_ring
->buffer_info
[i
];
211 if (rx_ring
->next_to_use
!= i
) {
212 rx_ring
->next_to_use
= i
;
214 i
= (rx_ring
->count
- 1);
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
221 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227 * @adapter: address of board private structure
229 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
232 struct net_device
*netdev
= adapter
->netdev
;
233 struct pci_dev
*pdev
= adapter
->pdev
;
234 union e1000_rx_desc_packet_split
*rx_desc
;
235 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
236 struct e1000_buffer
*buffer_info
;
237 struct e1000_ps_page
*ps_page
;
241 i
= rx_ring
->next_to_use
;
242 buffer_info
= &rx_ring
->buffer_info
[i
];
244 while (cleaned_count
--) {
245 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
247 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
248 ps_page
= &buffer_info
->ps_pages
[j
];
249 if (j
>= adapter
->rx_ps_pages
) {
250 /* all unused desc entries get hw null ptr */
251 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
254 if (!ps_page
->page
) {
255 ps_page
->page
= alloc_page(GFP_ATOMIC
);
256 if (!ps_page
->page
) {
257 adapter
->alloc_rx_buff_failed
++;
260 ps_page
->dma
= pci_map_page(pdev
,
264 if (pci_dma_mapping_error(ps_page
->dma
)) {
265 dev_err(&adapter
->pdev
->dev
,
266 "RX DMA page map failed\n");
267 adapter
->rx_dma_failed
++;
272 * Refresh the desc even if buffer_addrs
273 * didn't change because each write-back
276 rx_desc
->read
.buffer_addr
[j
+1] =
277 cpu_to_le64(ps_page
->dma
);
280 skb
= netdev_alloc_skb(netdev
,
281 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
284 adapter
->alloc_rx_buff_failed
++;
288 /* Make buffer alignment 2 beyond a 16 byte boundary
289 * this will result in a 16 byte aligned IP header after
290 * the 14 byte MAC header is removed
292 skb_reserve(skb
, NET_IP_ALIGN
);
294 buffer_info
->skb
= skb
;
295 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
296 adapter
->rx_ps_bsize0
,
298 if (pci_dma_mapping_error(buffer_info
->dma
)) {
299 dev_err(&pdev
->dev
, "RX DMA map failed\n");
300 adapter
->rx_dma_failed
++;
302 dev_kfree_skb_any(skb
);
303 buffer_info
->skb
= NULL
;
307 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
310 if (i
== rx_ring
->count
)
312 buffer_info
= &rx_ring
->buffer_info
[i
];
316 if (rx_ring
->next_to_use
!= i
) {
317 rx_ring
->next_to_use
= i
;
320 i
= (rx_ring
->count
- 1);
322 /* Force memory writes to complete before letting h/w
323 * know there are new descriptors to fetch. (Only
324 * applicable for weak-ordered memory model archs,
327 /* Hardware increments by 16 bytes, but packet split
328 * descriptors are 32 bytes...so we increment tail
331 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
336 * e1000_clean_rx_irq - Send received data up the network stack; legacy
337 * @adapter: board private structure
339 * the return value indicates whether actual cleaning was done, there
340 * is no guarantee that everything was cleaned
342 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
343 int *work_done
, int work_to_do
)
345 struct net_device
*netdev
= adapter
->netdev
;
346 struct pci_dev
*pdev
= adapter
->pdev
;
347 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
348 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
349 struct e1000_buffer
*buffer_info
, *next_buffer
;
352 int cleaned_count
= 0;
354 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
356 i
= rx_ring
->next_to_clean
;
357 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
358 buffer_info
= &rx_ring
->buffer_info
[i
];
360 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
364 if (*work_done
>= work_to_do
)
368 status
= rx_desc
->status
;
369 skb
= buffer_info
->skb
;
370 buffer_info
->skb
= NULL
;
372 prefetch(skb
->data
- NET_IP_ALIGN
);
375 if (i
== rx_ring
->count
)
377 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
380 next_buffer
= &rx_ring
->buffer_info
[i
];
384 pci_unmap_single(pdev
,
386 adapter
->rx_buffer_len
,
388 buffer_info
->dma
= 0;
390 length
= le16_to_cpu(rx_desc
->length
);
392 /* !EOP means multiple descriptors were used to store a single
393 * packet, also make sure the frame isn't just CRC only */
394 if (!(status
& E1000_RXD_STAT_EOP
) || (length
<= 4)) {
395 /* All receives must fit into a single buffer */
396 ndev_dbg(netdev
, "%s: Receive packet consumed "
397 "multiple buffers\n", netdev
->name
);
399 buffer_info
->skb
= skb
;
403 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
405 buffer_info
->skb
= skb
;
409 total_rx_bytes
+= length
;
412 /* code added for copybreak, this should improve
413 * performance for small packets with large amounts
414 * of reassembly being done in the stack */
415 if (length
< copybreak
) {
416 struct sk_buff
*new_skb
=
417 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
419 skb_reserve(new_skb
, NET_IP_ALIGN
);
420 memcpy(new_skb
->data
- NET_IP_ALIGN
,
421 skb
->data
- NET_IP_ALIGN
,
422 length
+ NET_IP_ALIGN
);
423 /* save the skb in buffer_info as good */
424 buffer_info
->skb
= skb
;
427 /* else just continue with the old one */
429 /* end copybreak code */
430 skb_put(skb
, length
);
432 /* Receive Checksum Offload */
433 e1000_rx_checksum(adapter
,
435 ((u32
)(rx_desc
->errors
) << 24),
436 le16_to_cpu(rx_desc
->csum
), skb
);
438 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
443 /* return some buffers to hardware, one at a time is too slow */
444 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
445 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
449 /* use prefetched values */
451 buffer_info
= next_buffer
;
453 rx_ring
->next_to_clean
= i
;
455 cleaned_count
= e1000_desc_unused(rx_ring
);
457 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
459 adapter
->total_rx_packets
+= total_rx_packets
;
460 adapter
->total_rx_bytes
+= total_rx_bytes
;
461 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
462 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
466 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
467 struct e1000_buffer
*buffer_info
)
469 if (buffer_info
->dma
) {
470 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
471 buffer_info
->length
, PCI_DMA_TODEVICE
);
472 buffer_info
->dma
= 0;
474 if (buffer_info
->skb
) {
475 dev_kfree_skb_any(buffer_info
->skb
);
476 buffer_info
->skb
= NULL
;
480 static void e1000_print_tx_hang(struct e1000_adapter
*adapter
)
482 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
483 unsigned int i
= tx_ring
->next_to_clean
;
484 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
485 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
486 struct net_device
*netdev
= adapter
->netdev
;
488 /* detected Tx unit hang */
490 "Detected Tx Unit Hang:\n"
493 " next_to_use <%x>\n"
494 " next_to_clean <%x>\n"
495 "buffer_info[next_to_clean]:\n"
496 " time_stamp <%lx>\n"
497 " next_to_watch <%x>\n"
499 " next_to_watch.status <%x>\n",
500 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
501 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
502 tx_ring
->next_to_use
,
503 tx_ring
->next_to_clean
,
504 tx_ring
->buffer_info
[eop
].time_stamp
,
507 eop_desc
->upper
.fields
.status
);
511 * e1000_clean_tx_irq - Reclaim resources after transmit completes
512 * @adapter: board private structure
514 * the return value indicates whether actual cleaning was done, there
515 * is no guarantee that everything was cleaned
517 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
519 struct net_device
*netdev
= adapter
->netdev
;
520 struct e1000_hw
*hw
= &adapter
->hw
;
521 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
522 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
523 struct e1000_buffer
*buffer_info
;
525 unsigned int count
= 0;
527 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
529 i
= tx_ring
->next_to_clean
;
530 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
531 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
533 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
534 for (cleaned
= 0; !cleaned
; ) {
535 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
536 buffer_info
= &tx_ring
->buffer_info
[i
];
537 cleaned
= (i
== eop
);
540 struct sk_buff
*skb
= buffer_info
->skb
;
541 unsigned int segs
, bytecount
;
542 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
543 /* multiply data chunks by size of headers */
544 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
546 total_tx_packets
+= segs
;
547 total_tx_bytes
+= bytecount
;
550 e1000_put_txbuf(adapter
, buffer_info
);
551 tx_desc
->upper
.data
= 0;
554 if (i
== tx_ring
->count
)
558 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
559 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
560 #define E1000_TX_WEIGHT 64
561 /* weight of a sort for tx, to avoid endless transmit cleanup */
562 if (count
++ == E1000_TX_WEIGHT
)
566 tx_ring
->next_to_clean
= i
;
568 #define TX_WAKE_THRESHOLD 32
569 if (cleaned
&& netif_carrier_ok(netdev
) &&
570 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
571 /* Make sure that anybody stopping the queue after this
572 * sees the new next_to_clean.
576 if (netif_queue_stopped(netdev
) &&
577 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
578 netif_wake_queue(netdev
);
579 ++adapter
->restart_queue
;
583 if (adapter
->detect_tx_hung
) {
584 /* Detect a transmit hang in hardware, this serializes the
585 * check with the clearing of time_stamp and movement of i */
586 adapter
->detect_tx_hung
= 0;
587 if (tx_ring
->buffer_info
[eop
].dma
&&
588 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
589 + (adapter
->tx_timeout_factor
* HZ
))
591 E1000_STATUS_TXOFF
)) {
592 e1000_print_tx_hang(adapter
);
593 netif_stop_queue(netdev
);
596 adapter
->total_tx_bytes
+= total_tx_bytes
;
597 adapter
->total_tx_packets
+= total_tx_packets
;
598 adapter
->net_stats
.tx_packets
+= total_tx_packets
;
599 adapter
->net_stats
.tx_bytes
+= total_tx_bytes
;
604 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
605 * @adapter: board private structure
607 * the return value indicates whether actual cleaning was done, there
608 * is no guarantee that everything was cleaned
610 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
611 int *work_done
, int work_to_do
)
613 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
614 struct net_device
*netdev
= adapter
->netdev
;
615 struct pci_dev
*pdev
= adapter
->pdev
;
616 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
617 struct e1000_buffer
*buffer_info
, *next_buffer
;
618 struct e1000_ps_page
*ps_page
;
622 int cleaned_count
= 0;
624 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
626 i
= rx_ring
->next_to_clean
;
627 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
628 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
629 buffer_info
= &rx_ring
->buffer_info
[i
];
631 while (staterr
& E1000_RXD_STAT_DD
) {
632 if (*work_done
>= work_to_do
)
635 skb
= buffer_info
->skb
;
637 /* in the packet split case this is header only */
638 prefetch(skb
->data
- NET_IP_ALIGN
);
641 if (i
== rx_ring
->count
)
643 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
646 next_buffer
= &rx_ring
->buffer_info
[i
];
650 pci_unmap_single(pdev
, buffer_info
->dma
,
651 adapter
->rx_ps_bsize0
,
653 buffer_info
->dma
= 0;
655 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
656 ndev_dbg(netdev
, "%s: Packet Split buffers didn't pick "
657 "up the full packet\n", netdev
->name
);
658 dev_kfree_skb_irq(skb
);
662 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
663 dev_kfree_skb_irq(skb
);
667 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
670 ndev_dbg(netdev
, "%s: Last part of the packet spanning"
671 " multiple descriptors\n", netdev
->name
);
672 dev_kfree_skb_irq(skb
);
677 skb_put(skb
, length
);
680 /* this looks ugly, but it seems compiler issues make it
681 more efficient than reusing j */
682 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
684 /* page alloc/put takes too long and effects small packet
685 * throughput, so unsplit small packets and save the alloc/put*/
686 if (l1
&& (l1
<= copybreak
) &&
687 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
690 ps_page
= &buffer_info
->ps_pages
[0];
692 /* there is no documentation about how to call
693 * kmap_atomic, so we can't hold the mapping
695 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
696 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
697 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
698 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
699 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
700 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
701 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
708 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
709 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
713 ps_page
= &buffer_info
->ps_pages
[j
];
714 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
717 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
718 ps_page
->page
= NULL
;
720 skb
->data_len
+= length
;
721 skb
->truesize
+= length
;
725 total_rx_bytes
+= skb
->len
;
728 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
729 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
731 if (rx_desc
->wb
.upper
.header_status
&
732 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
733 adapter
->rx_hdr_split
++;
735 e1000_receive_skb(adapter
, netdev
, skb
,
736 staterr
, rx_desc
->wb
.middle
.vlan
);
739 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
740 buffer_info
->skb
= NULL
;
742 /* return some buffers to hardware, one at a time is too slow */
743 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
744 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
748 /* use prefetched values */
750 buffer_info
= next_buffer
;
752 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
754 rx_ring
->next_to_clean
= i
;
756 cleaned_count
= e1000_desc_unused(rx_ring
);
758 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
760 adapter
->total_rx_packets
+= total_rx_packets
;
761 adapter
->total_rx_bytes
+= total_rx_bytes
;
762 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
763 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
768 * e1000_clean_rx_ring - Free Rx Buffers per Queue
769 * @adapter: board private structure
771 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
773 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
774 struct e1000_buffer
*buffer_info
;
775 struct e1000_ps_page
*ps_page
;
776 struct pci_dev
*pdev
= adapter
->pdev
;
779 /* Free all the Rx ring sk_buffs */
780 for (i
= 0; i
< rx_ring
->count
; i
++) {
781 buffer_info
= &rx_ring
->buffer_info
[i
];
782 if (buffer_info
->dma
) {
783 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
784 pci_unmap_single(pdev
, buffer_info
->dma
,
785 adapter
->rx_buffer_len
,
787 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
788 pci_unmap_single(pdev
, buffer_info
->dma
,
789 adapter
->rx_ps_bsize0
,
791 buffer_info
->dma
= 0;
794 if (buffer_info
->skb
) {
795 dev_kfree_skb(buffer_info
->skb
);
796 buffer_info
->skb
= NULL
;
799 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
800 ps_page
= &buffer_info
->ps_pages
[j
];
803 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
806 put_page(ps_page
->page
);
807 ps_page
->page
= NULL
;
811 /* there also may be some cached data from a chained receive */
812 if (rx_ring
->rx_skb_top
) {
813 dev_kfree_skb(rx_ring
->rx_skb_top
);
814 rx_ring
->rx_skb_top
= NULL
;
817 /* Zero out the descriptor ring */
818 memset(rx_ring
->desc
, 0, rx_ring
->size
);
820 rx_ring
->next_to_clean
= 0;
821 rx_ring
->next_to_use
= 0;
823 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
824 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
828 * e1000_intr_msi - Interrupt Handler
829 * @irq: interrupt number
830 * @data: pointer to a network interface device structure
832 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
834 struct net_device
*netdev
= data
;
835 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
836 struct e1000_hw
*hw
= &adapter
->hw
;
839 /* read ICR disables interrupts using IAM, so keep up with our
840 * enable/disable accounting */
841 atomic_inc(&adapter
->irq_sem
);
843 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
844 hw
->mac
.get_link_status
= 1;
845 /* ICH8 workaround-- Call gig speed drop workaround on cable
846 * disconnect (LSC) before accessing any PHY registers */
847 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
848 (!(er32(STATUS
) & E1000_STATUS_LU
)))
849 e1000e_gig_downshift_workaround_ich8lan(hw
);
851 /* 80003ES2LAN workaround-- For packet buffer work-around on
852 * link down event; disable receives here in the ISR and reset
853 * adapter in watchdog */
854 if (netif_carrier_ok(netdev
) &&
855 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
856 /* disable receives */
857 u32 rctl
= er32(RCTL
);
858 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
860 /* guard against interrupt when we're going down */
861 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
862 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
865 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
866 adapter
->total_tx_bytes
= 0;
867 adapter
->total_tx_packets
= 0;
868 adapter
->total_rx_bytes
= 0;
869 adapter
->total_rx_packets
= 0;
870 __netif_rx_schedule(netdev
, &adapter
->napi
);
872 atomic_dec(&adapter
->irq_sem
);
879 * e1000_intr - Interrupt Handler
880 * @irq: interrupt number
881 * @data: pointer to a network interface device structure
883 static irqreturn_t
e1000_intr(int irq
, void *data
)
885 struct net_device
*netdev
= data
;
886 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
887 struct e1000_hw
*hw
= &adapter
->hw
;
889 u32 rctl
, icr
= er32(ICR
);
891 return IRQ_NONE
; /* Not our interrupt */
893 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
894 * not set, then the adapter didn't send an interrupt */
895 if (!(icr
& E1000_ICR_INT_ASSERTED
))
898 /* Interrupt Auto-Mask...upon reading ICR,
899 * interrupts are masked. No need for the
900 * IMC write, but it does mean we should
901 * account for it ASAP. */
902 atomic_inc(&adapter
->irq_sem
);
904 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
905 hw
->mac
.get_link_status
= 1;
906 /* ICH8 workaround-- Call gig speed drop workaround on cable
907 * disconnect (LSC) before accessing any PHY registers */
908 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
909 (!(er32(STATUS
) & E1000_STATUS_LU
)))
910 e1000e_gig_downshift_workaround_ich8lan(hw
);
912 /* 80003ES2LAN workaround--
913 * For packet buffer work-around on link down event;
914 * disable receives here in the ISR and
915 * reset adapter in watchdog
917 if (netif_carrier_ok(netdev
) &&
918 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
919 /* disable receives */
921 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
923 /* guard against interrupt when we're going down */
924 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
925 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
928 if (netif_rx_schedule_prep(netdev
, &adapter
->napi
)) {
929 adapter
->total_tx_bytes
= 0;
930 adapter
->total_tx_packets
= 0;
931 adapter
->total_rx_bytes
= 0;
932 adapter
->total_rx_packets
= 0;
933 __netif_rx_schedule(netdev
, &adapter
->napi
);
935 atomic_dec(&adapter
->irq_sem
);
941 static int e1000_request_irq(struct e1000_adapter
*adapter
)
943 struct net_device
*netdev
= adapter
->netdev
;
944 irq_handler_t handler
= e1000_intr
;
945 int irq_flags
= IRQF_SHARED
;
948 err
= pci_enable_msi(adapter
->pdev
);
951 "Unable to allocate MSI interrupt Error: %d\n", err
);
953 adapter
->flags
|= FLAG_MSI_ENABLED
;
954 handler
= e1000_intr_msi
;
958 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
961 if (adapter
->flags
& FLAG_MSI_ENABLED
)
962 pci_disable_msi(adapter
->pdev
);
964 "Unable to allocate interrupt Error: %d\n", err
);
970 static void e1000_free_irq(struct e1000_adapter
*adapter
)
972 struct net_device
*netdev
= adapter
->netdev
;
974 free_irq(adapter
->pdev
->irq
, netdev
);
975 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
976 pci_disable_msi(adapter
->pdev
);
977 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
982 * e1000_irq_disable - Mask off interrupt generation on the NIC
984 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
986 struct e1000_hw
*hw
= &adapter
->hw
;
988 atomic_inc(&adapter
->irq_sem
);
991 synchronize_irq(adapter
->pdev
->irq
);
995 * e1000_irq_enable - Enable default interrupt generation settings
997 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
999 struct e1000_hw
*hw
= &adapter
->hw
;
1001 if (atomic_dec_and_test(&adapter
->irq_sem
)) {
1002 ew32(IMS
, IMS_ENABLE_MASK
);
1008 * e1000_get_hw_control - get control of the h/w from f/w
1009 * @adapter: address of board private structure
1011 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1012 * For ASF and Pass Through versions of f/w this means that
1013 * the driver is loaded. For AMT version (only with 82573)
1014 * of the f/w this means that the network i/f is open.
1016 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1018 struct e1000_hw
*hw
= &adapter
->hw
;
1022 /* Let firmware know the driver has taken over */
1023 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1025 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1026 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1027 ctrl_ext
= er32(CTRL_EXT
);
1029 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1034 * e1000_release_hw_control - release control of the h/w to f/w
1035 * @adapter: address of board private structure
1037 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1038 * For ASF and Pass Through versions of f/w this means that the
1039 * driver is no longer loaded. For AMT version (only with 82573) i
1040 * of the f/w this means that the network i/f is closed.
1043 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1045 struct e1000_hw
*hw
= &adapter
->hw
;
1049 /* Let firmware taken over control of h/w */
1050 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1052 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1053 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1054 ctrl_ext
= er32(CTRL_EXT
);
1056 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1060 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
1062 if (adapter
->flags
& FLAG_MNG_PT_ENABLED
) {
1063 struct e1000_hw
*hw
= &adapter
->hw
;
1065 u32 manc
= er32(MANC
);
1067 /* re-enable hardware interception of ARP */
1068 manc
|= E1000_MANC_ARP_EN
;
1069 manc
&= ~E1000_MANC_EN_MNG2HOST
;
1071 /* don't explicitly have to mess with MANC2H since
1072 * MANC has an enable disable that gates MANC2H */
1078 * @e1000_alloc_ring - allocate memory for a ring structure
1080 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1081 struct e1000_ring
*ring
)
1083 struct pci_dev
*pdev
= adapter
->pdev
;
1085 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1094 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1095 * @adapter: board private structure
1097 * Return 0 on success, negative on failure
1099 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1101 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1102 int err
= -ENOMEM
, size
;
1104 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1105 tx_ring
->buffer_info
= vmalloc(size
);
1106 if (!tx_ring
->buffer_info
)
1108 memset(tx_ring
->buffer_info
, 0, size
);
1110 /* round up to nearest 4K */
1111 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1112 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1114 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1118 tx_ring
->next_to_use
= 0;
1119 tx_ring
->next_to_clean
= 0;
1120 spin_lock_init(&adapter
->tx_queue_lock
);
1124 vfree(tx_ring
->buffer_info
);
1125 ndev_err(adapter
->netdev
,
1126 "Unable to allocate memory for the transmit descriptor ring\n");
1131 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1132 * @adapter: board private structure
1134 * Returns 0 on success, negative on failure
1136 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1138 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1139 struct e1000_buffer
*buffer_info
;
1140 int i
, size
, desc_len
, err
= -ENOMEM
;
1142 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1143 rx_ring
->buffer_info
= vmalloc(size
);
1144 if (!rx_ring
->buffer_info
)
1146 memset(rx_ring
->buffer_info
, 0, size
);
1148 for (i
= 0; i
< rx_ring
->count
; i
++) {
1149 buffer_info
= &rx_ring
->buffer_info
[i
];
1150 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
1151 sizeof(struct e1000_ps_page
),
1153 if (!buffer_info
->ps_pages
)
1157 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1159 /* Round up to nearest 4K */
1160 rx_ring
->size
= rx_ring
->count
* desc_len
;
1161 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1163 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1167 rx_ring
->next_to_clean
= 0;
1168 rx_ring
->next_to_use
= 0;
1169 rx_ring
->rx_skb_top
= NULL
;
1174 for (i
= 0; i
< rx_ring
->count
; i
++) {
1175 buffer_info
= &rx_ring
->buffer_info
[i
];
1176 kfree(buffer_info
->ps_pages
);
1179 vfree(rx_ring
->buffer_info
);
1180 ndev_err(adapter
->netdev
,
1181 "Unable to allocate memory for the transmit descriptor ring\n");
1186 * e1000_clean_tx_ring - Free Tx Buffers
1187 * @adapter: board private structure
1189 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1191 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1192 struct e1000_buffer
*buffer_info
;
1196 for (i
= 0; i
< tx_ring
->count
; i
++) {
1197 buffer_info
= &tx_ring
->buffer_info
[i
];
1198 e1000_put_txbuf(adapter
, buffer_info
);
1201 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1202 memset(tx_ring
->buffer_info
, 0, size
);
1204 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1206 tx_ring
->next_to_use
= 0;
1207 tx_ring
->next_to_clean
= 0;
1209 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1210 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1214 * e1000e_free_tx_resources - Free Tx Resources per Queue
1215 * @adapter: board private structure
1217 * Free all transmit software resources
1219 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1221 struct pci_dev
*pdev
= adapter
->pdev
;
1222 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1224 e1000_clean_tx_ring(adapter
);
1226 vfree(tx_ring
->buffer_info
);
1227 tx_ring
->buffer_info
= NULL
;
1229 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1231 tx_ring
->desc
= NULL
;
1235 * e1000e_free_rx_resources - Free Rx Resources
1236 * @adapter: board private structure
1238 * Free all receive software resources
1241 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1243 struct pci_dev
*pdev
= adapter
->pdev
;
1244 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1247 e1000_clean_rx_ring(adapter
);
1249 for (i
= 0; i
< rx_ring
->count
; i
++) {
1250 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
1253 vfree(rx_ring
->buffer_info
);
1254 rx_ring
->buffer_info
= NULL
;
1256 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1258 rx_ring
->desc
= NULL
;
1262 * e1000_update_itr - update the dynamic ITR value based on statistics
1263 * Stores a new ITR value based on packets and byte
1264 * counts during the last interrupt. The advantage of per interrupt
1265 * computation is faster updates and more accurate ITR for the current
1266 * traffic pattern. Constants in this function were computed
1267 * based on theoretical maximum wire speed and thresholds were set based
1268 * on testing data as well as attempting to minimize response time
1269 * while increasing bulk throughput.
1270 * this functionality is controlled by the InterruptThrottleRate module
1271 * parameter (see e1000_param.c)
1272 * @adapter: pointer to adapter
1273 * @itr_setting: current adapter->itr
1274 * @packets: the number of packets during this measurement interval
1275 * @bytes: the number of bytes during this measurement interval
1277 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1278 u16 itr_setting
, int packets
,
1281 unsigned int retval
= itr_setting
;
1284 goto update_itr_done
;
1286 switch (itr_setting
) {
1287 case lowest_latency
:
1288 /* handle TSO and jumbo frames */
1289 if (bytes
/packets
> 8000)
1290 retval
= bulk_latency
;
1291 else if ((packets
< 5) && (bytes
> 512)) {
1292 retval
= low_latency
;
1295 case low_latency
: /* 50 usec aka 20000 ints/s */
1296 if (bytes
> 10000) {
1297 /* this if handles the TSO accounting */
1298 if (bytes
/packets
> 8000) {
1299 retval
= bulk_latency
;
1300 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1301 retval
= bulk_latency
;
1302 } else if ((packets
> 35)) {
1303 retval
= lowest_latency
;
1305 } else if (bytes
/packets
> 2000) {
1306 retval
= bulk_latency
;
1307 } else if (packets
<= 2 && bytes
< 512) {
1308 retval
= lowest_latency
;
1311 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1312 if (bytes
> 25000) {
1314 retval
= low_latency
;
1316 } else if (bytes
< 6000) {
1317 retval
= low_latency
;
1326 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1328 struct e1000_hw
*hw
= &adapter
->hw
;
1330 u32 new_itr
= adapter
->itr
;
1332 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1333 if (adapter
->link_speed
!= SPEED_1000
) {
1339 adapter
->tx_itr
= e1000_update_itr(adapter
,
1341 adapter
->total_tx_packets
,
1342 adapter
->total_tx_bytes
);
1343 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1344 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1345 adapter
->tx_itr
= low_latency
;
1347 adapter
->rx_itr
= e1000_update_itr(adapter
,
1349 adapter
->total_rx_packets
,
1350 adapter
->total_rx_bytes
);
1351 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1352 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1353 adapter
->rx_itr
= low_latency
;
1355 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1357 switch (current_itr
) {
1358 /* counts and packets in update_itr are dependent on these numbers */
1359 case lowest_latency
:
1363 new_itr
= 20000; /* aka hwitr = ~200 */
1373 if (new_itr
!= adapter
->itr
) {
1374 /* this attempts to bias the interrupt rate towards Bulk
1375 * by adding intermediate steps when interrupt rate is
1377 new_itr
= new_itr
> adapter
->itr
?
1378 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1380 adapter
->itr
= new_itr
;
1381 ew32(ITR
, 1000000000 / (new_itr
* 256));
1386 * e1000_clean - NAPI Rx polling callback
1387 * @adapter: board private structure
1389 static int e1000_clean(struct napi_struct
*napi
, int budget
)
1391 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
1392 struct net_device
*poll_dev
= adapter
->netdev
;
1393 int tx_cleaned
= 0, work_done
= 0;
1395 /* Must NOT use netdev_priv macro here. */
1396 adapter
= poll_dev
->priv
;
1398 /* e1000_clean is called per-cpu. This lock protects
1399 * tx_ring from being cleaned by multiple cpus
1400 * simultaneously. A failure obtaining the lock means
1401 * tx_ring is currently being cleaned anyway. */
1402 if (spin_trylock(&adapter
->tx_queue_lock
)) {
1403 tx_cleaned
= e1000_clean_tx_irq(adapter
);
1404 spin_unlock(&adapter
->tx_queue_lock
);
1407 adapter
->clean_rx(adapter
, &work_done
, budget
);
1412 /* If budget not fully consumed, exit the polling mode */
1413 if (work_done
< budget
) {
1414 if (adapter
->itr_setting
& 3)
1415 e1000_set_itr(adapter
);
1416 netif_rx_complete(poll_dev
, napi
);
1417 e1000_irq_enable(adapter
);
1423 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1425 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1426 struct e1000_hw
*hw
= &adapter
->hw
;
1429 /* don't update vlan cookie if already programmed */
1430 if ((adapter
->hw
.mng_cookie
.status
&
1431 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1432 (vid
== adapter
->mng_vlan_id
))
1434 /* add VID to filter table */
1435 index
= (vid
>> 5) & 0x7F;
1436 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1437 vfta
|= (1 << (vid
& 0x1F));
1438 e1000e_write_vfta(hw
, index
, vfta
);
1441 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1443 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1444 struct e1000_hw
*hw
= &adapter
->hw
;
1447 e1000_irq_disable(adapter
);
1448 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1449 e1000_irq_enable(adapter
);
1451 if ((adapter
->hw
.mng_cookie
.status
&
1452 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1453 (vid
== adapter
->mng_vlan_id
)) {
1454 /* release control to f/w */
1455 e1000_release_hw_control(adapter
);
1459 /* remove VID from filter table */
1460 index
= (vid
>> 5) & 0x7F;
1461 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
1462 vfta
&= ~(1 << (vid
& 0x1F));
1463 e1000e_write_vfta(hw
, index
, vfta
);
1466 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
1468 struct net_device
*netdev
= adapter
->netdev
;
1469 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
1470 u16 old_vid
= adapter
->mng_vlan_id
;
1472 if (!adapter
->vlgrp
)
1475 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
1476 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1477 if (adapter
->hw
.mng_cookie
.status
&
1478 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
1479 e1000_vlan_rx_add_vid(netdev
, vid
);
1480 adapter
->mng_vlan_id
= vid
;
1483 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
1485 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
1486 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
1488 adapter
->mng_vlan_id
= vid
;
1493 static void e1000_vlan_rx_register(struct net_device
*netdev
,
1494 struct vlan_group
*grp
)
1496 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1497 struct e1000_hw
*hw
= &adapter
->hw
;
1500 e1000_irq_disable(adapter
);
1501 adapter
->vlgrp
= grp
;
1504 /* enable VLAN tag insert/strip */
1506 ctrl
|= E1000_CTRL_VME
;
1509 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1510 /* enable VLAN receive filtering */
1512 rctl
|= E1000_RCTL_VFE
;
1513 rctl
&= ~E1000_RCTL_CFIEN
;
1515 e1000_update_mng_vlan(adapter
);
1518 /* disable VLAN tag insert/strip */
1520 ctrl
&= ~E1000_CTRL_VME
;
1523 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
1524 /* disable VLAN filtering */
1526 rctl
&= ~E1000_RCTL_VFE
;
1528 if (adapter
->mng_vlan_id
!=
1529 (u16
)E1000_MNG_VLAN_NONE
) {
1530 e1000_vlan_rx_kill_vid(netdev
,
1531 adapter
->mng_vlan_id
);
1532 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1537 e1000_irq_enable(adapter
);
1540 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
1544 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
1546 if (!adapter
->vlgrp
)
1549 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
1550 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1552 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
1556 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
1558 struct e1000_hw
*hw
= &adapter
->hw
;
1561 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
1566 /* disable hardware interception of ARP */
1567 manc
&= ~(E1000_MANC_ARP_EN
);
1569 /* enable receiving management packets to the host. this will probably
1570 * generate destination unreachable messages from the host OS, but
1571 * the packets will be handled on SMBUS */
1572 manc
|= E1000_MANC_EN_MNG2HOST
;
1573 manc2h
= er32(MANC2H
);
1574 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1575 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1576 manc2h
|= E1000_MNG2HOST_PORT_623
;
1577 manc2h
|= E1000_MNG2HOST_PORT_664
;
1578 ew32(MANC2H
, manc2h
);
1583 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1584 * @adapter: board private structure
1586 * Configure the Tx unit of the MAC after a reset.
1588 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1590 struct e1000_hw
*hw
= &adapter
->hw
;
1591 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1593 u32 tdlen
, tctl
, tipg
, tarc
;
1596 /* Setup the HW Tx Head and Tail descriptor pointers */
1597 tdba
= tx_ring
->dma
;
1598 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1599 ew32(TDBAL
, (tdba
& DMA_32BIT_MASK
));
1600 ew32(TDBAH
, (tdba
>> 32));
1604 tx_ring
->head
= E1000_TDH
;
1605 tx_ring
->tail
= E1000_TDT
;
1607 /* Set the default values for the Tx Inter Packet Gap timer */
1608 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
1609 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
1610 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
1612 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
1613 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
1615 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1616 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1619 /* Set the Tx Interrupt Delay register */
1620 ew32(TIDV
, adapter
->tx_int_delay
);
1621 /* tx irq moderation */
1622 ew32(TADV
, adapter
->tx_abs_int_delay
);
1624 /* Program the Transmit Control Register */
1626 tctl
&= ~E1000_TCTL_CT
;
1627 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1628 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1630 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
1632 /* set the speed mode bit, we'll clear it if we're not at
1633 * gigabit link later */
1634 #define SPEED_MODE_BIT (1 << 21)
1635 tarc
|= SPEED_MODE_BIT
;
1639 /* errata: program both queues to unweighted RR */
1640 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
1649 e1000e_config_collision_dist(hw
);
1651 /* Setup Transmit Descriptor Settings for eop descriptor */
1652 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1654 /* only set IDE if we are delaying interrupts using the timers */
1655 if (adapter
->tx_int_delay
)
1656 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1658 /* enable Report Status bit */
1659 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1663 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
1667 * e1000_setup_rctl - configure the receive control registers
1668 * @adapter: Board private structure
1670 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1671 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1672 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1674 struct e1000_hw
*hw
= &adapter
->hw
;
1679 /* Program MC offset vector base */
1681 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1682 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1683 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1684 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1686 /* Do not Store bad packets */
1687 rctl
&= ~E1000_RCTL_SBP
;
1689 /* Enable Long Packet receive */
1690 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1691 rctl
&= ~E1000_RCTL_LPE
;
1693 rctl
|= E1000_RCTL_LPE
;
1695 /* Setup buffer sizes */
1696 rctl
&= ~E1000_RCTL_SZ_4096
;
1697 rctl
|= E1000_RCTL_BSEX
;
1698 switch (adapter
->rx_buffer_len
) {
1700 rctl
|= E1000_RCTL_SZ_256
;
1701 rctl
&= ~E1000_RCTL_BSEX
;
1704 rctl
|= E1000_RCTL_SZ_512
;
1705 rctl
&= ~E1000_RCTL_BSEX
;
1708 rctl
|= E1000_RCTL_SZ_1024
;
1709 rctl
&= ~E1000_RCTL_BSEX
;
1713 rctl
|= E1000_RCTL_SZ_2048
;
1714 rctl
&= ~E1000_RCTL_BSEX
;
1717 rctl
|= E1000_RCTL_SZ_4096
;
1720 rctl
|= E1000_RCTL_SZ_8192
;
1723 rctl
|= E1000_RCTL_SZ_16384
;
1728 * 82571 and greater support packet-split where the protocol
1729 * header is placed in skb->data and the packet data is
1730 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1731 * In the case of a non-split, skb->data is linearly filled,
1732 * followed by the page buffers. Therefore, skb->data is
1733 * sized to hold the largest protocol header.
1735 * allocations using alloc_page take too long for regular MTU
1736 * so only enable packet split for jumbo frames
1738 * Using pages when the page size is greater than 16k wastes
1739 * a lot of memory, since we allocate 3 pages at all times
1742 adapter
->rx_ps_pages
= 0;
1743 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1744 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
1745 adapter
->rx_ps_pages
= pages
;
1747 if (adapter
->rx_ps_pages
) {
1748 /* Configure extra packet-split registers */
1749 rfctl
= er32(RFCTL
);
1750 rfctl
|= E1000_RFCTL_EXTEN
;
1751 /* disable packet split support for IPv6 extension headers,
1752 * because some malformed IPv6 headers can hang the RX */
1753 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
1754 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1758 /* Enable Packet split descriptors */
1759 rctl
|= E1000_RCTL_DTYP_PS
;
1761 /* Enable hardware CRC frame stripping */
1762 rctl
|= E1000_RCTL_SECRC
;
1764 psrctl
|= adapter
->rx_ps_bsize0
>>
1765 E1000_PSRCTL_BSIZE0_SHIFT
;
1767 switch (adapter
->rx_ps_pages
) {
1769 psrctl
|= PAGE_SIZE
<<
1770 E1000_PSRCTL_BSIZE3_SHIFT
;
1772 psrctl
|= PAGE_SIZE
<<
1773 E1000_PSRCTL_BSIZE2_SHIFT
;
1775 psrctl
|= PAGE_SIZE
>>
1776 E1000_PSRCTL_BSIZE1_SHIFT
;
1780 ew32(PSRCTL
, psrctl
);
1787 * e1000_configure_rx - Configure Receive Unit after Reset
1788 * @adapter: board private structure
1790 * Configure the Rx unit of the MAC after a reset.
1792 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1794 struct e1000_hw
*hw
= &adapter
->hw
;
1795 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1797 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
1799 if (adapter
->rx_ps_pages
) {
1800 /* this is a 32 byte descriptor */
1801 rdlen
= rx_ring
->count
*
1802 sizeof(union e1000_rx_desc_packet_split
);
1803 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
1804 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
1806 rdlen
= rx_ring
->count
*
1807 sizeof(struct e1000_rx_desc
);
1808 adapter
->clean_rx
= e1000_clean_rx_irq
;
1809 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1812 /* disable receives while setting up the descriptors */
1814 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1818 /* set the Receive Delay Timer Register */
1819 ew32(RDTR
, adapter
->rx_int_delay
);
1821 /* irq moderation */
1822 ew32(RADV
, adapter
->rx_abs_int_delay
);
1823 if (adapter
->itr_setting
!= 0)
1825 1000000000 / (adapter
->itr
* 256));
1827 ctrl_ext
= er32(CTRL_EXT
);
1828 /* Reset delay timers after every interrupt */
1829 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
1830 /* Auto-Mask interrupts upon ICR access */
1831 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
1832 ew32(IAM
, 0xffffffff);
1833 ew32(CTRL_EXT
, ctrl_ext
);
1836 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1837 * the Base and Length of the Rx Descriptor Ring */
1838 rdba
= rx_ring
->dma
;
1839 ew32(RDBAL
, (rdba
& DMA_32BIT_MASK
));
1840 ew32(RDBAH
, (rdba
>> 32));
1844 rx_ring
->head
= E1000_RDH
;
1845 rx_ring
->tail
= E1000_RDT
;
1847 /* Enable Receive Checksum Offload for TCP and UDP */
1848 rxcsum
= er32(RXCSUM
);
1849 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
1850 rxcsum
|= E1000_RXCSUM_TUOFL
;
1852 /* IPv4 payload checksum for UDP fragments must be
1853 * used in conjunction with packet-split. */
1854 if (adapter
->rx_ps_pages
)
1855 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1857 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1858 /* no need to clear IPPCSE as it defaults to 0 */
1860 ew32(RXCSUM
, rxcsum
);
1862 /* Enable early receives on supported devices, only takes effect when
1863 * packet size is equal or larger than the specified value (in 8 byte
1864 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1865 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
1866 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
1867 ew32(ERT
, E1000_ERT_2048
);
1869 /* Enable Receives */
1874 * e1000_mc_addr_list_update - Update Multicast addresses
1875 * @hw: pointer to the HW structure
1876 * @mc_addr_list: array of multicast addresses to program
1877 * @mc_addr_count: number of multicast addresses to program
1878 * @rar_used_count: the first RAR register free to program
1879 * @rar_count: total number of supported Receive Address Registers
1881 * Updates the Receive Address Registers and Multicast Table Array.
1882 * The caller must have a packed mc_addr_list of multicast addresses.
1883 * The parameter rar_count will usually be hw->mac.rar_entry_count
1884 * unless there are workarounds that change this. Currently no func pointer
1885 * exists and all implementations are handled in the generic version of this
1888 static void e1000_mc_addr_list_update(struct e1000_hw
*hw
, u8
*mc_addr_list
,
1889 u32 mc_addr_count
, u32 rar_used_count
,
1892 hw
->mac
.ops
.mc_addr_list_update(hw
, mc_addr_list
, mc_addr_count
,
1893 rar_used_count
, rar_count
);
1897 * e1000_set_multi - Multicast and Promiscuous mode set
1898 * @netdev: network interface device structure
1900 * The set_multi entry point is called whenever the multicast address
1901 * list or the network interface flags are updated. This routine is
1902 * responsible for configuring the hardware for proper multicast,
1903 * promiscuous mode, and all-multi behavior.
1905 static void e1000_set_multi(struct net_device
*netdev
)
1907 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1908 struct e1000_hw
*hw
= &adapter
->hw
;
1909 struct e1000_mac_info
*mac
= &hw
->mac
;
1910 struct dev_mc_list
*mc_ptr
;
1915 /* Check for Promiscuous and All Multicast modes */
1919 if (netdev
->flags
& IFF_PROMISC
) {
1920 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
1921 } else if (netdev
->flags
& IFF_ALLMULTI
) {
1922 rctl
|= E1000_RCTL_MPE
;
1923 rctl
&= ~E1000_RCTL_UPE
;
1925 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
1930 if (netdev
->mc_count
) {
1931 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
1935 /* prepare a packed array of only addresses. */
1936 mc_ptr
= netdev
->mc_list
;
1938 for (i
= 0; i
< netdev
->mc_count
; i
++) {
1941 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
1943 mc_ptr
= mc_ptr
->next
;
1946 e1000_mc_addr_list_update(hw
, mta_list
, i
, 1,
1947 mac
->rar_entry_count
);
1951 * if we're called from probe, we might not have
1952 * anything to do here, so clear out the list
1954 e1000_mc_addr_list_update(hw
, NULL
, 0, 1,
1955 mac
->rar_entry_count
);
1960 * e1000_configure - configure the hardware for RX and TX
1961 * @adapter: private board structure
1963 static void e1000_configure(struct e1000_adapter
*adapter
)
1965 e1000_set_multi(adapter
->netdev
);
1967 e1000_restore_vlan(adapter
);
1968 e1000_init_manageability(adapter
);
1970 e1000_configure_tx(adapter
);
1971 e1000_setup_rctl(adapter
);
1972 e1000_configure_rx(adapter
);
1973 adapter
->alloc_rx_buf(adapter
,
1974 e1000_desc_unused(adapter
->rx_ring
));
1978 * e1000e_power_up_phy - restore link in case the phy was powered down
1979 * @adapter: address of board private structure
1981 * The phy may be powered down to save power and turn off link when the
1982 * driver is unloaded and wake on lan is not enabled (among others)
1983 * *** this routine MUST be followed by a call to e1000e_reset ***
1985 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
1989 /* Just clear the power down bit to wake the phy back up */
1990 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
1991 /* according to the manual, the phy will retain its
1992 * settings across a power-down/up cycle */
1993 e1e_rphy(&adapter
->hw
, PHY_CONTROL
, &mii_reg
);
1994 mii_reg
&= ~MII_CR_POWER_DOWN
;
1995 e1e_wphy(&adapter
->hw
, PHY_CONTROL
, mii_reg
);
1998 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
2002 * e1000_power_down_phy - Power down the PHY
2004 * Power down the PHY so no link is implied when interface is down
2005 * The PHY cannot be powered down is management or WoL is active
2007 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2009 struct e1000_hw
*hw
= &adapter
->hw
;
2012 /* WoL is enabled */
2016 /* non-copper PHY? */
2017 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
2020 /* reset is blocked because of a SoL/IDER session */
2021 if (e1000e_check_mng_mode(hw
) ||
2022 e1000_check_reset_block(hw
))
2025 /* managebility (AMT) is enabled */
2026 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
2029 /* power down the PHY */
2030 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2031 mii_reg
|= MII_CR_POWER_DOWN
;
2032 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2037 * e1000e_reset - bring the hardware into a known good state
2039 * This function boots the hardware and enables some settings that
2040 * require a configuration cycle of the hardware - those cannot be
2041 * set/changed during runtime. After reset the device needs to be
2042 * properly configured for rx, tx etc.
2044 void e1000e_reset(struct e1000_adapter
*adapter
)
2046 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2047 struct e1000_hw
*hw
= &adapter
->hw
;
2048 u32 tx_space
, min_tx_space
, min_rx_space
;
2052 ew32(PBA
, adapter
->pba
);
2054 if (mac
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2055 /* To maintain wire speed transmits, the Tx FIFO should be
2056 * large enough to accommodate two full transmit packets,
2057 * rounded up to the next 1KB and expressed in KB. Likewise,
2058 * the Rx FIFO should be large enough to accommodate at least
2059 * one full receive packet and is similarly rounded up and
2060 * expressed in KB. */
2062 /* upper 16 bits has Tx packet buffer allocation size in KB */
2063 tx_space
= pba
>> 16;
2064 /* lower 16 bits has Rx packet buffer allocation size in KB */
2066 /* the tx fifo also stores 16 bytes of information about the tx
2067 * but don't include ethernet FCS because hardware appends it */
2068 min_tx_space
= (mac
->max_frame_size
+
2069 sizeof(struct e1000_tx_desc
) -
2071 min_tx_space
= ALIGN(min_tx_space
, 1024);
2072 min_tx_space
>>= 10;
2073 /* software strips receive CRC, so leave room for it */
2074 min_rx_space
= mac
->max_frame_size
;
2075 min_rx_space
= ALIGN(min_rx_space
, 1024);
2076 min_rx_space
>>= 10;
2078 /* If current Tx allocation is less than the min Tx FIFO size,
2079 * and the min Tx FIFO size is less than the current Rx FIFO
2080 * allocation, take space away from current Rx allocation */
2081 if ((tx_space
< min_tx_space
) &&
2082 ((min_tx_space
- tx_space
) < pba
)) {
2083 pba
-= min_tx_space
- tx_space
;
2085 /* if short on rx space, rx wins and must trump tx
2086 * adjustment or use Early Receive if available */
2087 if ((pba
< min_rx_space
) &&
2088 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2089 /* ERT enabled in e1000_configure_rx */
2097 /* flow control settings */
2098 /* The high water mark must be low enough to fit one full frame
2099 * (or the size used for early receive) above it in the Rx FIFO.
2100 * Set it to the lower of:
2101 * - 90% of the Rx FIFO size, and
2102 * - the full Rx FIFO size minus the early receive size (for parts
2103 * with ERT support assuming ERT set to E1000_ERT_2048), or
2104 * - the full Rx FIFO size minus one full frame */
2105 if (adapter
->flags
& FLAG_HAS_ERT
)
2106 hwm
= min(((adapter
->pba
<< 10) * 9 / 10),
2107 ((adapter
->pba
<< 10) - (E1000_ERT_2048
<< 3)));
2109 hwm
= min(((adapter
->pba
<< 10) * 9 / 10),
2110 ((adapter
->pba
<< 10) - mac
->max_frame_size
));
2112 mac
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
2113 mac
->fc_low_water
= mac
->fc_high_water
- 8;
2115 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2116 mac
->fc_pause_time
= 0xFFFF;
2118 mac
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
2119 mac
->fc
= mac
->original_fc
;
2121 /* Allow time for pending master requests to run */
2122 mac
->ops
.reset_hw(hw
);
2125 if (mac
->ops
.init_hw(hw
))
2126 ndev_err(adapter
->netdev
, "Hardware Error\n");
2128 e1000_update_mng_vlan(adapter
);
2130 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2131 ew32(VET
, ETH_P_8021Q
);
2133 e1000e_reset_adaptive(hw
);
2134 e1000_get_phy_info(hw
);
2136 if (!(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2138 /* speed up time to link by disabling smart power down, ignore
2139 * the return value of this function because there is nothing
2140 * different we would do if it failed */
2141 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2142 phy_data
&= ~IGP02E1000_PM_SPD
;
2143 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2146 e1000_release_manageability(adapter
);
2149 int e1000e_up(struct e1000_adapter
*adapter
)
2151 struct e1000_hw
*hw
= &adapter
->hw
;
2153 /* hardware has been reset, we need to reload some things */
2154 e1000_configure(adapter
);
2156 clear_bit(__E1000_DOWN
, &adapter
->state
);
2158 napi_enable(&adapter
->napi
);
2159 e1000_irq_enable(adapter
);
2161 /* fire a link change interrupt to start the watchdog */
2162 ew32(ICS
, E1000_ICS_LSC
);
2166 void e1000e_down(struct e1000_adapter
*adapter
)
2168 struct net_device
*netdev
= adapter
->netdev
;
2169 struct e1000_hw
*hw
= &adapter
->hw
;
2172 /* signal that we're down so the interrupt handler does not
2173 * reschedule our watchdog timer */
2174 set_bit(__E1000_DOWN
, &adapter
->state
);
2176 /* disable receives in the hardware */
2178 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2179 /* flush and sleep below */
2181 netif_stop_queue(netdev
);
2183 /* disable transmits in the hardware */
2185 tctl
&= ~E1000_TCTL_EN
;
2187 /* flush both disables and wait for them to finish */
2191 napi_disable(&adapter
->napi
);
2192 atomic_set(&adapter
->irq_sem
, 0);
2193 e1000_irq_disable(adapter
);
2195 del_timer_sync(&adapter
->watchdog_timer
);
2196 del_timer_sync(&adapter
->phy_info_timer
);
2198 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2199 netif_carrier_off(netdev
);
2200 adapter
->link_speed
= 0;
2201 adapter
->link_duplex
= 0;
2203 e1000e_reset(adapter
);
2204 e1000_clean_tx_ring(adapter
);
2205 e1000_clean_rx_ring(adapter
);
2208 * TODO: for power management, we could drop the link and
2209 * pci_disable_device here.
2213 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2216 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2218 e1000e_down(adapter
);
2220 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2224 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2225 * @adapter: board private structure to initialize
2227 * e1000_sw_init initializes the Adapter private data structure.
2228 * Fields are initialized based on PCI device information and
2229 * OS network device settings (MTU size).
2231 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2233 struct e1000_hw
*hw
= &adapter
->hw
;
2234 struct net_device
*netdev
= adapter
->netdev
;
2236 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2237 adapter
->rx_ps_bsize0
= 128;
2238 hw
->mac
.max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2239 hw
->mac
.min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2241 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2242 if (!adapter
->tx_ring
)
2245 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2246 if (!adapter
->rx_ring
)
2249 spin_lock_init(&adapter
->tx_queue_lock
);
2251 /* Explicitly disable IRQ since the NIC can be in any state. */
2252 atomic_set(&adapter
->irq_sem
, 0);
2253 e1000_irq_disable(adapter
);
2255 spin_lock_init(&adapter
->stats_lock
);
2257 set_bit(__E1000_DOWN
, &adapter
->state
);
2261 ndev_err(netdev
, "Unable to allocate memory for queues\n");
2262 kfree(adapter
->rx_ring
);
2263 kfree(adapter
->tx_ring
);
2268 * e1000_open - Called when a network interface is made active
2269 * @netdev: network interface device structure
2271 * Returns 0 on success, negative value on failure
2273 * The open entry point is called when a network interface is made
2274 * active by the system (IFF_UP). At this point all resources needed
2275 * for transmit and receive operations are allocated, the interrupt
2276 * handler is registered with the OS, the watchdog timer is started,
2277 * and the stack is notified that the interface is ready.
2279 static int e1000_open(struct net_device
*netdev
)
2281 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2282 struct e1000_hw
*hw
= &adapter
->hw
;
2285 /* disallow open during test */
2286 if (test_bit(__E1000_TESTING
, &adapter
->state
))
2289 /* allocate transmit descriptors */
2290 err
= e1000e_setup_tx_resources(adapter
);
2294 /* allocate receive descriptors */
2295 err
= e1000e_setup_rx_resources(adapter
);
2299 e1000e_power_up_phy(adapter
);
2301 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2302 if ((adapter
->hw
.mng_cookie
.status
&
2303 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
2304 e1000_update_mng_vlan(adapter
);
2306 /* If AMT is enabled, let the firmware know that the network
2307 * interface is now open */
2308 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
2309 e1000e_check_mng_mode(&adapter
->hw
))
2310 e1000_get_hw_control(adapter
);
2312 /* before we allocate an interrupt, we must be ready to handle it.
2313 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2314 * as soon as we call pci_request_irq, so we have to setup our
2315 * clean_rx handler before we do so. */
2316 e1000_configure(adapter
);
2318 err
= e1000_request_irq(adapter
);
2322 /* From here on the code is the same as e1000e_up() */
2323 clear_bit(__E1000_DOWN
, &adapter
->state
);
2325 napi_enable(&adapter
->napi
);
2327 e1000_irq_enable(adapter
);
2329 /* fire a link status change interrupt to start the watchdog */
2330 ew32(ICS
, E1000_ICS_LSC
);
2335 e1000_release_hw_control(adapter
);
2336 e1000_power_down_phy(adapter
);
2337 e1000e_free_rx_resources(adapter
);
2339 e1000e_free_tx_resources(adapter
);
2341 e1000e_reset(adapter
);
2347 * e1000_close - Disables a network interface
2348 * @netdev: network interface device structure
2350 * Returns 0, this is not allowed to fail
2352 * The close entry point is called when an interface is de-activated
2353 * by the OS. The hardware is still under the drivers control, but
2354 * needs to be disabled. A global MAC reset is issued to stop the
2355 * hardware, and all transmit and receive resources are freed.
2357 static int e1000_close(struct net_device
*netdev
)
2359 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2361 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
2362 e1000e_down(adapter
);
2363 e1000_power_down_phy(adapter
);
2364 e1000_free_irq(adapter
);
2366 e1000e_free_tx_resources(adapter
);
2367 e1000e_free_rx_resources(adapter
);
2369 /* kill manageability vlan ID if supported, but not if a vlan with
2370 * the same ID is registered on the host OS (let 8021q kill it) */
2371 if ((adapter
->hw
.mng_cookie
.status
&
2372 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2374 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
2375 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2377 /* If AMT is enabled, let the firmware know that the network
2378 * interface is now closed */
2379 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
2380 e1000e_check_mng_mode(&adapter
->hw
))
2381 e1000_release_hw_control(adapter
);
2386 * e1000_set_mac - Change the Ethernet Address of the NIC
2387 * @netdev: network interface device structure
2388 * @p: pointer to an address structure
2390 * Returns 0 on success, negative on failure
2392 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2394 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2395 struct sockaddr
*addr
= p
;
2397 if (!is_valid_ether_addr(addr
->sa_data
))
2398 return -EADDRNOTAVAIL
;
2400 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2401 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2403 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2405 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
2406 /* activate the work around */
2407 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
2409 /* Hold a copy of the LAA in RAR[14] This is done so that
2410 * between the time RAR[0] gets clobbered and the time it
2411 * gets fixed (in e1000_watchdog), the actual LAA is in one
2412 * of the RARs and no incoming packets directed to this port
2413 * are dropped. Eventually the LAA will be in RAR[0] and
2415 e1000e_rar_set(&adapter
->hw
,
2416 adapter
->hw
.mac
.addr
,
2417 adapter
->hw
.mac
.rar_entry_count
- 1);
2423 /* Need to wait a few seconds after link up to get diagnostic information from
2425 static void e1000_update_phy_info(unsigned long data
)
2427 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2428 e1000_get_phy_info(&adapter
->hw
);
2432 * e1000e_update_stats - Update the board statistics counters
2433 * @adapter: board private structure
2435 void e1000e_update_stats(struct e1000_adapter
*adapter
)
2437 struct e1000_hw
*hw
= &adapter
->hw
;
2438 struct pci_dev
*pdev
= adapter
->pdev
;
2439 unsigned long irq_flags
;
2442 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2445 * Prevent stats update while adapter is being reset, or if the pci
2446 * connection is down.
2448 if (adapter
->link_speed
== 0)
2450 if (pci_channel_offline(pdev
))
2453 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
2455 /* these counters are modified from e1000_adjust_tbi_stats,
2456 * called from the interrupt context, so they must only
2457 * be written while holding adapter->stats_lock
2460 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
2461 adapter
->stats
.gprc
+= er32(GPRC
);
2462 adapter
->stats
.gorcl
+= er32(GORCL
);
2463 adapter
->stats
.gorch
+= er32(GORCH
);
2464 adapter
->stats
.bprc
+= er32(BPRC
);
2465 adapter
->stats
.mprc
+= er32(MPRC
);
2466 adapter
->stats
.roc
+= er32(ROC
);
2468 if (adapter
->flags
& FLAG_HAS_STATS_PTC_PRC
) {
2469 adapter
->stats
.prc64
+= er32(PRC64
);
2470 adapter
->stats
.prc127
+= er32(PRC127
);
2471 adapter
->stats
.prc255
+= er32(PRC255
);
2472 adapter
->stats
.prc511
+= er32(PRC511
);
2473 adapter
->stats
.prc1023
+= er32(PRC1023
);
2474 adapter
->stats
.prc1522
+= er32(PRC1522
);
2475 adapter
->stats
.symerrs
+= er32(SYMERRS
);
2476 adapter
->stats
.sec
+= er32(SEC
);
2479 adapter
->stats
.mpc
+= er32(MPC
);
2480 adapter
->stats
.scc
+= er32(SCC
);
2481 adapter
->stats
.ecol
+= er32(ECOL
);
2482 adapter
->stats
.mcc
+= er32(MCC
);
2483 adapter
->stats
.latecol
+= er32(LATECOL
);
2484 adapter
->stats
.dc
+= er32(DC
);
2485 adapter
->stats
.rlec
+= er32(RLEC
);
2486 adapter
->stats
.xonrxc
+= er32(XONRXC
);
2487 adapter
->stats
.xontxc
+= er32(XONTXC
);
2488 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
2489 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
2490 adapter
->stats
.fcruc
+= er32(FCRUC
);
2491 adapter
->stats
.gptc
+= er32(GPTC
);
2492 adapter
->stats
.gotcl
+= er32(GOTCL
);
2493 adapter
->stats
.gotch
+= er32(GOTCH
);
2494 adapter
->stats
.rnbc
+= er32(RNBC
);
2495 adapter
->stats
.ruc
+= er32(RUC
);
2496 adapter
->stats
.rfc
+= er32(RFC
);
2497 adapter
->stats
.rjc
+= er32(RJC
);
2498 adapter
->stats
.torl
+= er32(TORL
);
2499 adapter
->stats
.torh
+= er32(TORH
);
2500 adapter
->stats
.totl
+= er32(TOTL
);
2501 adapter
->stats
.toth
+= er32(TOTH
);
2502 adapter
->stats
.tpr
+= er32(TPR
);
2504 if (adapter
->flags
& FLAG_HAS_STATS_PTC_PRC
) {
2505 adapter
->stats
.ptc64
+= er32(PTC64
);
2506 adapter
->stats
.ptc127
+= er32(PTC127
);
2507 adapter
->stats
.ptc255
+= er32(PTC255
);
2508 adapter
->stats
.ptc511
+= er32(PTC511
);
2509 adapter
->stats
.ptc1023
+= er32(PTC1023
);
2510 adapter
->stats
.ptc1522
+= er32(PTC1522
);
2513 adapter
->stats
.mptc
+= er32(MPTC
);
2514 adapter
->stats
.bptc
+= er32(BPTC
);
2516 /* used for adaptive IFS */
2518 hw
->mac
.tx_packet_delta
= er32(TPT
);
2519 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
2520 hw
->mac
.collision_delta
= er32(COLC
);
2521 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
2523 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
2524 adapter
->stats
.rxerrc
+= er32(RXERRC
);
2525 adapter
->stats
.tncrs
+= er32(TNCRS
);
2526 adapter
->stats
.cexterr
+= er32(CEXTERR
);
2527 adapter
->stats
.tsctc
+= er32(TSCTC
);
2528 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
2530 adapter
->stats
.iac
+= er32(IAC
);
2532 if (adapter
->flags
& FLAG_HAS_STATS_ICR_ICT
) {
2533 adapter
->stats
.icrxoc
+= er32(ICRXOC
);
2534 adapter
->stats
.icrxptc
+= er32(ICRXPTC
);
2535 adapter
->stats
.icrxatc
+= er32(ICRXATC
);
2536 adapter
->stats
.ictxptc
+= er32(ICTXPTC
);
2537 adapter
->stats
.ictxatc
+= er32(ICTXATC
);
2538 adapter
->stats
.ictxqec
+= er32(ICTXQEC
);
2539 adapter
->stats
.ictxqmtc
+= er32(ICTXQMTC
);
2540 adapter
->stats
.icrxdmtc
+= er32(ICRXDMTC
);
2543 /* Fill out the OS statistics structure */
2544 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
2545 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
2549 /* RLEC on some newer hardware can be incorrect so build
2550 * our own version based on RUC and ROC */
2551 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
2552 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
2553 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
2554 adapter
->stats
.cexterr
;
2555 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
2557 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
2558 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
2559 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
2562 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
2563 adapter
->stats
.latecol
;
2564 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
2565 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
2566 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
2568 /* Tx Dropped needs to be maintained elsewhere */
2571 if (hw
->media_type
== e1000_media_type_copper
) {
2572 if ((adapter
->link_speed
== SPEED_1000
) &&
2573 (!e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
2574 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
2575 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
2579 /* Management Stats */
2580 adapter
->stats
.mgptc
+= er32(MGTPTC
);
2581 adapter
->stats
.mgprc
+= er32(MGTPRC
);
2582 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
2584 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
2587 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
2589 struct net_device
*netdev
= adapter
->netdev
;
2590 struct e1000_hw
*hw
= &adapter
->hw
;
2591 u32 ctrl
= er32(CTRL
);
2594 "Link is Up %d Mbps %s, Flow Control: %s\n",
2595 adapter
->link_speed
,
2596 (adapter
->link_duplex
== FULL_DUPLEX
) ?
2597 "Full Duplex" : "Half Duplex",
2598 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
2600 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
2601 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
2605 * e1000_watchdog - Timer Call-back
2606 * @data: pointer to adapter cast into an unsigned long
2608 static void e1000_watchdog(unsigned long data
)
2610 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2612 /* Do the rest outside of interrupt context */
2613 schedule_work(&adapter
->watchdog_task
);
2615 /* TODO: make this use queue_delayed_work() */
2618 static void e1000_watchdog_task(struct work_struct
*work
)
2620 struct e1000_adapter
*adapter
= container_of(work
,
2621 struct e1000_adapter
, watchdog_task
);
2623 struct net_device
*netdev
= adapter
->netdev
;
2624 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2625 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2626 struct e1000_hw
*hw
= &adapter
->hw
;
2631 if ((netif_carrier_ok(netdev
)) &&
2632 (er32(STATUS
) & E1000_STATUS_LU
))
2635 ret_val
= mac
->ops
.check_for_link(hw
);
2636 if ((ret_val
== E1000_ERR_PHY
) &&
2637 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
) &&
2639 E1000_PHY_CTRL_GBE_DISABLE
)) {
2640 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2642 "Gigabit has been disabled, downgrading speed\n");
2645 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
2646 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
2647 e1000_update_mng_vlan(adapter
);
2649 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2650 !(er32(TXCW
) & E1000_TXCW_ANE
))
2651 link
= adapter
->hw
.mac
.serdes_has_link
;
2653 link
= er32(STATUS
) & E1000_STATUS_LU
;
2656 if (!netif_carrier_ok(netdev
)) {
2658 mac
->ops
.get_link_up_info(&adapter
->hw
,
2659 &adapter
->link_speed
,
2660 &adapter
->link_duplex
);
2661 e1000_print_link_info(adapter
);
2662 /* tweak tx_queue_len according to speed/duplex
2663 * and adjust the timeout factor */
2664 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2665 adapter
->tx_timeout_factor
= 1;
2666 switch (adapter
->link_speed
) {
2669 netdev
->tx_queue_len
= 10;
2670 adapter
->tx_timeout_factor
= 14;
2674 netdev
->tx_queue_len
= 100;
2675 /* maybe add some timeout factor ? */
2679 /* workaround: re-program speed mode bit after
2681 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
2684 tarc0
= er32(TARC0
);
2685 tarc0
&= ~SPEED_MODE_BIT
;
2689 /* disable TSO for pcie and 10/100 speeds, to avoid
2690 * some hardware issues */
2691 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
2692 switch (adapter
->link_speed
) {
2696 "10/100 speed: disabling TSO\n");
2697 netdev
->features
&= ~NETIF_F_TSO
;
2698 netdev
->features
&= ~NETIF_F_TSO6
;
2701 netdev
->features
|= NETIF_F_TSO
;
2702 netdev
->features
|= NETIF_F_TSO6
;
2710 /* enable transmits in the hardware, need to do this
2711 * after setting TARC0 */
2713 tctl
|= E1000_TCTL_EN
;
2716 netif_carrier_on(netdev
);
2717 netif_wake_queue(netdev
);
2719 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2720 mod_timer(&adapter
->phy_info_timer
,
2721 round_jiffies(jiffies
+ 2 * HZ
));
2723 /* make sure the receive unit is started */
2724 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
2725 u32 rctl
= er32(RCTL
);
2731 if (netif_carrier_ok(netdev
)) {
2732 adapter
->link_speed
= 0;
2733 adapter
->link_duplex
= 0;
2734 ndev_info(netdev
, "Link is Down\n");
2735 netif_carrier_off(netdev
);
2736 netif_stop_queue(netdev
);
2737 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2738 mod_timer(&adapter
->phy_info_timer
,
2739 round_jiffies(jiffies
+ 2 * HZ
));
2741 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
2742 schedule_work(&adapter
->reset_task
);
2747 e1000e_update_stats(adapter
);
2749 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2750 adapter
->tpt_old
= adapter
->stats
.tpt
;
2751 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2752 adapter
->colc_old
= adapter
->stats
.colc
;
2754 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2755 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2756 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2757 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2759 e1000e_update_adaptive(&adapter
->hw
);
2761 if (!netif_carrier_ok(netdev
)) {
2762 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
2765 /* We've lost link, so the controller stops DMA,
2766 * but we've got queued Tx work that's never going
2767 * to get done, so reset controller to flush Tx.
2768 * (Do the reset outside of interrupt context). */
2769 adapter
->tx_timeout_count
++;
2770 schedule_work(&adapter
->reset_task
);
2774 /* Cause software interrupt to ensure rx ring is cleaned */
2775 ew32(ICS
, E1000_ICS_RXDMT0
);
2777 /* Force detection of hung controller every watchdog period */
2778 adapter
->detect_tx_hung
= 1;
2780 /* With 82571 controllers, LAA may be overwritten due to controller
2781 * reset from the other port. Set the appropriate LAA in RAR[0] */
2782 if (e1000e_get_laa_state_82571(hw
))
2783 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
2785 /* Reset the timer */
2786 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2787 mod_timer(&adapter
->watchdog_timer
,
2788 round_jiffies(jiffies
+ 2 * HZ
));
2791 #define E1000_TX_FLAGS_CSUM 0x00000001
2792 #define E1000_TX_FLAGS_VLAN 0x00000002
2793 #define E1000_TX_FLAGS_TSO 0x00000004
2794 #define E1000_TX_FLAGS_IPV4 0x00000008
2795 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2796 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2798 static int e1000_tso(struct e1000_adapter
*adapter
,
2799 struct sk_buff
*skb
)
2801 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2802 struct e1000_context_desc
*context_desc
;
2803 struct e1000_buffer
*buffer_info
;
2806 u16 ipcse
= 0, tucse
, mss
;
2807 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2810 if (skb_is_gso(skb
)) {
2811 if (skb_header_cloned(skb
)) {
2812 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2817 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2818 mss
= skb_shinfo(skb
)->gso_size
;
2819 if (skb
->protocol
== htons(ETH_P_IP
)) {
2820 struct iphdr
*iph
= ip_hdr(skb
);
2823 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2827 cmd_length
= E1000_TXD_CMD_IP
;
2828 ipcse
= skb_transport_offset(skb
) - 1;
2829 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2830 ipv6_hdr(skb
)->payload_len
= 0;
2831 tcp_hdr(skb
)->check
=
2832 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2833 &ipv6_hdr(skb
)->daddr
,
2837 ipcss
= skb_network_offset(skb
);
2838 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2839 tucss
= skb_transport_offset(skb
);
2840 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2843 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2844 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2846 i
= tx_ring
->next_to_use
;
2847 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2848 buffer_info
= &tx_ring
->buffer_info
[i
];
2850 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2851 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2852 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2853 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2854 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2855 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2856 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2857 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2858 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2860 buffer_info
->time_stamp
= jiffies
;
2861 buffer_info
->next_to_watch
= i
;
2864 if (i
== tx_ring
->count
)
2866 tx_ring
->next_to_use
= i
;
2874 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2876 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2877 struct e1000_context_desc
*context_desc
;
2878 struct e1000_buffer
*buffer_info
;
2882 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2883 css
= skb_transport_offset(skb
);
2885 i
= tx_ring
->next_to_use
;
2886 buffer_info
= &tx_ring
->buffer_info
[i
];
2887 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2889 context_desc
->lower_setup
.ip_config
= 0;
2890 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2891 context_desc
->upper_setup
.tcp_fields
.tucso
=
2892 css
+ skb
->csum_offset
;
2893 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2894 context_desc
->tcp_seg_setup
.data
= 0;
2895 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2897 buffer_info
->time_stamp
= jiffies
;
2898 buffer_info
->next_to_watch
= i
;
2901 if (i
== tx_ring
->count
)
2903 tx_ring
->next_to_use
= i
;
2911 #define E1000_MAX_PER_TXD 8192
2912 #define E1000_MAX_TXD_PWR 12
2914 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2915 struct sk_buff
*skb
, unsigned int first
,
2916 unsigned int max_per_txd
, unsigned int nr_frags
,
2919 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2920 struct e1000_buffer
*buffer_info
;
2921 unsigned int len
= skb
->len
- skb
->data_len
;
2922 unsigned int offset
= 0, size
, count
= 0, i
;
2925 i
= tx_ring
->next_to_use
;
2928 buffer_info
= &tx_ring
->buffer_info
[i
];
2929 size
= min(len
, max_per_txd
);
2931 /* Workaround for premature desc write-backs
2932 * in TSO mode. Append 4-byte sentinel desc */
2933 if (mss
&& !nr_frags
&& size
== len
&& size
> 8)
2936 buffer_info
->length
= size
;
2937 /* set time_stamp *before* dma to help avoid a possible race */
2938 buffer_info
->time_stamp
= jiffies
;
2940 pci_map_single(adapter
->pdev
,
2944 if (pci_dma_mapping_error(buffer_info
->dma
)) {
2945 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2946 adapter
->tx_dma_failed
++;
2949 buffer_info
->next_to_watch
= i
;
2955 if (i
== tx_ring
->count
)
2959 for (f
= 0; f
< nr_frags
; f
++) {
2960 struct skb_frag_struct
*frag
;
2962 frag
= &skb_shinfo(skb
)->frags
[f
];
2964 offset
= frag
->page_offset
;
2967 buffer_info
= &tx_ring
->buffer_info
[i
];
2968 size
= min(len
, max_per_txd
);
2969 /* Workaround for premature desc write-backs
2970 * in TSO mode. Append 4-byte sentinel desc */
2971 if (mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8)
2974 buffer_info
->length
= size
;
2975 buffer_info
->time_stamp
= jiffies
;
2977 pci_map_page(adapter
->pdev
,
2982 if (pci_dma_mapping_error(buffer_info
->dma
)) {
2983 dev_err(&adapter
->pdev
->dev
,
2984 "TX DMA page map failed\n");
2985 adapter
->tx_dma_failed
++;
2989 buffer_info
->next_to_watch
= i
;
2996 if (i
== tx_ring
->count
)
3002 i
= tx_ring
->count
- 1;
3006 tx_ring
->buffer_info
[i
].skb
= skb
;
3007 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3012 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3013 int tx_flags
, int count
)
3015 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3016 struct e1000_tx_desc
*tx_desc
= NULL
;
3017 struct e1000_buffer
*buffer_info
;
3018 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3021 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
3022 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3024 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3026 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
3027 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3030 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
3031 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3032 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3035 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
3036 txd_lower
|= E1000_TXD_CMD_VLE
;
3037 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3040 i
= tx_ring
->next_to_use
;
3043 buffer_info
= &tx_ring
->buffer_info
[i
];
3044 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3045 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3046 tx_desc
->lower
.data
=
3047 cpu_to_le32(txd_lower
| buffer_info
->length
);
3048 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3051 if (i
== tx_ring
->count
)
3055 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3057 /* Force memory writes to complete before letting h/w
3058 * know there are new descriptors to fetch. (Only
3059 * applicable for weak-ordered memory model archs,
3060 * such as IA-64). */
3063 tx_ring
->next_to_use
= i
;
3064 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
3065 /* we need this if more than one processor can write to our tail
3066 * at a time, it synchronizes IO on IA64/Altix systems */
3070 #define MINIMUM_DHCP_PACKET_SIZE 282
3071 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
3072 struct sk_buff
*skb
)
3074 struct e1000_hw
*hw
= &adapter
->hw
;
3077 if (vlan_tx_tag_present(skb
)) {
3078 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
)
3079 && (adapter
->hw
.mng_cookie
.status
&
3080 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
3084 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
3087 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
3091 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
3094 if (ip
->protocol
!= IPPROTO_UDP
)
3097 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
3098 if (ntohs(udp
->dest
) != 67)
3101 offset
= (u8
*)udp
+ 8 - skb
->data
;
3102 length
= skb
->len
- offset
;
3103 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
3109 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3111 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3113 netif_stop_queue(netdev
);
3114 /* Herbert's original patch had:
3115 * smp_mb__after_netif_stop_queue();
3116 * but since that doesn't exist yet, just open code it. */
3119 /* We need to check again in a case another CPU has just
3120 * made room available. */
3121 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
3125 netif_start_queue(netdev
);
3126 ++adapter
->restart_queue
;
3130 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3132 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3134 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
3136 return __e1000_maybe_stop_tx(netdev
, size
);
3139 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3140 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3142 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3143 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3145 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
3146 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3147 unsigned int tx_flags
= 0;
3148 unsigned int len
= skb
->len
- skb
->data_len
;
3149 unsigned long irq_flags
;
3150 unsigned int nr_frags
;
3156 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
3157 dev_kfree_skb_any(skb
);
3158 return NETDEV_TX_OK
;
3161 if (skb
->len
<= 0) {
3162 dev_kfree_skb_any(skb
);
3163 return NETDEV_TX_OK
;
3166 mss
= skb_shinfo(skb
)->gso_size
;
3167 /* The controller does a simple calculation to
3168 * make sure there is enough room in the FIFO before
3169 * initiating the DMA for each buffer. The calc is:
3170 * 4 = ceil(buffer len/mss). To make sure we don't
3171 * overrun the FIFO, adjust the max buffer len if mss
3175 max_per_txd
= min(mss
<< 2, max_per_txd
);
3176 max_txd_pwr
= fls(max_per_txd
) - 1;
3178 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3179 * points to just header, pull a few bytes of payload from
3180 * frags into skb->data */
3181 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3182 if (skb
->data_len
&& (hdr_len
== len
)) {
3183 unsigned int pull_size
;
3185 pull_size
= min((unsigned int)4, skb
->data_len
);
3186 if (!__pskb_pull_tail(skb
, pull_size
)) {
3188 "__pskb_pull_tail failed.\n");
3189 dev_kfree_skb_any(skb
);
3190 return NETDEV_TX_OK
;
3192 len
= skb
->len
- skb
->data_len
;
3196 /* reserve a descriptor for the offload context */
3197 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3201 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3203 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3204 for (f
= 0; f
< nr_frags
; f
++)
3205 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3208 if (adapter
->hw
.mac
.tx_pkt_filtering
)
3209 e1000_transfer_dhcp_info(adapter
, skb
);
3211 if (!spin_trylock_irqsave(&adapter
->tx_queue_lock
, irq_flags
))
3212 /* Collision - tell upper layer to requeue */
3213 return NETDEV_TX_LOCKED
;
3215 /* need: count + 2 desc gap to keep tail from touching
3216 * head, otherwise try next time */
3217 if (e1000_maybe_stop_tx(netdev
, count
+ 2)) {
3218 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3219 return NETDEV_TX_BUSY
;
3222 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3223 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3224 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3227 first
= tx_ring
->next_to_use
;
3229 tso
= e1000_tso(adapter
, skb
);
3231 dev_kfree_skb_any(skb
);
3232 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3233 return NETDEV_TX_OK
;
3237 tx_flags
|= E1000_TX_FLAGS_TSO
;
3238 else if (e1000_tx_csum(adapter
, skb
))
3239 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3241 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3242 * 82571 hardware supports TSO capabilities for IPv6 as well...
3243 * no longer assume, we must. */
3244 if (skb
->protocol
== htons(ETH_P_IP
))
3245 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3247 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
3249 /* handle pci_map_single() error in e1000_tx_map */
3250 dev_kfree_skb_any(skb
);
3251 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3252 return NETDEV_TX_OK
;
3255 e1000_tx_queue(adapter
, tx_flags
, count
);
3257 netdev
->trans_start
= jiffies
;
3259 /* Make sure there is space in the ring for the next send. */
3260 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
3262 spin_unlock_irqrestore(&adapter
->tx_queue_lock
, irq_flags
);
3263 return NETDEV_TX_OK
;
3267 * e1000_tx_timeout - Respond to a Tx Hang
3268 * @netdev: network interface device structure
3270 static void e1000_tx_timeout(struct net_device
*netdev
)
3272 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3274 /* Do the reset outside of interrupt context */
3275 adapter
->tx_timeout_count
++;
3276 schedule_work(&adapter
->reset_task
);
3279 static void e1000_reset_task(struct work_struct
*work
)
3281 struct e1000_adapter
*adapter
;
3282 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
3284 e1000e_reinit_locked(adapter
);
3288 * e1000_get_stats - Get System Network Statistics
3289 * @netdev: network interface device structure
3291 * Returns the address of the device statistics structure.
3292 * The statistics are actually updated from the timer callback.
3294 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3296 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3298 /* only return the current stats */
3299 return &adapter
->net_stats
;
3303 * e1000_change_mtu - Change the Maximum Transfer Unit
3304 * @netdev: network interface device structure
3305 * @new_mtu: new value for maximum frame size
3307 * Returns 0 on success, negative on failure
3309 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3311 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3312 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3314 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3315 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3316 ndev_err(netdev
, "Invalid MTU setting\n");
3320 /* Jumbo frame size limits */
3321 if (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3322 if (!(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
3323 ndev_err(netdev
, "Jumbo Frames not supported.\n");
3326 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
3327 ndev_err(netdev
, "Jumbo Frames not supported.\n");
3332 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3333 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3334 ndev_err(netdev
, "MTU > 9216 not supported.\n");
3338 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3340 /* e1000e_down has a dependency on max_frame_size */
3341 adapter
->hw
.mac
.max_frame_size
= max_frame
;
3342 if (netif_running(netdev
))
3343 e1000e_down(adapter
);
3345 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3346 * means we reserve 2 more, this pushes us to allocate from the next
3348 * i.e. RXBUFFER_2048 --> size-4096 slab */
3350 if (max_frame
<= 256)
3351 adapter
->rx_buffer_len
= 256;
3352 else if (max_frame
<= 512)
3353 adapter
->rx_buffer_len
= 512;
3354 else if (max_frame
<= 1024)
3355 adapter
->rx_buffer_len
= 1024;
3356 else if (max_frame
<= 2048)
3357 adapter
->rx_buffer_len
= 2048;
3359 adapter
->rx_buffer_len
= 4096;
3361 /* adjust allocation if LPE protects us, and we aren't using SBP */
3362 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3363 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
3364 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
3367 ndev_info(netdev
, "changing MTU from %d to %d\n",
3368 netdev
->mtu
, new_mtu
);
3369 netdev
->mtu
= new_mtu
;
3371 if (netif_running(netdev
))
3374 e1000e_reset(adapter
);
3376 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3381 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
3384 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3385 struct mii_ioctl_data
*data
= if_mii(ifr
);
3386 unsigned long irq_flags
;
3388 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
3393 data
->phy_id
= adapter
->hw
.phy
.addr
;
3396 if (!capable(CAP_NET_ADMIN
))
3398 spin_lock_irqsave(&adapter
->stats_lock
, irq_flags
);
3399 if (e1e_rphy(&adapter
->hw
, data
->reg_num
& 0x1F,
3401 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
3404 spin_unlock_irqrestore(&adapter
->stats_lock
, irq_flags
);
3413 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
3419 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
3425 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3427 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3428 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3429 struct e1000_hw
*hw
= &adapter
->hw
;
3430 u32 ctrl
, ctrl_ext
, rctl
, status
;
3431 u32 wufc
= adapter
->wol
;
3434 netif_device_detach(netdev
);
3436 if (netif_running(netdev
)) {
3437 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3438 e1000e_down(adapter
);
3439 e1000_free_irq(adapter
);
3442 retval
= pci_save_state(pdev
);
3446 status
= er32(STATUS
);
3447 if (status
& E1000_STATUS_LU
)
3448 wufc
&= ~E1000_WUFC_LNKC
;
3451 e1000_setup_rctl(adapter
);
3452 e1000_set_multi(netdev
);
3454 /* turn on all-multi mode if wake on multicast is enabled */
3455 if (wufc
& E1000_WUFC_MC
) {
3457 rctl
|= E1000_RCTL_MPE
;
3462 /* advertise wake from D3Cold */
3463 #define E1000_CTRL_ADVD3WUC 0x00100000
3464 /* phy power management enable */
3465 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3466 ctrl
|= E1000_CTRL_ADVD3WUC
|
3467 E1000_CTRL_EN_PHY_PWR_MGMT
;
3470 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
3471 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
3472 /* keep the laser running in D3 */
3473 ctrl_ext
= er32(CTRL_EXT
);
3474 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
3475 ew32(CTRL_EXT
, ctrl_ext
);
3478 /* Allow time for pending master requests to run */
3479 e1000e_disable_pcie_master(&adapter
->hw
);
3481 ew32(WUC
, E1000_WUC_PME_EN
);
3483 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3484 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3488 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3489 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3492 e1000_release_manageability(adapter
);
3494 /* make sure adapter isn't asleep if manageability is enabled */
3495 if (adapter
->flags
& FLAG_MNG_PT_ENABLED
) {
3496 pci_enable_wake(pdev
, PCI_D3hot
, 1);
3497 pci_enable_wake(pdev
, PCI_D3cold
, 1);
3500 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
3501 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
3503 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3504 * would have already happened in close and is redundant. */
3505 e1000_release_hw_control(adapter
);
3507 pci_disable_device(pdev
);
3509 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3514 static void e1000e_disable_l1aspm(struct pci_dev
*pdev
)
3521 * 82573 workaround - disable L1 ASPM on mobile chipsets
3523 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3524 * resulting in lost data or garbage information on the pci-e link
3525 * level. This could result in (false) bad EEPROM checksum errors,
3526 * long ping times (up to 2s) or even a system freeze/hang.
3528 * Unfortunately this feature saves about 1W power consumption when
3531 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
3532 pci_read_config_dword(pdev
, pos
+ PCI_EXP_LNKCAP
, &cap
);
3533 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, &val
);
3535 dev_warn(&pdev
->dev
, "Disabling L1 ASPM\n");
3537 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, val
);
3542 static int e1000_resume(struct pci_dev
*pdev
)
3544 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3545 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3546 struct e1000_hw
*hw
= &adapter
->hw
;
3549 pci_set_power_state(pdev
, PCI_D0
);
3550 pci_restore_state(pdev
);
3551 e1000e_disable_l1aspm(pdev
);
3552 err
= pci_enable_device(pdev
);
3555 "Cannot enable PCI device from suspend\n");
3559 pci_set_master(pdev
);
3561 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3562 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3564 if (netif_running(netdev
)) {
3565 err
= e1000_request_irq(adapter
);
3570 e1000e_power_up_phy(adapter
);
3571 e1000e_reset(adapter
);
3574 e1000_init_manageability(adapter
);
3576 if (netif_running(netdev
))
3579 netif_device_attach(netdev
);
3581 /* If the controller has AMT, do not set DRV_LOAD until the interface
3582 * is up. For all other cases, let the f/w know that the h/w is now
3583 * under the control of the driver. */
3584 if (!(adapter
->flags
& FLAG_HAS_AMT
) || !e1000e_check_mng_mode(&adapter
->hw
))
3585 e1000_get_hw_control(adapter
);
3591 static void e1000_shutdown(struct pci_dev
*pdev
)
3593 e1000_suspend(pdev
, PMSG_SUSPEND
);
3596 #ifdef CONFIG_NET_POLL_CONTROLLER
3598 * Polling 'interrupt' - used by things like netconsole to send skbs
3599 * without having to re-enable interrupts. It's not called while
3600 * the interrupt routine is executing.
3602 static void e1000_netpoll(struct net_device
*netdev
)
3604 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3606 disable_irq(adapter
->pdev
->irq
);
3607 e1000_intr(adapter
->pdev
->irq
, netdev
);
3609 e1000_clean_tx_irq(adapter
);
3611 enable_irq(adapter
->pdev
->irq
);
3616 * e1000_io_error_detected - called when PCI error is detected
3617 * @pdev: Pointer to PCI device
3618 * @state: The current pci connection state
3620 * This function is called after a PCI bus error affecting
3621 * this device has been detected.
3623 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
3624 pci_channel_state_t state
)
3626 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3627 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3629 netif_device_detach(netdev
);
3631 if (netif_running(netdev
))
3632 e1000e_down(adapter
);
3633 pci_disable_device(pdev
);
3635 /* Request a slot slot reset. */
3636 return PCI_ERS_RESULT_NEED_RESET
;
3640 * e1000_io_slot_reset - called after the pci bus has been reset.
3641 * @pdev: Pointer to PCI device
3643 * Restart the card from scratch, as if from a cold-boot. Implementation
3644 * resembles the first-half of the e1000_resume routine.
3646 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
3648 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3649 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3650 struct e1000_hw
*hw
= &adapter
->hw
;
3652 e1000e_disable_l1aspm(pdev
);
3653 if (pci_enable_device(pdev
)) {
3655 "Cannot re-enable PCI device after reset.\n");
3656 return PCI_ERS_RESULT_DISCONNECT
;
3658 pci_set_master(pdev
);
3660 pci_enable_wake(pdev
, PCI_D3hot
, 0);
3661 pci_enable_wake(pdev
, PCI_D3cold
, 0);
3663 e1000e_reset(adapter
);
3666 return PCI_ERS_RESULT_RECOVERED
;
3670 * e1000_io_resume - called when traffic can start flowing again.
3671 * @pdev: Pointer to PCI device
3673 * This callback is called when the error recovery driver tells us that
3674 * its OK to resume normal operation. Implementation resembles the
3675 * second-half of the e1000_resume routine.
3677 static void e1000_io_resume(struct pci_dev
*pdev
)
3679 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3680 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3682 e1000_init_manageability(adapter
);
3684 if (netif_running(netdev
)) {
3685 if (e1000e_up(adapter
)) {
3687 "can't bring device back up after reset\n");
3692 netif_device_attach(netdev
);
3694 /* If the controller has AMT, do not set DRV_LOAD until the interface
3695 * is up. For all other cases, let the f/w know that the h/w is now
3696 * under the control of the driver. */
3697 if (!(adapter
->flags
& FLAG_HAS_AMT
) ||
3698 !e1000e_check_mng_mode(&adapter
->hw
))
3699 e1000_get_hw_control(adapter
);
3703 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
3705 struct e1000_hw
*hw
= &adapter
->hw
;
3706 struct net_device
*netdev
= adapter
->netdev
;
3709 /* print bus type/speed/width info */
3710 ndev_info(netdev
, "(PCI Express:2.5GB/s:%s) "
3711 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3713 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
3716 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
3717 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
3718 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
3719 ndev_info(netdev
, "Intel(R) PRO/%s Network Connection\n",
3720 (hw
->phy
.type
== e1000_phy_ife
)
3721 ? "10/100" : "1000");
3722 e1000e_read_part_num(hw
, &part_num
);
3723 ndev_info(netdev
, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3724 hw
->mac
.type
, hw
->phy
.type
,
3725 (part_num
>> 8), (part_num
& 0xff));
3729 * e1000_probe - Device Initialization Routine
3730 * @pdev: PCI device information struct
3731 * @ent: entry in e1000_pci_tbl
3733 * Returns 0 on success, negative on failure
3735 * e1000_probe initializes an adapter identified by a pci_dev structure.
3736 * The OS initialization, configuring of the adapter private structure,
3737 * and a hardware reset occur.
3739 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
3740 const struct pci_device_id
*ent
)
3742 struct net_device
*netdev
;
3743 struct e1000_adapter
*adapter
;
3744 struct e1000_hw
*hw
;
3745 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
3746 unsigned long mmio_start
, mmio_len
;
3747 unsigned long flash_start
, flash_len
;
3749 static int cards_found
;
3750 int i
, err
, pci_using_dac
;
3751 u16 eeprom_data
= 0;
3752 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
3754 e1000e_disable_l1aspm(pdev
);
3755 err
= pci_enable_device(pdev
);
3760 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
3762 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3766 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3768 err
= pci_set_consistent_dma_mask(pdev
,
3771 dev_err(&pdev
->dev
, "No usable DMA "
3772 "configuration, aborting\n");
3778 err
= pci_request_regions(pdev
, e1000e_driver_name
);
3782 pci_set_master(pdev
);
3785 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
3787 goto err_alloc_etherdev
;
3789 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
3791 pci_set_drvdata(pdev
, netdev
);
3792 adapter
= netdev_priv(netdev
);
3794 adapter
->netdev
= netdev
;
3795 adapter
->pdev
= pdev
;
3797 adapter
->pba
= ei
->pba
;
3798 adapter
->flags
= ei
->flags
;
3799 adapter
->hw
.adapter
= adapter
;
3800 adapter
->hw
.mac
.type
= ei
->mac
;
3801 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
3803 mmio_start
= pci_resource_start(pdev
, 0);
3804 mmio_len
= pci_resource_len(pdev
, 0);
3807 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
3808 if (!adapter
->hw
.hw_addr
)
3811 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
3812 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
3813 flash_start
= pci_resource_start(pdev
, 1);
3814 flash_len
= pci_resource_len(pdev
, 1);
3815 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
3816 if (!adapter
->hw
.flash_address
)
3820 /* construct the net_device struct */
3821 netdev
->open
= &e1000_open
;
3822 netdev
->stop
= &e1000_close
;
3823 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
3824 netdev
->get_stats
= &e1000_get_stats
;
3825 netdev
->set_multicast_list
= &e1000_set_multi
;
3826 netdev
->set_mac_address
= &e1000_set_mac
;
3827 netdev
->change_mtu
= &e1000_change_mtu
;
3828 netdev
->do_ioctl
= &e1000_ioctl
;
3829 e1000e_set_ethtool_ops(netdev
);
3830 netdev
->tx_timeout
= &e1000_tx_timeout
;
3831 netdev
->watchdog_timeo
= 5 * HZ
;
3832 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
3833 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
3834 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
3835 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
3836 #ifdef CONFIG_NET_POLL_CONTROLLER
3837 netdev
->poll_controller
= e1000_netpoll
;
3839 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
3841 netdev
->mem_start
= mmio_start
;
3842 netdev
->mem_end
= mmio_start
+ mmio_len
;
3844 adapter
->bd_number
= cards_found
++;
3846 /* setup adapter struct */
3847 err
= e1000_sw_init(adapter
);
3853 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
3854 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
3855 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
3857 err
= ei
->get_invariants(adapter
);
3861 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
3863 adapter
->hw
.phy
.wait_for_link
= 0;
3865 /* Copper options */
3866 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
3867 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
3868 adapter
->hw
.phy
.disable_polarity_correction
= 0;
3869 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
3872 if (e1000_check_reset_block(&adapter
->hw
))
3874 "PHY reset is blocked due to SOL/IDER session.\n");
3876 netdev
->features
= NETIF_F_SG
|
3878 NETIF_F_HW_VLAN_TX
|
3881 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
3882 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
3884 netdev
->features
|= NETIF_F_TSO
;
3885 netdev
->features
|= NETIF_F_TSO6
;
3888 netdev
->features
|= NETIF_F_HIGHDMA
;
3890 /* We should not be using LLTX anymore, but we are still TX faster with
3892 netdev
->features
|= NETIF_F_LLTX
;
3894 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
3895 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
3897 /* before reading the NVM, reset the controller to
3898 * put the device in a known good starting state */
3899 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
3902 * systems with ASPM and others may see the checksum fail on the first
3903 * attempt. Let's give it a few tries
3906 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
3909 ndev_err(netdev
, "The NVM Checksum Is Not Valid\n");
3915 /* copy the MAC address out of the NVM */
3916 if (e1000e_read_mac_addr(&adapter
->hw
))
3917 ndev_err(netdev
, "NVM Read Error while reading MAC address\n");
3919 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
3920 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
3922 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
3923 ndev_err(netdev
, "Invalid MAC Address: "
3924 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3925 netdev
->perm_addr
[0], netdev
->perm_addr
[1],
3926 netdev
->perm_addr
[2], netdev
->perm_addr
[3],
3927 netdev
->perm_addr
[4], netdev
->perm_addr
[5]);
3932 init_timer(&adapter
->watchdog_timer
);
3933 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
3934 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
3936 init_timer(&adapter
->phy_info_timer
);
3937 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
3938 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
3940 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
3941 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
3943 e1000e_check_options(adapter
);
3945 /* Initialize link parameters. User can change them with ethtool */
3946 adapter
->hw
.mac
.autoneg
= 1;
3947 adapter
->fc_autoneg
= 1;
3948 adapter
->hw
.mac
.original_fc
= e1000_fc_default
;
3949 adapter
->hw
.mac
.fc
= e1000_fc_default
;
3950 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
3952 /* ring size defaults */
3953 adapter
->rx_ring
->count
= 256;
3954 adapter
->tx_ring
->count
= 256;
3957 * Initial Wake on LAN setting - If APM wake is enabled in
3958 * the EEPROM, enable the ACPI Magic Packet filter
3960 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
3961 /* APME bit in EEPROM is mapped to WUC.APME */
3962 eeprom_data
= er32(WUC
);
3963 eeprom_apme_mask
= E1000_WUC_APME
;
3964 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
3965 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
3966 (adapter
->hw
.bus
.func
== 1))
3967 e1000_read_nvm(&adapter
->hw
,
3968 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
3970 e1000_read_nvm(&adapter
->hw
,
3971 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
3974 /* fetch WoL from EEPROM */
3975 if (eeprom_data
& eeprom_apme_mask
)
3976 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
3979 * now that we have the eeprom settings, apply the special cases
3980 * where the eeprom may be wrong or the board simply won't support
3981 * wake on lan on a particular port
3983 if (!(adapter
->flags
& FLAG_HAS_WOL
))
3984 adapter
->eeprom_wol
= 0;
3986 /* initialize the wol settings based on the eeprom settings */
3987 adapter
->wol
= adapter
->eeprom_wol
;
3989 /* reset the hardware with the new settings */
3990 e1000e_reset(adapter
);
3992 /* If the controller has AMT, do not set DRV_LOAD until the interface
3993 * is up. For all other cases, let the f/w know that the h/w is now
3994 * under the control of the driver. */
3995 if (!(adapter
->flags
& FLAG_HAS_AMT
) ||
3996 !e1000e_check_mng_mode(&adapter
->hw
))
3997 e1000_get_hw_control(adapter
);
3999 /* tell the stack to leave us alone until e1000_open() is called */
4000 netif_carrier_off(netdev
);
4001 netif_stop_queue(netdev
);
4003 strcpy(netdev
->name
, "eth%d");
4004 err
= register_netdev(netdev
);
4008 e1000_print_device_info(adapter
);
4014 e1000_release_hw_control(adapter
);
4016 if (!e1000_check_reset_block(&adapter
->hw
))
4017 e1000_phy_hw_reset(&adapter
->hw
);
4019 if (adapter
->hw
.flash_address
)
4020 iounmap(adapter
->hw
.flash_address
);
4023 kfree(adapter
->tx_ring
);
4024 kfree(adapter
->rx_ring
);
4026 iounmap(adapter
->hw
.hw_addr
);
4028 free_netdev(netdev
);
4030 pci_release_regions(pdev
);
4033 pci_disable_device(pdev
);
4038 * e1000_remove - Device Removal Routine
4039 * @pdev: PCI device information struct
4041 * e1000_remove is called by the PCI subsystem to alert the driver
4042 * that it should release a PCI device. The could be caused by a
4043 * Hot-Plug event, or because the driver is going to be removed from
4046 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
4048 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4049 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4051 /* flush_scheduled work may reschedule our watchdog task, so
4052 * explicitly disable watchdog tasks from being rescheduled */
4053 set_bit(__E1000_DOWN
, &adapter
->state
);
4054 del_timer_sync(&adapter
->watchdog_timer
);
4055 del_timer_sync(&adapter
->phy_info_timer
);
4057 flush_scheduled_work();
4059 e1000_release_manageability(adapter
);
4061 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4062 * would have already happened in close and is redundant. */
4063 e1000_release_hw_control(adapter
);
4065 unregister_netdev(netdev
);
4067 if (!e1000_check_reset_block(&adapter
->hw
))
4068 e1000_phy_hw_reset(&adapter
->hw
);
4070 kfree(adapter
->tx_ring
);
4071 kfree(adapter
->rx_ring
);
4073 iounmap(adapter
->hw
.hw_addr
);
4074 if (adapter
->hw
.flash_address
)
4075 iounmap(adapter
->hw
.flash_address
);
4076 pci_release_regions(pdev
);
4078 free_netdev(netdev
);
4080 pci_disable_device(pdev
);
4083 /* PCI Error Recovery (ERS) */
4084 static struct pci_error_handlers e1000_err_handler
= {
4085 .error_detected
= e1000_io_error_detected
,
4086 .slot_reset
= e1000_io_slot_reset
,
4087 .resume
= e1000_io_resume
,
4090 static struct pci_device_id e1000_pci_tbl
[] = {
4091 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
4092 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
4093 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
4094 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
4095 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
4096 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
4097 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
4098 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
4099 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
4100 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
4101 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
4102 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
4103 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
4104 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
4105 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
4106 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
4107 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
4108 board_80003es2lan
},
4109 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
4110 board_80003es2lan
},
4111 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
4112 board_80003es2lan
},
4113 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
4114 board_80003es2lan
},
4115 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
4116 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
4117 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
4118 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
4119 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
4120 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
4121 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
4122 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
4123 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
4124 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
4125 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
4126 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
4128 { } /* terminate list */
4130 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
4132 /* PCI Device API Driver */
4133 static struct pci_driver e1000_driver
= {
4134 .name
= e1000e_driver_name
,
4135 .id_table
= e1000_pci_tbl
,
4136 .probe
= e1000_probe
,
4137 .remove
= __devexit_p(e1000_remove
),
4139 /* Power Managment Hooks */
4140 .suspend
= e1000_suspend
,
4141 .resume
= e1000_resume
,
4143 .shutdown
= e1000_shutdown
,
4144 .err_handler
= &e1000_err_handler
4148 * e1000_init_module - Driver Registration Routine
4150 * e1000_init_module is the first routine called when the driver is
4151 * loaded. All it does is register with the PCI subsystem.
4153 static int __init
e1000_init_module(void)
4156 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
4157 e1000e_driver_name
, e1000e_driver_version
);
4158 printk(KERN_INFO
"%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4159 e1000e_driver_name
);
4160 ret
= pci_register_driver(&e1000_driver
);
4164 module_init(e1000_init_module
);
4167 * e1000_exit_module - Driver Exit Cleanup Routine
4169 * e1000_exit_module is called just before the driver is removed
4172 static void __exit
e1000_exit_module(void)
4174 pci_unregister_driver(&e1000_driver
);
4176 module_exit(e1000_exit_module
);
4179 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4180 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4181 MODULE_LICENSE("GPL");
4182 MODULE_VERSION(DRV_VERSION
);