zfs_main: fix alignment on props usage output
[zfs.git] / module / os / linux / spl / spl-generic.c
blobe13914221a6a7858a7ca3e18bb768ee5dc265610
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
8 * This file is part of the SPL, Solaris Porting Layer.
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 * Solaris Porting Layer (SPL) Generic Implementation.
26 #include <sys/isa_defs.h>
27 #include <sys/sysmacros.h>
28 #include <sys/systeminfo.h>
29 #include <sys/vmsystm.h>
30 #include <sys/kmem.h>
31 #include <sys/kmem_cache.h>
32 #include <sys/vmem.h>
33 #include <sys/mutex.h>
34 #include <sys/rwlock.h>
35 #include <sys/taskq.h>
36 #include <sys/tsd.h>
37 #include <sys/zmod.h>
38 #include <sys/debug.h>
39 #include <sys/proc.h>
40 #include <sys/kstat.h>
41 #include <sys/file.h>
42 #include <sys/sunddi.h>
43 #include <linux/ctype.h>
44 #include <sys/disp.h>
45 #include <sys/random.h>
46 #include <sys/string.h>
47 #include <linux/kmod.h>
48 #include <linux/mod_compat.h>
49 #include <sys/cred.h>
50 #include <sys/vnode.h>
51 #include <sys/misc.h>
52 #include <linux/mod_compat.h>
54 unsigned long spl_hostid = 0;
55 EXPORT_SYMBOL(spl_hostid);
57 module_param(spl_hostid, ulong, 0644);
58 MODULE_PARM_DESC(spl_hostid, "The system hostid.");
60 proc_t p0;
61 EXPORT_SYMBOL(p0);
64 * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
66 * "Scrambled Linear Pseudorandom Number Generators∗"
67 * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
69 * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
70 * is to provide bytes containing random numbers. It is mapped to /dev/urandom
71 * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
72 * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
73 * we can implement it using a fast PRNG that we seed using Linux' actual
74 * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
75 * with an independent seed so that all calls to random_get_pseudo_bytes() are
76 * free of atomic instructions.
78 * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
79 * to generate words larger than 256 bits will paradoxically be limited to
80 * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
81 * 256-bit words and selecting the first will implicitly select the second. If
82 * a caller finds this behavior undesirable, random_get_bytes() should be used
83 * instead.
85 * XXX: Linux interrupt handlers that trigger within the critical section
86 * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
87 * see the same numbers. Nothing in the code currently calls this in an
88 * interrupt handler, so this is considered to be okay. If that becomes a
89 * problem, we could create a set of per-cpu variables for interrupt handlers
90 * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
91 * true.
93 static void __percpu *spl_pseudo_entropy;
96 * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
97 * licensed file:
99 * https://prng.di.unimi.it/xoshiro256plusplus.c
102 static inline uint64_t rotl(const uint64_t x, int k)
104 return ((x << k) | (x >> (64 - k)));
107 static inline uint64_t
108 spl_rand_next(uint64_t *s)
110 const uint64_t result = rotl(s[0] + s[3], 23) + s[0];
112 const uint64_t t = s[1] << 17;
114 s[2] ^= s[0];
115 s[3] ^= s[1];
116 s[1] ^= s[2];
117 s[0] ^= s[3];
119 s[2] ^= t;
121 s[3] = rotl(s[3], 45);
123 return (result);
126 static inline void
127 spl_rand_jump(uint64_t *s)
129 static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba,
130 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
132 uint64_t s0 = 0;
133 uint64_t s1 = 0;
134 uint64_t s2 = 0;
135 uint64_t s3 = 0;
136 int i, b;
137 for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
138 for (b = 0; b < 64; b++) {
139 if (JUMP[i] & 1ULL << b) {
140 s0 ^= s[0];
141 s1 ^= s[1];
142 s2 ^= s[2];
143 s3 ^= s[3];
145 (void) spl_rand_next(s);
148 s[0] = s0;
149 s[1] = s1;
150 s[2] = s2;
151 s[3] = s3;
155 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
157 uint64_t *xp, s[4];
159 ASSERT(ptr);
161 xp = get_cpu_ptr(spl_pseudo_entropy);
163 s[0] = xp[0];
164 s[1] = xp[1];
165 s[2] = xp[2];
166 s[3] = xp[3];
168 while (len) {
169 union {
170 uint64_t ui64;
171 uint8_t byte[sizeof (uint64_t)];
172 }entropy;
173 int i = MIN(len, sizeof (uint64_t));
175 len -= i;
176 entropy.ui64 = spl_rand_next(s);
179 * xoshiro256++ has low entropy lower bytes, so we copy the
180 * higher order bytes first.
182 while (i--)
183 #ifdef _ZFS_BIG_ENDIAN
184 *ptr++ = entropy.byte[i];
185 #else
186 *ptr++ = entropy.byte[7 - i];
187 #endif
190 xp[0] = s[0];
191 xp[1] = s[1];
192 xp[2] = s[2];
193 xp[3] = s[3];
195 put_cpu_ptr(spl_pseudo_entropy);
197 return (0);
201 EXPORT_SYMBOL(random_get_pseudo_bytes);
203 #if BITS_PER_LONG == 32
206 * Support 64/64 => 64 division on a 32-bit platform. While the kernel
207 * provides a div64_u64() function for this we do not use it because the
208 * implementation is flawed. There are cases which return incorrect
209 * results as late as linux-2.6.35. Until this is fixed upstream the
210 * spl must provide its own implementation.
212 * This implementation is a slightly modified version of the algorithm
213 * proposed by the book 'Hacker's Delight'. The original source can be
214 * found here and is available for use without restriction.
216 * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
220 * Calculate number of leading of zeros for a 64-bit value.
222 static int
223 nlz64(uint64_t x)
225 register int n = 0;
227 if (x == 0)
228 return (64);
230 if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
231 if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
232 if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; }
233 if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; }
234 if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; }
235 if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; }
237 return (n);
241 * Newer kernels have a div_u64() function but we define our own
242 * to simplify portability between kernel versions.
244 static inline uint64_t
245 __div_u64(uint64_t u, uint32_t v)
247 (void) do_div(u, v);
248 return (u);
252 * Turn off missing prototypes warning for these functions. They are
253 * replacements for libgcc-provided functions and will never be called
254 * directly.
256 #if defined(__GNUC__) && !defined(__clang__)
257 #pragma GCC diagnostic push
258 #pragma GCC diagnostic ignored "-Wmissing-prototypes"
259 #endif
262 * Implementation of 64-bit unsigned division for 32-bit machines.
264 * First the procedure takes care of the case in which the divisor is a
265 * 32-bit quantity. There are two subcases: (1) If the left half of the
266 * dividend is less than the divisor, one execution of do_div() is all that
267 * is required (overflow is not possible). (2) Otherwise it does two
268 * divisions, using the grade school method.
270 uint64_t
271 __udivdi3(uint64_t u, uint64_t v)
273 uint64_t u0, u1, v1, q0, q1, k;
274 int n;
276 if (v >> 32 == 0) { // If v < 2**32:
277 if (u >> 32 < v) { // If u/v cannot overflow,
278 return (__div_u64(u, v)); // just do one division.
279 } else { // If u/v would overflow:
280 u1 = u >> 32; // Break u into two halves.
281 u0 = u & 0xFFFFFFFF;
282 q1 = __div_u64(u1, v); // First quotient digit.
283 k = u1 - q1 * v; // First remainder, < v.
284 u0 += (k << 32);
285 q0 = __div_u64(u0, v); // Seconds quotient digit.
286 return ((q1 << 32) + q0);
288 } else { // If v >= 2**32:
289 n = nlz64(v); // 0 <= n <= 31.
290 v1 = (v << n) >> 32; // Normalize divisor, MSB is 1.
291 u1 = u >> 1; // To ensure no overflow.
292 q1 = __div_u64(u1, v1); // Get quotient from
293 q0 = (q1 << n) >> 31; // Undo normalization and
294 // division of u by 2.
295 if (q0 != 0) // Make q0 correct or
296 q0 = q0 - 1; // too small by 1.
297 if ((u - q0 * v) >= v)
298 q0 = q0 + 1; // Now q0 is correct.
300 return (q0);
303 EXPORT_SYMBOL(__udivdi3);
305 #ifndef abs64
306 /* CSTYLED */
307 #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
308 #endif
311 * Implementation of 64-bit signed division for 32-bit machines.
313 int64_t
314 __divdi3(int64_t u, int64_t v)
316 int64_t q, t;
317 q = __udivdi3(abs64(u), abs64(v));
318 t = (u ^ v) >> 63; // If u, v have different
319 return ((q ^ t) - t); // signs, negate q.
321 EXPORT_SYMBOL(__divdi3);
324 * Implementation of 64-bit unsigned modulo for 32-bit machines.
326 uint64_t
327 __umoddi3(uint64_t dividend, uint64_t divisor)
329 return (dividend - (divisor * __udivdi3(dividend, divisor)));
331 EXPORT_SYMBOL(__umoddi3);
333 /* 64-bit signed modulo for 32-bit machines. */
334 int64_t
335 __moddi3(int64_t n, int64_t d)
337 int64_t q;
338 boolean_t nn = B_FALSE;
340 if (n < 0) {
341 nn = B_TRUE;
342 n = -n;
344 if (d < 0)
345 d = -d;
347 q = __umoddi3(n, d);
349 return (nn ? -q : q);
351 EXPORT_SYMBOL(__moddi3);
354 * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
356 uint64_t
357 __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
359 uint64_t q = __udivdi3(n, d);
360 if (r)
361 *r = n - d * q;
362 return (q);
364 EXPORT_SYMBOL(__udivmoddi4);
367 * Implementation of 64-bit signed division/modulo for 32-bit machines.
369 int64_t
370 __divmoddi4(int64_t n, int64_t d, int64_t *r)
372 int64_t q, rr;
373 boolean_t nn = B_FALSE;
374 boolean_t nd = B_FALSE;
375 if (n < 0) {
376 nn = B_TRUE;
377 n = -n;
379 if (d < 0) {
380 nd = B_TRUE;
381 d = -d;
384 q = __udivmoddi4(n, d, (uint64_t *)&rr);
386 if (nn != nd)
387 q = -q;
388 if (nn)
389 rr = -rr;
390 if (r)
391 *r = rr;
392 return (q);
394 EXPORT_SYMBOL(__divmoddi4);
396 #if defined(__arm) || defined(__arm__)
398 * Implementation of 64-bit (un)signed division for 32-bit arm machines.
400 * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned)
401 * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
402 * and the remainder in {r2, r3}. The return type is specifically left
403 * set to 'void' to ensure the compiler does not overwrite these registers
404 * during the return. All results are in registers as per ABI
406 void
407 __aeabi_uldivmod(uint64_t u, uint64_t v)
409 uint64_t res;
410 uint64_t mod;
412 res = __udivdi3(u, v);
413 mod = __umoddi3(u, v);
415 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
416 register uint32_t r1 asm("r1") = (res >> 32);
417 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
418 register uint32_t r3 asm("r3") = (mod >> 32);
420 asm volatile(""
421 : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */
422 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
424 return; /* r0; */
427 EXPORT_SYMBOL(__aeabi_uldivmod);
429 void
430 __aeabi_ldivmod(int64_t u, int64_t v)
432 int64_t res;
433 uint64_t mod;
435 res = __divdi3(u, v);
436 mod = __umoddi3(u, v);
438 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
439 register uint32_t r1 asm("r1") = (res >> 32);
440 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
441 register uint32_t r3 asm("r3") = (mod >> 32);
443 asm volatile(""
444 : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */
445 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
447 return; /* r0; */
450 EXPORT_SYMBOL(__aeabi_ldivmod);
451 #endif /* __arm || __arm__ */
453 #if defined(__GNUC__) && !defined(__clang__)
454 #pragma GCC diagnostic pop
455 #endif
457 #endif /* BITS_PER_LONG */
460 * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
461 * ddi_strtol(9F) man page. I have not verified the behavior of these
462 * functions against their Solaris counterparts. It is possible that I
463 * may have misinterpreted the man page or the man page is incorrect.
465 int ddi_strtol(const char *, char **, int, long *);
466 int ddi_strtoull(const char *, char **, int, unsigned long long *);
467 int ddi_strtoll(const char *, char **, int, long long *);
469 #define define_ddi_strtox(type, valtype) \
470 int ddi_strto##type(const char *str, char **endptr, \
471 int base, valtype *result) \
473 valtype last_value, value = 0; \
474 char *ptr = (char *)str; \
475 int digit, minus = 0; \
477 while (strchr(" \t\n\r\f", *ptr)) \
478 ++ptr; \
480 if (strlen(ptr) == 0) \
481 return (EINVAL); \
483 switch (*ptr) { \
484 case '-': \
485 minus = 1; \
486 zfs_fallthrough; \
487 case '+': \
488 ++ptr; \
489 break; \
492 /* Auto-detect base based on prefix */ \
493 if (!base) { \
494 if (str[0] == '0') { \
495 if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
496 base = 16; /* hex */ \
497 ptr += 2; \
498 } else if (str[1] >= '0' && str[1] < '8') { \
499 base = 8; /* octal */ \
500 ptr += 1; \
501 } else { \
502 return (EINVAL); \
504 } else { \
505 base = 10; /* decimal */ \
509 while (1) { \
510 if (isdigit(*ptr)) \
511 digit = *ptr - '0'; \
512 else if (isalpha(*ptr)) \
513 digit = tolower(*ptr) - 'a' + 10; \
514 else \
515 break; \
517 if (digit >= base) \
518 break; \
520 last_value = value; \
521 value = value * base + digit; \
522 if (last_value > value) /* Overflow */ \
523 return (ERANGE); \
525 ptr++; \
528 *result = minus ? -value : value; \
530 if (endptr) \
531 *endptr = ptr; \
533 return (0); \
536 define_ddi_strtox(l, long)
537 define_ddi_strtox(ull, unsigned long long)
538 define_ddi_strtox(ll, long long)
540 EXPORT_SYMBOL(ddi_strtol);
541 EXPORT_SYMBOL(ddi_strtoll);
542 EXPORT_SYMBOL(ddi_strtoull);
545 ddi_copyin(const void *from, void *to, size_t len, int flags)
547 /* Fake ioctl() issued by kernel, 'from' is a kernel address */
548 if (flags & FKIOCTL) {
549 memcpy(to, from, len);
550 return (0);
553 return (copyin(from, to, len));
555 EXPORT_SYMBOL(ddi_copyin);
557 #define define_spl_param(type, fmt) \
558 int \
559 spl_param_get_##type(char *buf, zfs_kernel_param_t *kp) \
561 return (scnprintf(buf, PAGE_SIZE, fmt "\n", \
562 *(type *)kp->arg)); \
564 int \
565 spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp) \
567 return (kstrto##type(buf, 0, (type *)kp->arg)); \
569 const struct kernel_param_ops spl_param_ops_##type = { \
570 .set = spl_param_set_##type, \
571 .get = spl_param_get_##type, \
572 }; \
573 EXPORT_SYMBOL(spl_param_get_##type); \
574 EXPORT_SYMBOL(spl_param_set_##type); \
575 EXPORT_SYMBOL(spl_param_ops_##type);
577 define_spl_param(s64, "%lld")
578 define_spl_param(u64, "%llu")
581 * Post a uevent to userspace whenever a new vdev adds to the pool. It is
582 * necessary to sync blkid information with udev, which zed daemon uses
583 * during device hotplug to identify the vdev.
585 void
586 spl_signal_kobj_evt(struct block_device *bdev)
588 #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
589 #ifdef HAVE_BDEV_KOBJ
590 struct kobject *disk_kobj = bdev_kobj(bdev);
591 #else
592 struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj;
593 #endif
594 if (disk_kobj) {
595 int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE);
596 if (ret) {
597 pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
598 " (%p): failed(ret:%d)\n", KOBJ_CHANGE,
599 kobject_name(disk_kobj), disk_kobj, ret);
602 #else
604 * This is encountered if neither bdev_kobj() nor part_to_dev() is available
605 * in the kernel - likely due to an API change that needs to be chased down.
607 #error "Unsupported kernel: unable to get struct kobj from bdev"
608 #endif
610 EXPORT_SYMBOL(spl_signal_kobj_evt);
613 ddi_copyout(const void *from, void *to, size_t len, int flags)
615 /* Fake ioctl() issued by kernel, 'from' is a kernel address */
616 if (flags & FKIOCTL) {
617 memcpy(to, from, len);
618 return (0);
621 return (copyout(from, to, len));
623 EXPORT_SYMBOL(ddi_copyout);
625 static int
626 spl_getattr(struct file *filp, struct kstat *stat)
628 int rc;
630 ASSERT(filp);
631 ASSERT(stat);
633 rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
634 AT_STATX_SYNC_AS_STAT);
635 if (rc)
636 return (-rc);
638 return (0);
642 * Read the unique system identifier from the /etc/hostid file.
644 * The behavior of /usr/bin/hostid on Linux systems with the
645 * regular eglibc and coreutils is:
647 * 1. Generate the value if the /etc/hostid file does not exist
648 * or if the /etc/hostid file is less than four bytes in size.
650 * 2. If the /etc/hostid file is at least 4 bytes, then return
651 * the first four bytes [0..3] in native endian order.
653 * 3. Always ignore bytes [4..] if they exist in the file.
655 * Only the first four bytes are significant, even on systems that
656 * have a 64-bit word size.
658 * See:
660 * eglibc: sysdeps/unix/sysv/linux/gethostid.c
661 * coreutils: src/hostid.c
663 * Notes:
665 * The /etc/hostid file on Solaris is a text file that often reads:
667 * # DO NOT EDIT
668 * "0123456789"
670 * Directly copying this file to Linux results in a constant
671 * hostid of 4f442023 because the default comment constitutes
672 * the first four bytes of the file.
676 static char *spl_hostid_path = HW_HOSTID_PATH;
677 module_param(spl_hostid_path, charp, 0444);
678 MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
680 static int
681 hostid_read(uint32_t *hostid)
683 uint64_t size;
684 uint32_t value = 0;
685 int error;
686 loff_t off;
687 struct file *filp;
688 struct kstat stat;
690 filp = filp_open(spl_hostid_path, 0, 0);
692 if (IS_ERR(filp))
693 return (ENOENT);
695 error = spl_getattr(filp, &stat);
696 if (error) {
697 filp_close(filp, 0);
698 return (error);
700 size = stat.size;
701 // cppcheck-suppress sizeofwithnumericparameter
702 if (size < sizeof (HW_HOSTID_MASK)) {
703 filp_close(filp, 0);
704 return (EINVAL);
707 off = 0;
709 * Read directly into the variable like eglibc does.
710 * Short reads are okay; native behavior is preserved.
712 error = kernel_read(filp, &value, sizeof (value), &off);
713 if (error < 0) {
714 filp_close(filp, 0);
715 return (EIO);
718 /* Mask down to 32 bits like coreutils does. */
719 *hostid = (value & HW_HOSTID_MASK);
720 filp_close(filp, 0);
722 return (0);
726 * Return the system hostid. Preferentially use the spl_hostid module option
727 * when set, otherwise use the value in the /etc/hostid file.
729 uint32_t
730 zone_get_hostid(void *zone)
732 uint32_t hostid;
734 ASSERT3P(zone, ==, NULL);
736 if (spl_hostid != 0)
737 return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
739 if (hostid_read(&hostid) == 0)
740 return (hostid);
742 return (0);
744 EXPORT_SYMBOL(zone_get_hostid);
746 static int
747 spl_kvmem_init(void)
749 int rc = 0;
751 rc = spl_kmem_init();
752 if (rc)
753 return (rc);
755 rc = spl_vmem_init();
756 if (rc) {
757 spl_kmem_fini();
758 return (rc);
761 return (rc);
765 * We initialize the random number generator with 128 bits of entropy from the
766 * system random number generator. In the improbable case that we have a zero
767 * seed, we fallback to the system jiffies, unless it is also zero, in which
768 * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
769 * initialize each of the per-cpu seeds so that the sequences generated on each
770 * CPU are guaranteed to never overlap in practice.
772 static int __init
773 spl_random_init(void)
775 uint64_t s[4];
776 int i = 0;
778 spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t),
779 sizeof (uint64_t));
781 if (!spl_pseudo_entropy)
782 return (-ENOMEM);
784 get_random_bytes(s, sizeof (s));
786 if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) {
787 if (jiffies != 0) {
788 s[0] = jiffies;
789 s[1] = ~0 - jiffies;
790 s[2] = ~jiffies;
791 s[3] = jiffies - ~0;
792 } else {
793 (void) memcpy(s, "improbable seed", 16);
795 printk("SPL: get_random_bytes() returned 0 "
796 "when generating random seed. Setting initial seed to "
797 "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]),
798 cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3]));
801 for_each_possible_cpu(i) {
802 uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
804 spl_rand_jump(s);
806 wordp[0] = s[0];
807 wordp[1] = s[1];
808 wordp[2] = s[2];
809 wordp[3] = s[3];
812 return (0);
815 static void
816 spl_random_fini(void)
818 free_percpu(spl_pseudo_entropy);
821 static void
822 spl_kvmem_fini(void)
824 spl_vmem_fini();
825 spl_kmem_fini();
828 static int __init
829 spl_init(void)
831 int rc = 0;
833 if ((rc = spl_random_init()))
834 goto out0;
836 if ((rc = spl_kvmem_init()))
837 goto out1;
839 if ((rc = spl_tsd_init()))
840 goto out2;
842 if ((rc = spl_proc_init()))
843 goto out3;
845 if ((rc = spl_kstat_init()))
846 goto out4;
848 if ((rc = spl_taskq_init()))
849 goto out5;
851 if ((rc = spl_kmem_cache_init()))
852 goto out6;
854 if ((rc = spl_zlib_init()))
855 goto out7;
857 if ((rc = spl_zone_init()))
858 goto out8;
860 return (rc);
862 out8:
863 spl_zlib_fini();
864 out7:
865 spl_kmem_cache_fini();
866 out6:
867 spl_taskq_fini();
868 out5:
869 spl_kstat_fini();
870 out4:
871 spl_proc_fini();
872 out3:
873 spl_tsd_fini();
874 out2:
875 spl_kvmem_fini();
876 out1:
877 spl_random_fini();
878 out0:
879 return (rc);
882 static void __exit
883 spl_fini(void)
885 spl_zone_fini();
886 spl_zlib_fini();
887 spl_kmem_cache_fini();
888 spl_taskq_fini();
889 spl_kstat_fini();
890 spl_proc_fini();
891 spl_tsd_fini();
892 spl_kvmem_fini();
893 spl_random_fini();
896 module_init(spl_init);
897 module_exit(spl_fini);
899 MODULE_DESCRIPTION("Solaris Porting Layer");
900 MODULE_AUTHOR(ZFS_META_AUTHOR);
901 MODULE_LICENSE("GPL");
902 MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);