4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30 * Copyright (c) 2023, Klara Inc.
33 #include <sys/zfs_context.h>
34 #include <sys/zfs_chksum.h>
35 #include <sys/spa_impl.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
40 #include <sys/dmu_tx.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_initialize.h>
45 #include <sys/vdev_trim.h>
46 #include <sys/vdev_file.h>
47 #include <sys/vdev_raidz.h>
48 #include <sys/metaslab.h>
49 #include <sys/uberblock_impl.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/fm/util.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
63 #include <sys/kstat.h>
65 #include <sys/btree.h>
66 #include <sys/zfeature.h>
68 #include <sys/zstd/zstd.h>
73 * There are three basic locks for managing spa_t structures:
75 * spa_namespace_lock (global mutex)
77 * This lock must be acquired to do any of the following:
79 * - Lookup a spa_t by name
80 * - Add or remove a spa_t from the namespace
81 * - Increase spa_refcount from non-zero
82 * - Check if spa_refcount is zero
84 * - add/remove/attach/detach devices
85 * - Held for the duration of create/destroy/import/export
87 * It does not need to handle recursion. A create or destroy may
88 * reference objects (files or zvols) in other pools, but by
89 * definition they must have an existing reference, and will never need
90 * to lookup a spa_t by name.
92 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
94 * This reference count keep track of any active users of the spa_t. The
95 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
96 * the refcount is never really 'zero' - opening a pool implicitly keeps
97 * some references in the DMU. Internally we check against spa_minref, but
98 * present the image of a zero/non-zero value to consumers.
100 * spa_config_lock[] (per-spa array of rwlocks)
102 * This protects the spa_t from config changes, and must be held in
103 * the following circumstances:
105 * - RW_READER to perform I/O to the spa
106 * - RW_WRITER to change the vdev config
108 * The locking order is fairly straightforward:
110 * spa_namespace_lock -> spa_refcount
112 * The namespace lock must be acquired to increase the refcount from 0
113 * or to check if it is zero.
115 * spa_refcount -> spa_config_lock[]
117 * There must be at least one valid reference on the spa_t to acquire
120 * spa_namespace_lock -> spa_config_lock[]
122 * The namespace lock must always be taken before the config lock.
125 * The spa_namespace_lock can be acquired directly and is globally visible.
127 * The namespace is manipulated using the following functions, all of which
128 * require the spa_namespace_lock to be held.
130 * spa_lookup() Lookup a spa_t by name.
132 * spa_add() Create a new spa_t in the namespace.
134 * spa_remove() Remove a spa_t from the namespace. This also
135 * frees up any memory associated with the spa_t.
137 * spa_next() Returns the next spa_t in the system, or the
138 * first if NULL is passed.
140 * spa_evict_all() Shutdown and remove all spa_t structures in
143 * spa_guid_exists() Determine whether a pool/device guid exists.
145 * The spa_refcount is manipulated using the following functions:
147 * spa_open_ref() Adds a reference to the given spa_t. Must be
148 * called with spa_namespace_lock held if the
149 * refcount is currently zero.
151 * spa_close() Remove a reference from the spa_t. This will
152 * not free the spa_t or remove it from the
153 * namespace. No locking is required.
155 * spa_refcount_zero() Returns true if the refcount is currently
156 * zero. Must be called with spa_namespace_lock
159 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
160 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
161 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
163 * To read the configuration, it suffices to hold one of these locks as reader.
164 * To modify the configuration, you must hold all locks as writer. To modify
165 * vdev state without altering the vdev tree's topology (e.g. online/offline),
166 * you must hold SCL_STATE and SCL_ZIO as writer.
168 * We use these distinct config locks to avoid recursive lock entry.
169 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
170 * block allocations (SCL_ALLOC), which may require reading space maps
171 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
173 * The spa config locks cannot be normal rwlocks because we need the
174 * ability to hand off ownership. For example, SCL_ZIO is acquired
175 * by the issuing thread and later released by an interrupt thread.
176 * They do, however, obey the usual write-wanted semantics to prevent
177 * writer (i.e. system administrator) starvation.
179 * The lock acquisition rules are as follows:
182 * Protects changes to the vdev tree topology, such as vdev
183 * add/remove/attach/detach. Protects the dirty config list
184 * (spa_config_dirty_list) and the set of spares and l2arc devices.
187 * Protects changes to pool state and vdev state, such as vdev
188 * online/offline/fault/degrade/clear. Protects the dirty state list
189 * (spa_state_dirty_list) and global pool state (spa_state).
192 * Protects changes to metaslab groups and classes.
193 * Held as reader by metaslab_alloc() and metaslab_claim().
196 * Held by bp-level zios (those which have no io_vd upon entry)
197 * to prevent changes to the vdev tree. The bp-level zio implicitly
198 * protects all of its vdev child zios, which do not hold SCL_ZIO.
201 * Protects changes to metaslab groups and classes.
202 * Held as reader by metaslab_free(). SCL_FREE is distinct from
203 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
204 * blocks in zio_done() while another i/o that holds either
205 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
208 * Held as reader to prevent changes to the vdev tree during trivial
209 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
210 * other locks, and lower than all of them, to ensure that it's safe
211 * to acquire regardless of caller context.
213 * In addition, the following rules apply:
215 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
216 * The lock ordering is SCL_CONFIG > spa_props_lock.
218 * (b) I/O operations on leaf vdevs. For any zio operation that takes
219 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
220 * or zio_write_phys() -- the caller must ensure that the config cannot
221 * cannot change in the interim, and that the vdev cannot be reopened.
222 * SCL_STATE as reader suffices for both.
224 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
226 * spa_vdev_enter() Acquire the namespace lock and the config lock
229 * spa_vdev_exit() Release the config lock, wait for all I/O
230 * to complete, sync the updated configs to the
231 * cache, and release the namespace lock.
233 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
234 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
235 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
238 static avl_tree_t spa_namespace_avl
;
239 kmutex_t spa_namespace_lock
;
240 static kcondvar_t spa_namespace_cv
;
241 static const int spa_max_replication_override
= SPA_DVAS_PER_BP
;
243 static kmutex_t spa_spare_lock
;
244 static avl_tree_t spa_spare_avl
;
245 static kmutex_t spa_l2cache_lock
;
246 static avl_tree_t spa_l2cache_avl
;
248 spa_mode_t spa_mode_global
= SPA_MODE_UNINIT
;
252 * Everything except dprintf, set_error, spa, and indirect_remap is on
253 * by default in debug builds.
255 int zfs_flags
= ~(ZFS_DEBUG_DPRINTF
| ZFS_DEBUG_SET_ERROR
|
256 ZFS_DEBUG_INDIRECT_REMAP
);
262 * zfs_recover can be set to nonzero to attempt to recover from
263 * otherwise-fatal errors, typically caused by on-disk corruption. When
264 * set, calls to zfs_panic_recover() will turn into warning messages.
265 * This should only be used as a last resort, as it typically results
266 * in leaked space, or worse.
268 int zfs_recover
= B_FALSE
;
271 * If destroy encounters an EIO while reading metadata (e.g. indirect
272 * blocks), space referenced by the missing metadata can not be freed.
273 * Normally this causes the background destroy to become "stalled", as
274 * it is unable to make forward progress. While in this stalled state,
275 * all remaining space to free from the error-encountering filesystem is
276 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
277 * permanently leak the space from indirect blocks that can not be read,
278 * and continue to free everything else that it can.
280 * The default, "stalling" behavior is useful if the storage partially
281 * fails (i.e. some but not all i/os fail), and then later recovers. In
282 * this case, we will be able to continue pool operations while it is
283 * partially failed, and when it recovers, we can continue to free the
284 * space, with no leaks. However, note that this case is actually
287 * Typically pools either (a) fail completely (but perhaps temporarily,
288 * e.g. a top-level vdev going offline), or (b) have localized,
289 * permanent errors (e.g. disk returns the wrong data due to bit flip or
290 * firmware bug). In case (a), this setting does not matter because the
291 * pool will be suspended and the sync thread will not be able to make
292 * forward progress regardless. In case (b), because the error is
293 * permanent, the best we can do is leak the minimum amount of space,
294 * which is what setting this flag will do. Therefore, it is reasonable
295 * for this flag to normally be set, but we chose the more conservative
296 * approach of not setting it, so that there is no possibility of
297 * leaking space in the "partial temporary" failure case.
299 int zfs_free_leak_on_eio
= B_FALSE
;
302 * Expiration time in milliseconds. This value has two meanings. First it is
303 * used to determine when the spa_deadman() logic should fire. By default the
304 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
305 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
306 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
307 * in one of three behaviors controlled by zfs_deadman_failmode.
309 uint64_t zfs_deadman_synctime_ms
= 600000UL; /* 10 min. */
312 * This value controls the maximum amount of time zio_wait() will block for an
313 * outstanding IO. By default this is 300 seconds at which point the "hung"
314 * behavior will be applied as described for zfs_deadman_synctime_ms.
316 uint64_t zfs_deadman_ziotime_ms
= 300000UL; /* 5 min. */
319 * Check time in milliseconds. This defines the frequency at which we check
322 uint64_t zfs_deadman_checktime_ms
= 60000UL; /* 1 min. */
325 * By default the deadman is enabled.
327 int zfs_deadman_enabled
= B_TRUE
;
330 * Controls the behavior of the deadman when it detects a "hung" I/O.
331 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
333 * wait - Wait for the "hung" I/O (default)
334 * continue - Attempt to recover from a "hung" I/O
335 * panic - Panic the system
337 const char *zfs_deadman_failmode
= "wait";
340 * The worst case is single-sector max-parity RAID-Z blocks, in which
341 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
342 * times the size; so just assume that. Add to this the fact that
343 * we can have up to 3 DVAs per bp, and one more factor of 2 because
344 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
346 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
348 uint_t spa_asize_inflation
= 24;
351 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
352 * the pool to be consumed (bounded by spa_max_slop). This ensures that we
353 * don't run the pool completely out of space, due to unaccounted changes (e.g.
354 * to the MOS). It also limits the worst-case time to allocate space. If we
355 * have less than this amount of free space, most ZPL operations (e.g. write,
356 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are
357 * also part of this 3.2% of space which can't be consumed by normal writes;
358 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
361 * Certain operations (e.g. file removal, most administrative actions) can
362 * use half the slop space. They will only return ENOSPC if less than half
363 * the slop space is free. Typically, once the pool has less than the slop
364 * space free, the user will use these operations to free up space in the pool.
365 * These are the operations that call dsl_pool_adjustedsize() with the netfree
366 * argument set to TRUE.
368 * Operations that are almost guaranteed to free up space in the absence of
369 * a pool checkpoint can use up to three quarters of the slop space
372 * A very restricted set of operations are always permitted, regardless of
373 * the amount of free space. These are the operations that call
374 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
375 * increase in the amount of space used, it is possible to run the pool
376 * completely out of space, causing it to be permanently read-only.
378 * Note that on very small pools, the slop space will be larger than
379 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
380 * but we never allow it to be more than half the pool size.
382 * Further, on very large pools, the slop space will be smaller than
383 * 3.2%, to avoid reserving much more space than we actually need; bounded
384 * by spa_max_slop (128GB).
386 * See also the comments in zfs_space_check_t.
388 uint_t spa_slop_shift
= 5;
389 static const uint64_t spa_min_slop
= 128ULL * 1024 * 1024;
390 static const uint64_t spa_max_slop
= 128ULL * 1024 * 1024 * 1024;
391 static const int spa_allocators
= 4;
395 spa_load_failed(spa_t
*spa
, const char *fmt
, ...)
401 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
404 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa
->spa_name
,
405 spa
->spa_trust_config
? "trusted" : "untrusted", buf
);
409 spa_load_note(spa_t
*spa
, const char *fmt
, ...)
415 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
418 zfs_dbgmsg("spa_load(%s, config %s): %s", spa
->spa_name
,
419 spa
->spa_trust_config
? "trusted" : "untrusted", buf
);
423 * By default dedup and user data indirects land in the special class
425 static int zfs_ddt_data_is_special
= B_TRUE
;
426 static int zfs_user_indirect_is_special
= B_TRUE
;
429 * The percentage of special class final space reserved for metadata only.
430 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
431 * let metadata into the class.
433 static uint_t zfs_special_class_metadata_reserve_pct
= 25;
436 * ==========================================================================
438 * ==========================================================================
441 spa_config_lock_init(spa_t
*spa
)
443 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
444 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
445 mutex_init(&scl
->scl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
446 cv_init(&scl
->scl_cv
, NULL
, CV_DEFAULT
, NULL
);
447 scl
->scl_writer
= NULL
;
448 scl
->scl_write_wanted
= 0;
454 spa_config_lock_destroy(spa_t
*spa
)
456 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
457 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
458 mutex_destroy(&scl
->scl_lock
);
459 cv_destroy(&scl
->scl_cv
);
460 ASSERT(scl
->scl_writer
== NULL
);
461 ASSERT(scl
->scl_write_wanted
== 0);
462 ASSERT(scl
->scl_count
== 0);
467 spa_config_tryenter(spa_t
*spa
, int locks
, const void *tag
, krw_t rw
)
469 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
470 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
471 if (!(locks
& (1 << i
)))
473 mutex_enter(&scl
->scl_lock
);
474 if (rw
== RW_READER
) {
475 if (scl
->scl_writer
|| scl
->scl_write_wanted
) {
476 mutex_exit(&scl
->scl_lock
);
477 spa_config_exit(spa
, locks
& ((1 << i
) - 1),
482 ASSERT(scl
->scl_writer
!= curthread
);
483 if (scl
->scl_count
!= 0) {
484 mutex_exit(&scl
->scl_lock
);
485 spa_config_exit(spa
, locks
& ((1 << i
) - 1),
489 scl
->scl_writer
= curthread
;
492 mutex_exit(&scl
->scl_lock
);
498 spa_config_enter_impl(spa_t
*spa
, int locks
, const void *tag
, krw_t rw
,
504 ASSERT3U(SCL_LOCKS
, <, sizeof (wlocks_held
) * NBBY
);
506 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
507 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
508 if (scl
->scl_writer
== curthread
)
509 wlocks_held
|= (1 << i
);
510 if (!(locks
& (1 << i
)))
512 mutex_enter(&scl
->scl_lock
);
513 if (rw
== RW_READER
) {
514 while (scl
->scl_writer
||
515 (!mmp_flag
&& scl
->scl_write_wanted
)) {
516 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
519 ASSERT(scl
->scl_writer
!= curthread
);
520 while (scl
->scl_count
!= 0) {
521 scl
->scl_write_wanted
++;
522 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
523 scl
->scl_write_wanted
--;
525 scl
->scl_writer
= curthread
;
528 mutex_exit(&scl
->scl_lock
);
530 ASSERT3U(wlocks_held
, <=, locks
);
534 spa_config_enter(spa_t
*spa
, int locks
, const void *tag
, krw_t rw
)
536 spa_config_enter_impl(spa
, locks
, tag
, rw
, 0);
540 * The spa_config_enter_mmp() allows the mmp thread to cut in front of
541 * outstanding write lock requests. This is needed since the mmp updates are
542 * time sensitive and failure to service them promptly will result in a
543 * suspended pool. This pool suspension has been seen in practice when there is
544 * a single disk in a pool that is responding slowly and presumably about to
549 spa_config_enter_mmp(spa_t
*spa
, int locks
, const void *tag
, krw_t rw
)
551 spa_config_enter_impl(spa
, locks
, tag
, rw
, 1);
555 spa_config_exit(spa_t
*spa
, int locks
, const void *tag
)
558 for (int i
= SCL_LOCKS
- 1; i
>= 0; i
--) {
559 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
560 if (!(locks
& (1 << i
)))
562 mutex_enter(&scl
->scl_lock
);
563 ASSERT(scl
->scl_count
> 0);
564 if (--scl
->scl_count
== 0) {
565 ASSERT(scl
->scl_writer
== NULL
||
566 scl
->scl_writer
== curthread
);
567 scl
->scl_writer
= NULL
; /* OK in either case */
568 cv_broadcast(&scl
->scl_cv
);
570 mutex_exit(&scl
->scl_lock
);
575 spa_config_held(spa_t
*spa
, int locks
, krw_t rw
)
579 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
580 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
581 if (!(locks
& (1 << i
)))
583 if ((rw
== RW_READER
&& scl
->scl_count
!= 0) ||
584 (rw
== RW_WRITER
&& scl
->scl_writer
== curthread
))
585 locks_held
|= 1 << i
;
592 * ==========================================================================
593 * SPA namespace functions
594 * ==========================================================================
598 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
599 * Returns NULL if no matching spa_t is found.
602 spa_lookup(const char *name
)
604 static spa_t search
; /* spa_t is large; don't allocate on stack */
609 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
611 (void) strlcpy(search
.spa_name
, name
, sizeof (search
.spa_name
));
614 * If it's a full dataset name, figure out the pool name and
617 cp
= strpbrk(search
.spa_name
, "/@#");
621 spa
= avl_find(&spa_namespace_avl
, &search
, &where
);
627 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
628 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
629 * looking for potentially hung I/Os.
632 spa_deadman(void *arg
)
636 /* Disable the deadman if the pool is suspended. */
637 if (spa_suspended(spa
))
640 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
641 (gethrtime() - spa
->spa_sync_starttime
) / NANOSEC
,
642 (u_longlong_t
)++spa
->spa_deadman_calls
);
643 if (zfs_deadman_enabled
)
644 vdev_deadman(spa
->spa_root_vdev
, FTAG
);
646 spa
->spa_deadman_tqid
= taskq_dispatch_delay(system_delay_taskq
,
647 spa_deadman
, spa
, TQ_SLEEP
, ddi_get_lbolt() +
648 MSEC_TO_TICK(zfs_deadman_checktime_ms
));
652 spa_log_sm_sort_by_txg(const void *va
, const void *vb
)
654 const spa_log_sm_t
*a
= va
;
655 const spa_log_sm_t
*b
= vb
;
657 return (TREE_CMP(a
->sls_txg
, b
->sls_txg
));
661 * Create an uninitialized spa_t with the given name. Requires
662 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
663 * exist by calling spa_lookup() first.
666 spa_add(const char *name
, nvlist_t
*config
, const char *altroot
)
669 spa_config_dirent_t
*dp
;
671 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
673 spa
= kmem_zalloc(sizeof (spa_t
), KM_SLEEP
);
675 mutex_init(&spa
->spa_async_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
676 mutex_init(&spa
->spa_errlist_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
677 mutex_init(&spa
->spa_errlog_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
678 mutex_init(&spa
->spa_evicting_os_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
679 mutex_init(&spa
->spa_history_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
680 mutex_init(&spa
->spa_proc_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
681 mutex_init(&spa
->spa_props_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
682 mutex_init(&spa
->spa_cksum_tmpls_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
683 mutex_init(&spa
->spa_scrub_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
684 mutex_init(&spa
->spa_suspend_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
685 mutex_init(&spa
->spa_vdev_top_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
686 mutex_init(&spa
->spa_feat_stats_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
687 mutex_init(&spa
->spa_flushed_ms_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
688 mutex_init(&spa
->spa_activities_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
690 cv_init(&spa
->spa_async_cv
, NULL
, CV_DEFAULT
, NULL
);
691 cv_init(&spa
->spa_evicting_os_cv
, NULL
, CV_DEFAULT
, NULL
);
692 cv_init(&spa
->spa_proc_cv
, NULL
, CV_DEFAULT
, NULL
);
693 cv_init(&spa
->spa_scrub_io_cv
, NULL
, CV_DEFAULT
, NULL
);
694 cv_init(&spa
->spa_suspend_cv
, NULL
, CV_DEFAULT
, NULL
);
695 cv_init(&spa
->spa_activities_cv
, NULL
, CV_DEFAULT
, NULL
);
696 cv_init(&spa
->spa_waiters_cv
, NULL
, CV_DEFAULT
, NULL
);
698 for (int t
= 0; t
< TXG_SIZE
; t
++)
699 bplist_create(&spa
->spa_free_bplist
[t
]);
701 (void) strlcpy(spa
->spa_name
, name
, sizeof (spa
->spa_name
));
702 spa
->spa_state
= POOL_STATE_UNINITIALIZED
;
703 spa
->spa_freeze_txg
= UINT64_MAX
;
704 spa
->spa_final_txg
= UINT64_MAX
;
705 spa
->spa_load_max_txg
= UINT64_MAX
;
707 spa
->spa_proc_state
= SPA_PROC_NONE
;
708 spa
->spa_trust_config
= B_TRUE
;
709 spa
->spa_hostid
= zone_get_hostid(NULL
);
711 spa
->spa_deadman_synctime
= MSEC2NSEC(zfs_deadman_synctime_ms
);
712 spa
->spa_deadman_ziotime
= MSEC2NSEC(zfs_deadman_ziotime_ms
);
713 spa_set_deadman_failmode(spa
, zfs_deadman_failmode
);
715 zfs_refcount_create(&spa
->spa_refcount
);
716 spa_config_lock_init(spa
);
719 avl_add(&spa_namespace_avl
, spa
);
722 * Set the alternate root, if there is one.
725 spa
->spa_root
= spa_strdup(altroot
);
727 spa
->spa_alloc_count
= spa_allocators
;
728 spa
->spa_allocs
= kmem_zalloc(spa
->spa_alloc_count
*
729 sizeof (spa_alloc_t
), KM_SLEEP
);
730 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++) {
731 mutex_init(&spa
->spa_allocs
[i
].spaa_lock
, NULL
, MUTEX_DEFAULT
,
733 avl_create(&spa
->spa_allocs
[i
].spaa_tree
, zio_bookmark_compare
,
734 sizeof (zio_t
), offsetof(zio_t
, io_queue_node
.a
));
736 avl_create(&spa
->spa_metaslabs_by_flushed
, metaslab_sort_by_flushed
,
737 sizeof (metaslab_t
), offsetof(metaslab_t
, ms_spa_txg_node
));
738 avl_create(&spa
->spa_sm_logs_by_txg
, spa_log_sm_sort_by_txg
,
739 sizeof (spa_log_sm_t
), offsetof(spa_log_sm_t
, sls_node
));
740 list_create(&spa
->spa_log_summary
, sizeof (log_summary_entry_t
),
741 offsetof(log_summary_entry_t
, lse_node
));
744 * Every pool starts with the default cachefile
746 list_create(&spa
->spa_config_list
, sizeof (spa_config_dirent_t
),
747 offsetof(spa_config_dirent_t
, scd_link
));
749 dp
= kmem_zalloc(sizeof (spa_config_dirent_t
), KM_SLEEP
);
750 dp
->scd_path
= altroot
? NULL
: spa_strdup(spa_config_path
);
751 list_insert_head(&spa
->spa_config_list
, dp
);
753 VERIFY(nvlist_alloc(&spa
->spa_load_info
, NV_UNIQUE_NAME
,
756 if (config
!= NULL
) {
759 if (nvlist_lookup_nvlist(config
, ZPOOL_CONFIG_FEATURES_FOR_READ
,
761 VERIFY(nvlist_dup(features
, &spa
->spa_label_features
,
765 VERIFY(nvlist_dup(config
, &spa
->spa_config
, 0) == 0);
768 if (spa
->spa_label_features
== NULL
) {
769 VERIFY(nvlist_alloc(&spa
->spa_label_features
, NV_UNIQUE_NAME
,
773 spa
->spa_min_ashift
= INT_MAX
;
774 spa
->spa_max_ashift
= 0;
775 spa
->spa_min_alloc
= INT_MAX
;
776 spa
->spa_gcd_alloc
= INT_MAX
;
778 /* Reset cached value */
779 spa
->spa_dedup_dspace
= ~0ULL;
782 * As a pool is being created, treat all features as disabled by
783 * setting SPA_FEATURE_DISABLED for all entries in the feature
786 for (int i
= 0; i
< SPA_FEATURES
; i
++) {
787 spa
->spa_feat_refcount_cache
[i
] = SPA_FEATURE_DISABLED
;
790 list_create(&spa
->spa_leaf_list
, sizeof (vdev_t
),
791 offsetof(vdev_t
, vdev_leaf_node
));
797 * Removes a spa_t from the namespace, freeing up any memory used. Requires
798 * spa_namespace_lock. This is called only after the spa_t has been closed and
802 spa_remove(spa_t
*spa
)
804 spa_config_dirent_t
*dp
;
806 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
807 ASSERT(spa_state(spa
) == POOL_STATE_UNINITIALIZED
);
808 ASSERT3U(zfs_refcount_count(&spa
->spa_refcount
), ==, 0);
809 ASSERT0(spa
->spa_waiters
);
811 nvlist_free(spa
->spa_config_splitting
);
813 avl_remove(&spa_namespace_avl
, spa
);
814 cv_broadcast(&spa_namespace_cv
);
817 spa_strfree(spa
->spa_root
);
819 while ((dp
= list_remove_head(&spa
->spa_config_list
)) != NULL
) {
820 if (dp
->scd_path
!= NULL
)
821 spa_strfree(dp
->scd_path
);
822 kmem_free(dp
, sizeof (spa_config_dirent_t
));
825 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++) {
826 avl_destroy(&spa
->spa_allocs
[i
].spaa_tree
);
827 mutex_destroy(&spa
->spa_allocs
[i
].spaa_lock
);
829 kmem_free(spa
->spa_allocs
, spa
->spa_alloc_count
*
830 sizeof (spa_alloc_t
));
832 avl_destroy(&spa
->spa_metaslabs_by_flushed
);
833 avl_destroy(&spa
->spa_sm_logs_by_txg
);
834 list_destroy(&spa
->spa_log_summary
);
835 list_destroy(&spa
->spa_config_list
);
836 list_destroy(&spa
->spa_leaf_list
);
838 nvlist_free(spa
->spa_label_features
);
839 nvlist_free(spa
->spa_load_info
);
840 nvlist_free(spa
->spa_feat_stats
);
841 spa_config_set(spa
, NULL
);
843 zfs_refcount_destroy(&spa
->spa_refcount
);
845 spa_stats_destroy(spa
);
846 spa_config_lock_destroy(spa
);
848 for (int t
= 0; t
< TXG_SIZE
; t
++)
849 bplist_destroy(&spa
->spa_free_bplist
[t
]);
851 zio_checksum_templates_free(spa
);
853 cv_destroy(&spa
->spa_async_cv
);
854 cv_destroy(&spa
->spa_evicting_os_cv
);
855 cv_destroy(&spa
->spa_proc_cv
);
856 cv_destroy(&spa
->spa_scrub_io_cv
);
857 cv_destroy(&spa
->spa_suspend_cv
);
858 cv_destroy(&spa
->spa_activities_cv
);
859 cv_destroy(&spa
->spa_waiters_cv
);
861 mutex_destroy(&spa
->spa_flushed_ms_lock
);
862 mutex_destroy(&spa
->spa_async_lock
);
863 mutex_destroy(&spa
->spa_errlist_lock
);
864 mutex_destroy(&spa
->spa_errlog_lock
);
865 mutex_destroy(&spa
->spa_evicting_os_lock
);
866 mutex_destroy(&spa
->spa_history_lock
);
867 mutex_destroy(&spa
->spa_proc_lock
);
868 mutex_destroy(&spa
->spa_props_lock
);
869 mutex_destroy(&spa
->spa_cksum_tmpls_lock
);
870 mutex_destroy(&spa
->spa_scrub_lock
);
871 mutex_destroy(&spa
->spa_suspend_lock
);
872 mutex_destroy(&spa
->spa_vdev_top_lock
);
873 mutex_destroy(&spa
->spa_feat_stats_lock
);
874 mutex_destroy(&spa
->spa_activities_lock
);
876 kmem_free(spa
, sizeof (spa_t
));
880 * Given a pool, return the next pool in the namespace, or NULL if there is
881 * none. If 'prev' is NULL, return the first pool.
884 spa_next(spa_t
*prev
)
886 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
889 return (AVL_NEXT(&spa_namespace_avl
, prev
));
891 return (avl_first(&spa_namespace_avl
));
895 * ==========================================================================
896 * SPA refcount functions
897 * ==========================================================================
901 * Add a reference to the given spa_t. Must have at least one reference, or
902 * have the namespace lock held.
905 spa_open_ref(spa_t
*spa
, const void *tag
)
907 ASSERT(zfs_refcount_count(&spa
->spa_refcount
) >= spa
->spa_minref
||
908 MUTEX_HELD(&spa_namespace_lock
));
909 (void) zfs_refcount_add(&spa
->spa_refcount
, tag
);
913 * Remove a reference to the given spa_t. Must have at least one reference, or
914 * have the namespace lock held.
917 spa_close(spa_t
*spa
, const void *tag
)
919 ASSERT(zfs_refcount_count(&spa
->spa_refcount
) > spa
->spa_minref
||
920 MUTEX_HELD(&spa_namespace_lock
));
921 (void) zfs_refcount_remove(&spa
->spa_refcount
, tag
);
925 * Remove a reference to the given spa_t held by a dsl dir that is
926 * being asynchronously released. Async releases occur from a taskq
927 * performing eviction of dsl datasets and dirs. The namespace lock
928 * isn't held and the hold by the object being evicted may contribute to
929 * spa_minref (e.g. dataset or directory released during pool export),
930 * so the asserts in spa_close() do not apply.
933 spa_async_close(spa_t
*spa
, const void *tag
)
935 (void) zfs_refcount_remove(&spa
->spa_refcount
, tag
);
939 * Check to see if the spa refcount is zero. Must be called with
940 * spa_namespace_lock held. We really compare against spa_minref, which is the
941 * number of references acquired when opening a pool
944 spa_refcount_zero(spa_t
*spa
)
946 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
948 return (zfs_refcount_count(&spa
->spa_refcount
) == spa
->spa_minref
);
952 * ==========================================================================
953 * SPA spare and l2cache tracking
954 * ==========================================================================
958 * Hot spares and cache devices are tracked using the same code below,
959 * for 'auxiliary' devices.
962 typedef struct spa_aux
{
970 spa_aux_compare(const void *a
, const void *b
)
972 const spa_aux_t
*sa
= (const spa_aux_t
*)a
;
973 const spa_aux_t
*sb
= (const spa_aux_t
*)b
;
975 return (TREE_CMP(sa
->aux_guid
, sb
->aux_guid
));
979 spa_aux_add(vdev_t
*vd
, avl_tree_t
*avl
)
985 search
.aux_guid
= vd
->vdev_guid
;
986 if ((aux
= avl_find(avl
, &search
, &where
)) != NULL
) {
989 aux
= kmem_zalloc(sizeof (spa_aux_t
), KM_SLEEP
);
990 aux
->aux_guid
= vd
->vdev_guid
;
992 avl_insert(avl
, aux
, where
);
997 spa_aux_remove(vdev_t
*vd
, avl_tree_t
*avl
)
1003 search
.aux_guid
= vd
->vdev_guid
;
1004 aux
= avl_find(avl
, &search
, &where
);
1006 ASSERT(aux
!= NULL
);
1008 if (--aux
->aux_count
== 0) {
1009 avl_remove(avl
, aux
);
1010 kmem_free(aux
, sizeof (spa_aux_t
));
1011 } else if (aux
->aux_pool
== spa_guid(vd
->vdev_spa
)) {
1012 aux
->aux_pool
= 0ULL;
1017 spa_aux_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
, avl_tree_t
*avl
)
1019 spa_aux_t search
, *found
;
1021 search
.aux_guid
= guid
;
1022 found
= avl_find(avl
, &search
, NULL
);
1026 *pool
= found
->aux_pool
;
1033 *refcnt
= found
->aux_count
;
1038 return (found
!= NULL
);
1042 spa_aux_activate(vdev_t
*vd
, avl_tree_t
*avl
)
1044 spa_aux_t search
, *found
;
1047 search
.aux_guid
= vd
->vdev_guid
;
1048 found
= avl_find(avl
, &search
, &where
);
1049 ASSERT(found
!= NULL
);
1050 ASSERT(found
->aux_pool
== 0ULL);
1052 found
->aux_pool
= spa_guid(vd
->vdev_spa
);
1056 * Spares are tracked globally due to the following constraints:
1058 * - A spare may be part of multiple pools.
1059 * - A spare may be added to a pool even if it's actively in use within
1061 * - A spare in use in any pool can only be the source of a replacement if
1062 * the target is a spare in the same pool.
1064 * We keep track of all spares on the system through the use of a reference
1065 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1066 * spare, then we bump the reference count in the AVL tree. In addition, we set
1067 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1068 * inactive). When a spare is made active (used to replace a device in the
1069 * pool), we also keep track of which pool its been made a part of.
1071 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1072 * called under the spa_namespace lock as part of vdev reconfiguration. The
1073 * separate spare lock exists for the status query path, which does not need to
1074 * be completely consistent with respect to other vdev configuration changes.
1078 spa_spare_compare(const void *a
, const void *b
)
1080 return (spa_aux_compare(a
, b
));
1084 spa_spare_add(vdev_t
*vd
)
1086 mutex_enter(&spa_spare_lock
);
1087 ASSERT(!vd
->vdev_isspare
);
1088 spa_aux_add(vd
, &spa_spare_avl
);
1089 vd
->vdev_isspare
= B_TRUE
;
1090 mutex_exit(&spa_spare_lock
);
1094 spa_spare_remove(vdev_t
*vd
)
1096 mutex_enter(&spa_spare_lock
);
1097 ASSERT(vd
->vdev_isspare
);
1098 spa_aux_remove(vd
, &spa_spare_avl
);
1099 vd
->vdev_isspare
= B_FALSE
;
1100 mutex_exit(&spa_spare_lock
);
1104 spa_spare_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
)
1108 mutex_enter(&spa_spare_lock
);
1109 found
= spa_aux_exists(guid
, pool
, refcnt
, &spa_spare_avl
);
1110 mutex_exit(&spa_spare_lock
);
1116 spa_spare_activate(vdev_t
*vd
)
1118 mutex_enter(&spa_spare_lock
);
1119 ASSERT(vd
->vdev_isspare
);
1120 spa_aux_activate(vd
, &spa_spare_avl
);
1121 mutex_exit(&spa_spare_lock
);
1125 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1126 * Cache devices currently only support one pool per cache device, and so
1127 * for these devices the aux reference count is currently unused beyond 1.
1131 spa_l2cache_compare(const void *a
, const void *b
)
1133 return (spa_aux_compare(a
, b
));
1137 spa_l2cache_add(vdev_t
*vd
)
1139 mutex_enter(&spa_l2cache_lock
);
1140 ASSERT(!vd
->vdev_isl2cache
);
1141 spa_aux_add(vd
, &spa_l2cache_avl
);
1142 vd
->vdev_isl2cache
= B_TRUE
;
1143 mutex_exit(&spa_l2cache_lock
);
1147 spa_l2cache_remove(vdev_t
*vd
)
1149 mutex_enter(&spa_l2cache_lock
);
1150 ASSERT(vd
->vdev_isl2cache
);
1151 spa_aux_remove(vd
, &spa_l2cache_avl
);
1152 vd
->vdev_isl2cache
= B_FALSE
;
1153 mutex_exit(&spa_l2cache_lock
);
1157 spa_l2cache_exists(uint64_t guid
, uint64_t *pool
)
1161 mutex_enter(&spa_l2cache_lock
);
1162 found
= spa_aux_exists(guid
, pool
, NULL
, &spa_l2cache_avl
);
1163 mutex_exit(&spa_l2cache_lock
);
1169 spa_l2cache_activate(vdev_t
*vd
)
1171 mutex_enter(&spa_l2cache_lock
);
1172 ASSERT(vd
->vdev_isl2cache
);
1173 spa_aux_activate(vd
, &spa_l2cache_avl
);
1174 mutex_exit(&spa_l2cache_lock
);
1178 * ==========================================================================
1180 * ==========================================================================
1184 * Lock the given spa_t for the purpose of adding or removing a vdev.
1185 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1186 * It returns the next transaction group for the spa_t.
1189 spa_vdev_enter(spa_t
*spa
)
1191 mutex_enter(&spa
->spa_vdev_top_lock
);
1192 mutex_enter(&spa_namespace_lock
);
1194 vdev_autotrim_stop_all(spa
);
1196 return (spa_vdev_config_enter(spa
));
1200 * The same as spa_vdev_enter() above but additionally takes the guid of
1201 * the vdev being detached. When there is a rebuild in process it will be
1202 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1203 * The rebuild is canceled if only a single child remains after the detach.
1206 spa_vdev_detach_enter(spa_t
*spa
, uint64_t guid
)
1208 mutex_enter(&spa
->spa_vdev_top_lock
);
1209 mutex_enter(&spa_namespace_lock
);
1211 vdev_autotrim_stop_all(spa
);
1214 vdev_t
*vd
= spa_lookup_by_guid(spa
, guid
, B_FALSE
);
1216 vdev_rebuild_stop_wait(vd
->vdev_top
);
1220 return (spa_vdev_config_enter(spa
));
1224 * Internal implementation for spa_vdev_enter(). Used when a vdev
1225 * operation requires multiple syncs (i.e. removing a device) while
1226 * keeping the spa_namespace_lock held.
1229 spa_vdev_config_enter(spa_t
*spa
)
1231 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1233 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
1235 return (spa_last_synced_txg(spa
) + 1);
1239 * Used in combination with spa_vdev_config_enter() to allow the syncing
1240 * of multiple transactions without releasing the spa_namespace_lock.
1243 spa_vdev_config_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
,
1246 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1248 int config_changed
= B_FALSE
;
1250 ASSERT(txg
> spa_last_synced_txg(spa
));
1252 spa
->spa_pending_vdev
= NULL
;
1255 * Reassess the DTLs.
1257 vdev_dtl_reassess(spa
->spa_root_vdev
, 0, 0, B_FALSE
, B_FALSE
);
1259 if (error
== 0 && !list_is_empty(&spa
->spa_config_dirty_list
)) {
1260 config_changed
= B_TRUE
;
1261 spa
->spa_config_generation
++;
1265 * Verify the metaslab classes.
1267 ASSERT(metaslab_class_validate(spa_normal_class(spa
)) == 0);
1268 ASSERT(metaslab_class_validate(spa_log_class(spa
)) == 0);
1269 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa
)) == 0);
1270 ASSERT(metaslab_class_validate(spa_special_class(spa
)) == 0);
1271 ASSERT(metaslab_class_validate(spa_dedup_class(spa
)) == 0);
1273 spa_config_exit(spa
, SCL_ALL
, spa
);
1276 * Panic the system if the specified tag requires it. This
1277 * is useful for ensuring that configurations are updated
1280 if (zio_injection_enabled
)
1281 zio_handle_panic_injection(spa
, tag
, 0);
1284 * Note: this txg_wait_synced() is important because it ensures
1285 * that there won't be more than one config change per txg.
1286 * This allows us to use the txg as the generation number.
1289 txg_wait_synced(spa
->spa_dsl_pool
, txg
);
1292 ASSERT(!vd
->vdev_detached
|| vd
->vdev_dtl_sm
== NULL
);
1293 if (vd
->vdev_ops
->vdev_op_leaf
) {
1294 mutex_enter(&vd
->vdev_initialize_lock
);
1295 vdev_initialize_stop(vd
, VDEV_INITIALIZE_CANCELED
,
1297 mutex_exit(&vd
->vdev_initialize_lock
);
1299 mutex_enter(&vd
->vdev_trim_lock
);
1300 vdev_trim_stop(vd
, VDEV_TRIM_CANCELED
, NULL
);
1301 mutex_exit(&vd
->vdev_trim_lock
);
1305 * The vdev may be both a leaf and top-level device.
1307 vdev_autotrim_stop_wait(vd
);
1309 spa_config_enter(spa
, SCL_STATE_ALL
, spa
, RW_WRITER
);
1311 spa_config_exit(spa
, SCL_STATE_ALL
, spa
);
1315 * If the config changed, update the config cache.
1318 spa_write_cachefile(spa
, B_FALSE
, B_TRUE
, B_TRUE
);
1322 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1323 * locking of spa_vdev_enter(), we also want make sure the transactions have
1324 * synced to disk, and then update the global configuration cache with the new
1328 spa_vdev_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
)
1330 vdev_autotrim_restart(spa
);
1331 vdev_rebuild_restart(spa
);
1333 spa_vdev_config_exit(spa
, vd
, txg
, error
, FTAG
);
1334 mutex_exit(&spa_namespace_lock
);
1335 mutex_exit(&spa
->spa_vdev_top_lock
);
1341 * Lock the given spa_t for the purpose of changing vdev state.
1344 spa_vdev_state_enter(spa_t
*spa
, int oplocks
)
1346 int locks
= SCL_STATE_ALL
| oplocks
;
1349 * Root pools may need to read of the underlying devfs filesystem
1350 * when opening up a vdev. Unfortunately if we're holding the
1351 * SCL_ZIO lock it will result in a deadlock when we try to issue
1352 * the read from the root filesystem. Instead we "prefetch"
1353 * the associated vnodes that we need prior to opening the
1354 * underlying devices and cache them so that we can prevent
1355 * any I/O when we are doing the actual open.
1357 if (spa_is_root(spa
)) {
1358 int low
= locks
& ~(SCL_ZIO
- 1);
1359 int high
= locks
& ~low
;
1361 spa_config_enter(spa
, high
, spa
, RW_WRITER
);
1362 vdev_hold(spa
->spa_root_vdev
);
1363 spa_config_enter(spa
, low
, spa
, RW_WRITER
);
1365 spa_config_enter(spa
, locks
, spa
, RW_WRITER
);
1367 spa
->spa_vdev_locks
= locks
;
1371 spa_vdev_state_exit(spa_t
*spa
, vdev_t
*vd
, int error
)
1373 boolean_t config_changed
= B_FALSE
;
1376 if (vd
== NULL
|| vd
== spa
->spa_root_vdev
) {
1377 vdev_top
= spa
->spa_root_vdev
;
1379 vdev_top
= vd
->vdev_top
;
1382 if (vd
!= NULL
|| error
== 0)
1383 vdev_dtl_reassess(vdev_top
, 0, 0, B_FALSE
, B_FALSE
);
1386 if (vd
!= spa
->spa_root_vdev
)
1387 vdev_state_dirty(vdev_top
);
1389 config_changed
= B_TRUE
;
1390 spa
->spa_config_generation
++;
1393 if (spa_is_root(spa
))
1394 vdev_rele(spa
->spa_root_vdev
);
1396 ASSERT3U(spa
->spa_vdev_locks
, >=, SCL_STATE_ALL
);
1397 spa_config_exit(spa
, spa
->spa_vdev_locks
, spa
);
1400 * If anything changed, wait for it to sync. This ensures that,
1401 * from the system administrator's perspective, zpool(8) commands
1402 * are synchronous. This is important for things like zpool offline:
1403 * when the command completes, you expect no further I/O from ZFS.
1406 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1409 * If the config changed, update the config cache.
1411 if (config_changed
) {
1412 mutex_enter(&spa_namespace_lock
);
1413 spa_write_cachefile(spa
, B_FALSE
, B_TRUE
, B_FALSE
);
1414 mutex_exit(&spa_namespace_lock
);
1421 * ==========================================================================
1422 * Miscellaneous functions
1423 * ==========================================================================
1427 spa_activate_mos_feature(spa_t
*spa
, const char *feature
, dmu_tx_t
*tx
)
1429 if (!nvlist_exists(spa
->spa_label_features
, feature
)) {
1430 fnvlist_add_boolean(spa
->spa_label_features
, feature
);
1432 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1433 * dirty the vdev config because lock SCL_CONFIG is not held.
1434 * Thankfully, in this case we don't need to dirty the config
1435 * because it will be written out anyway when we finish
1436 * creating the pool.
1438 if (tx
->tx_txg
!= TXG_INITIAL
)
1439 vdev_config_dirty(spa
->spa_root_vdev
);
1444 spa_deactivate_mos_feature(spa_t
*spa
, const char *feature
)
1446 if (nvlist_remove_all(spa
->spa_label_features
, feature
) == 0)
1447 vdev_config_dirty(spa
->spa_root_vdev
);
1451 * Return the spa_t associated with given pool_guid, if it exists. If
1452 * device_guid is non-zero, determine whether the pool exists *and* contains
1453 * a device with the specified device_guid.
1456 spa_by_guid(uint64_t pool_guid
, uint64_t device_guid
)
1459 avl_tree_t
*t
= &spa_namespace_avl
;
1461 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1463 for (spa
= avl_first(t
); spa
!= NULL
; spa
= AVL_NEXT(t
, spa
)) {
1464 if (spa
->spa_state
== POOL_STATE_UNINITIALIZED
)
1466 if (spa
->spa_root_vdev
== NULL
)
1468 if (spa_guid(spa
) == pool_guid
) {
1469 if (device_guid
== 0)
1472 if (vdev_lookup_by_guid(spa
->spa_root_vdev
,
1473 device_guid
) != NULL
)
1477 * Check any devices we may be in the process of adding.
1479 if (spa
->spa_pending_vdev
) {
1480 if (vdev_lookup_by_guid(spa
->spa_pending_vdev
,
1481 device_guid
) != NULL
)
1491 * Determine whether a pool with the given pool_guid exists.
1494 spa_guid_exists(uint64_t pool_guid
, uint64_t device_guid
)
1496 return (spa_by_guid(pool_guid
, device_guid
) != NULL
);
1500 spa_strdup(const char *s
)
1506 new = kmem_alloc(len
+ 1, KM_SLEEP
);
1507 memcpy(new, s
, len
+ 1);
1513 spa_strfree(char *s
)
1515 kmem_free(s
, strlen(s
) + 1);
1519 spa_generate_guid(spa_t
*spa
)
1525 (void) random_get_pseudo_bytes((void *)&guid
,
1527 } while (guid
== 0 || spa_guid_exists(spa_guid(spa
), guid
));
1530 (void) random_get_pseudo_bytes((void *)&guid
,
1532 } while (guid
== 0 || spa_guid_exists(guid
, 0));
1539 snprintf_blkptr(char *buf
, size_t buflen
, const blkptr_t
*bp
)
1542 const char *checksum
= NULL
;
1543 const char *compress
= NULL
;
1546 if (BP_GET_TYPE(bp
) & DMU_OT_NEWTYPE
) {
1547 dmu_object_byteswap_t bswap
=
1548 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
1549 (void) snprintf(type
, sizeof (type
), "bswap %s %s",
1550 DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)) ?
1551 "metadata" : "data",
1552 dmu_ot_byteswap
[bswap
].ob_name
);
1554 (void) strlcpy(type
, dmu_ot
[BP_GET_TYPE(bp
)].ot_name
,
1557 if (!BP_IS_EMBEDDED(bp
)) {
1559 zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_name
;
1561 compress
= zio_compress_table
[BP_GET_COMPRESS(bp
)].ci_name
;
1564 SNPRINTF_BLKPTR(kmem_scnprintf
, ' ', buf
, buflen
, bp
, type
, checksum
,
1569 spa_freeze(spa_t
*spa
)
1571 uint64_t freeze_txg
= 0;
1573 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1574 if (spa
->spa_freeze_txg
== UINT64_MAX
) {
1575 freeze_txg
= spa_last_synced_txg(spa
) + TXG_SIZE
;
1576 spa
->spa_freeze_txg
= freeze_txg
;
1578 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1579 if (freeze_txg
!= 0)
1580 txg_wait_synced(spa_get_dsl(spa
), freeze_txg
);
1584 zfs_panic_recover(const char *fmt
, ...)
1589 vcmn_err(zfs_recover
? CE_WARN
: CE_PANIC
, fmt
, adx
);
1594 * This is a stripped-down version of strtoull, suitable only for converting
1595 * lowercase hexadecimal numbers that don't overflow.
1598 zfs_strtonum(const char *str
, char **nptr
)
1604 while ((c
= *str
) != '\0') {
1605 if (c
>= '0' && c
<= '9')
1607 else if (c
>= 'a' && c
<= 'f')
1608 digit
= 10 + c
- 'a';
1619 *nptr
= (char *)str
;
1625 spa_activate_allocation_classes(spa_t
*spa
, dmu_tx_t
*tx
)
1628 * We bump the feature refcount for each special vdev added to the pool
1630 ASSERT(spa_feature_is_enabled(spa
, SPA_FEATURE_ALLOCATION_CLASSES
));
1631 spa_feature_incr(spa
, SPA_FEATURE_ALLOCATION_CLASSES
, tx
);
1635 * ==========================================================================
1636 * Accessor functions
1637 * ==========================================================================
1641 spa_shutting_down(spa_t
*spa
)
1643 return (spa
->spa_async_suspended
);
1647 spa_get_dsl(spa_t
*spa
)
1649 return (spa
->spa_dsl_pool
);
1653 spa_is_initializing(spa_t
*spa
)
1655 return (spa
->spa_is_initializing
);
1659 spa_indirect_vdevs_loaded(spa_t
*spa
)
1661 return (spa
->spa_indirect_vdevs_loaded
);
1665 spa_get_rootblkptr(spa_t
*spa
)
1667 return (&spa
->spa_ubsync
.ub_rootbp
);
1671 spa_set_rootblkptr(spa_t
*spa
, const blkptr_t
*bp
)
1673 spa
->spa_uberblock
.ub_rootbp
= *bp
;
1677 spa_altroot(spa_t
*spa
, char *buf
, size_t buflen
)
1679 if (spa
->spa_root
== NULL
)
1682 (void) strlcpy(buf
, spa
->spa_root
, buflen
);
1686 spa_sync_pass(spa_t
*spa
)
1688 return (spa
->spa_sync_pass
);
1692 spa_name(spa_t
*spa
)
1694 return (spa
->spa_name
);
1698 spa_guid(spa_t
*spa
)
1700 dsl_pool_t
*dp
= spa_get_dsl(spa
);
1704 * If we fail to parse the config during spa_load(), we can go through
1705 * the error path (which posts an ereport) and end up here with no root
1706 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1709 if (spa
->spa_root_vdev
== NULL
)
1710 return (spa
->spa_config_guid
);
1712 guid
= spa
->spa_last_synced_guid
!= 0 ?
1713 spa
->spa_last_synced_guid
: spa
->spa_root_vdev
->vdev_guid
;
1716 * Return the most recently synced out guid unless we're
1717 * in syncing context.
1719 if (dp
&& dsl_pool_sync_context(dp
))
1720 return (spa
->spa_root_vdev
->vdev_guid
);
1726 spa_load_guid(spa_t
*spa
)
1729 * This is a GUID that exists solely as a reference for the
1730 * purposes of the arc. It is generated at load time, and
1731 * is never written to persistent storage.
1733 return (spa
->spa_load_guid
);
1737 spa_last_synced_txg(spa_t
*spa
)
1739 return (spa
->spa_ubsync
.ub_txg
);
1743 spa_first_txg(spa_t
*spa
)
1745 return (spa
->spa_first_txg
);
1749 spa_syncing_txg(spa_t
*spa
)
1751 return (spa
->spa_syncing_txg
);
1755 * Return the last txg where data can be dirtied. The final txgs
1756 * will be used to just clear out any deferred frees that remain.
1759 spa_final_dirty_txg(spa_t
*spa
)
1761 return (spa
->spa_final_txg
- TXG_DEFER_SIZE
);
1765 spa_state(spa_t
*spa
)
1767 return (spa
->spa_state
);
1771 spa_load_state(spa_t
*spa
)
1773 return (spa
->spa_load_state
);
1777 spa_freeze_txg(spa_t
*spa
)
1779 return (spa
->spa_freeze_txg
);
1783 * Return the inflated asize for a logical write in bytes. This is used by the
1784 * DMU to calculate the space a logical write will require on disk.
1785 * If lsize is smaller than the largest physical block size allocatable on this
1786 * pool we use its value instead, since the write will end up using the whole
1790 spa_get_worst_case_asize(spa_t
*spa
, uint64_t lsize
)
1793 return (0); /* No inflation needed */
1794 return (MAX(lsize
, 1 << spa
->spa_max_ashift
) * spa_asize_inflation
);
1798 * Return the amount of slop space in bytes. It is typically 1/32 of the pool
1799 * (3.2%), minus the embedded log space. On very small pools, it may be
1800 * slightly larger than this. On very large pools, it will be capped to
1801 * the value of spa_max_slop. The embedded log space is not included in
1802 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a
1803 * constant 97% of the total space, regardless of metaslab size (assuming the
1804 * default spa_slop_shift=5 and a non-tiny pool).
1806 * See the comment above spa_slop_shift for more details.
1809 spa_get_slop_space(spa_t
*spa
)
1815 * Make sure spa_dedup_dspace has been set.
1817 if (spa
->spa_dedup_dspace
== ~0ULL)
1818 spa_update_dspace(spa
);
1821 * spa_get_dspace() includes the space only logically "used" by
1822 * deduplicated data, so since it's not useful to reserve more
1823 * space with more deduplicated data, we subtract that out here.
1825 space
= spa_get_dspace(spa
) - spa
->spa_dedup_dspace
;
1826 slop
= MIN(space
>> spa_slop_shift
, spa_max_slop
);
1829 * Subtract the embedded log space, but no more than half the (3.2%)
1830 * unusable space. Note, the "no more than half" is only relevant if
1831 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1834 uint64_t embedded_log
=
1835 metaslab_class_get_dspace(spa_embedded_log_class(spa
));
1836 slop
-= MIN(embedded_log
, slop
>> 1);
1839 * Slop space should be at least spa_min_slop, but no more than half
1842 slop
= MAX(slop
, MIN(space
>> 1, spa_min_slop
));
1847 spa_get_dspace(spa_t
*spa
)
1849 return (spa
->spa_dspace
);
1853 spa_get_checkpoint_space(spa_t
*spa
)
1855 return (spa
->spa_checkpoint_info
.sci_dspace
);
1859 spa_update_dspace(spa_t
*spa
)
1861 spa
->spa_dspace
= metaslab_class_get_dspace(spa_normal_class(spa
)) +
1862 ddt_get_dedup_dspace(spa
) + brt_get_dspace(spa
);
1863 if (spa
->spa_nonallocating_dspace
> 0) {
1865 * Subtract the space provided by all non-allocating vdevs that
1866 * contribute to dspace. If a file is overwritten, its old
1867 * blocks are freed and new blocks are allocated. If there are
1868 * no snapshots of the file, the available space should remain
1869 * the same. The old blocks could be freed from the
1870 * non-allocating vdev, but the new blocks must be allocated on
1871 * other (allocating) vdevs. By reserving the entire size of
1872 * the non-allocating vdevs (including allocated space), we
1873 * ensure that there will be enough space on the allocating
1874 * vdevs for this file overwrite to succeed.
1876 * Note that the DMU/DSL doesn't actually know or care
1877 * how much space is allocated (it does its own tracking
1878 * of how much space has been logically used). So it
1879 * doesn't matter that the data we are moving may be
1880 * allocated twice (on the old device and the new device).
1882 ASSERT3U(spa
->spa_dspace
, >=, spa
->spa_nonallocating_dspace
);
1883 spa
->spa_dspace
-= spa
->spa_nonallocating_dspace
;
1888 * Return the failure mode that has been set to this pool. The default
1889 * behavior will be to block all I/Os when a complete failure occurs.
1892 spa_get_failmode(spa_t
*spa
)
1894 return (spa
->spa_failmode
);
1898 spa_suspended(spa_t
*spa
)
1900 return (spa
->spa_suspended
!= ZIO_SUSPEND_NONE
);
1904 spa_version(spa_t
*spa
)
1906 return (spa
->spa_ubsync
.ub_version
);
1910 spa_deflate(spa_t
*spa
)
1912 return (spa
->spa_deflate
);
1916 spa_normal_class(spa_t
*spa
)
1918 return (spa
->spa_normal_class
);
1922 spa_log_class(spa_t
*spa
)
1924 return (spa
->spa_log_class
);
1928 spa_embedded_log_class(spa_t
*spa
)
1930 return (spa
->spa_embedded_log_class
);
1934 spa_special_class(spa_t
*spa
)
1936 return (spa
->spa_special_class
);
1940 spa_dedup_class(spa_t
*spa
)
1942 return (spa
->spa_dedup_class
);
1946 * Locate an appropriate allocation class
1949 spa_preferred_class(spa_t
*spa
, uint64_t size
, dmu_object_type_t objtype
,
1950 uint_t level
, uint_t special_smallblk
)
1953 * ZIL allocations determine their class in zio_alloc_zil().
1955 ASSERT(objtype
!= DMU_OT_INTENT_LOG
);
1957 boolean_t has_special_class
= spa
->spa_special_class
->mc_groups
!= 0;
1959 if (DMU_OT_IS_DDT(objtype
)) {
1960 if (spa
->spa_dedup_class
->mc_groups
!= 0)
1961 return (spa_dedup_class(spa
));
1962 else if (has_special_class
&& zfs_ddt_data_is_special
)
1963 return (spa_special_class(spa
));
1965 return (spa_normal_class(spa
));
1968 /* Indirect blocks for user data can land in special if allowed */
1969 if (level
> 0 && (DMU_OT_IS_FILE(objtype
) || objtype
== DMU_OT_ZVOL
)) {
1970 if (has_special_class
&& zfs_user_indirect_is_special
)
1971 return (spa_special_class(spa
));
1973 return (spa_normal_class(spa
));
1976 if (DMU_OT_IS_METADATA(objtype
) || level
> 0) {
1977 if (has_special_class
)
1978 return (spa_special_class(spa
));
1980 return (spa_normal_class(spa
));
1984 * Allow small file blocks in special class in some cases (like
1985 * for the dRAID vdev feature). But always leave a reserve of
1986 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1988 if (DMU_OT_IS_FILE(objtype
) &&
1989 has_special_class
&& size
<= special_smallblk
) {
1990 metaslab_class_t
*special
= spa_special_class(spa
);
1991 uint64_t alloc
= metaslab_class_get_alloc(special
);
1992 uint64_t space
= metaslab_class_get_space(special
);
1994 (space
* (100 - zfs_special_class_metadata_reserve_pct
))
2001 return (spa_normal_class(spa
));
2005 spa_evicting_os_register(spa_t
*spa
, objset_t
*os
)
2007 mutex_enter(&spa
->spa_evicting_os_lock
);
2008 list_insert_head(&spa
->spa_evicting_os_list
, os
);
2009 mutex_exit(&spa
->spa_evicting_os_lock
);
2013 spa_evicting_os_deregister(spa_t
*spa
, objset_t
*os
)
2015 mutex_enter(&spa
->spa_evicting_os_lock
);
2016 list_remove(&spa
->spa_evicting_os_list
, os
);
2017 cv_broadcast(&spa
->spa_evicting_os_cv
);
2018 mutex_exit(&spa
->spa_evicting_os_lock
);
2022 spa_evicting_os_wait(spa_t
*spa
)
2024 mutex_enter(&spa
->spa_evicting_os_lock
);
2025 while (!list_is_empty(&spa
->spa_evicting_os_list
))
2026 cv_wait(&spa
->spa_evicting_os_cv
, &spa
->spa_evicting_os_lock
);
2027 mutex_exit(&spa
->spa_evicting_os_lock
);
2029 dmu_buf_user_evict_wait();
2033 spa_max_replication(spa_t
*spa
)
2036 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2037 * handle BPs with more than one DVA allocated. Set our max
2038 * replication level accordingly.
2040 if (spa_version(spa
) < SPA_VERSION_DITTO_BLOCKS
)
2042 return (MIN(SPA_DVAS_PER_BP
, spa_max_replication_override
));
2046 spa_prev_software_version(spa_t
*spa
)
2048 return (spa
->spa_prev_software_version
);
2052 spa_deadman_synctime(spa_t
*spa
)
2054 return (spa
->spa_deadman_synctime
);
2058 spa_get_autotrim(spa_t
*spa
)
2060 return (spa
->spa_autotrim
);
2064 spa_deadman_ziotime(spa_t
*spa
)
2066 return (spa
->spa_deadman_ziotime
);
2070 spa_get_deadman_failmode(spa_t
*spa
)
2072 return (spa
->spa_deadman_failmode
);
2076 spa_set_deadman_failmode(spa_t
*spa
, const char *failmode
)
2078 if (strcmp(failmode
, "wait") == 0)
2079 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_WAIT
;
2080 else if (strcmp(failmode
, "continue") == 0)
2081 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_CONTINUE
;
2082 else if (strcmp(failmode
, "panic") == 0)
2083 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_PANIC
;
2085 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_WAIT
;
2089 spa_set_deadman_ziotime(hrtime_t ns
)
2093 if (spa_mode_global
!= SPA_MODE_UNINIT
) {
2094 mutex_enter(&spa_namespace_lock
);
2095 while ((spa
= spa_next(spa
)) != NULL
)
2096 spa
->spa_deadman_ziotime
= ns
;
2097 mutex_exit(&spa_namespace_lock
);
2102 spa_set_deadman_synctime(hrtime_t ns
)
2106 if (spa_mode_global
!= SPA_MODE_UNINIT
) {
2107 mutex_enter(&spa_namespace_lock
);
2108 while ((spa
= spa_next(spa
)) != NULL
)
2109 spa
->spa_deadman_synctime
= ns
;
2110 mutex_exit(&spa_namespace_lock
);
2115 dva_get_dsize_sync(spa_t
*spa
, const dva_t
*dva
)
2117 uint64_t asize
= DVA_GET_ASIZE(dva
);
2118 uint64_t dsize
= asize
;
2120 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
2122 if (asize
!= 0 && spa
->spa_deflate
) {
2123 vdev_t
*vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
2125 dsize
= (asize
>> SPA_MINBLOCKSHIFT
) *
2126 vd
->vdev_deflate_ratio
;
2133 bp_get_dsize_sync(spa_t
*spa
, const blkptr_t
*bp
)
2137 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++)
2138 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
2144 bp_get_dsize(spa_t
*spa
, const blkptr_t
*bp
)
2148 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2150 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++)
2151 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
2153 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2159 spa_dirty_data(spa_t
*spa
)
2161 return (spa
->spa_dsl_pool
->dp_dirty_total
);
2165 * ==========================================================================
2166 * SPA Import Progress Routines
2167 * ==========================================================================
2170 typedef struct spa_import_progress
{
2171 uint64_t pool_guid
; /* unique id for updates */
2173 spa_load_state_t spa_load_state
;
2174 uint64_t mmp_sec_remaining
; /* MMP activity check */
2175 uint64_t spa_load_max_txg
; /* rewind txg */
2176 procfs_list_node_t smh_node
;
2177 } spa_import_progress_t
;
2179 spa_history_list_t
*spa_import_progress_list
= NULL
;
2182 spa_import_progress_show_header(struct seq_file
*f
)
2184 seq_printf(f
, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2185 "load_state", "multihost_secs", "max_txg",
2191 spa_import_progress_show(struct seq_file
*f
, void *data
)
2193 spa_import_progress_t
*sip
= (spa_import_progress_t
*)data
;
2195 seq_printf(f
, "%-20llu %-14llu %-14llu %-12llu %s\n",
2196 (u_longlong_t
)sip
->pool_guid
, (u_longlong_t
)sip
->spa_load_state
,
2197 (u_longlong_t
)sip
->mmp_sec_remaining
,
2198 (u_longlong_t
)sip
->spa_load_max_txg
,
2199 (sip
->pool_name
? sip
->pool_name
: "-"));
2204 /* Remove oldest elements from list until there are no more than 'size' left */
2206 spa_import_progress_truncate(spa_history_list_t
*shl
, unsigned int size
)
2208 spa_import_progress_t
*sip
;
2209 while (shl
->size
> size
) {
2210 sip
= list_remove_head(&shl
->procfs_list
.pl_list
);
2212 spa_strfree(sip
->pool_name
);
2213 kmem_free(sip
, sizeof (spa_import_progress_t
));
2217 IMPLY(size
== 0, list_is_empty(&shl
->procfs_list
.pl_list
));
2221 spa_import_progress_init(void)
2223 spa_import_progress_list
= kmem_zalloc(sizeof (spa_history_list_t
),
2226 spa_import_progress_list
->size
= 0;
2228 spa_import_progress_list
->procfs_list
.pl_private
=
2229 spa_import_progress_list
;
2231 procfs_list_install("zfs",
2235 &spa_import_progress_list
->procfs_list
,
2236 spa_import_progress_show
,
2237 spa_import_progress_show_header
,
2239 offsetof(spa_import_progress_t
, smh_node
));
2243 spa_import_progress_destroy(void)
2245 spa_history_list_t
*shl
= spa_import_progress_list
;
2246 procfs_list_uninstall(&shl
->procfs_list
);
2247 spa_import_progress_truncate(shl
, 0);
2248 procfs_list_destroy(&shl
->procfs_list
);
2249 kmem_free(shl
, sizeof (spa_history_list_t
));
2253 spa_import_progress_set_state(uint64_t pool_guid
,
2254 spa_load_state_t load_state
)
2256 spa_history_list_t
*shl
= spa_import_progress_list
;
2257 spa_import_progress_t
*sip
;
2263 mutex_enter(&shl
->procfs_list
.pl_lock
);
2264 for (sip
= list_tail(&shl
->procfs_list
.pl_list
); sip
!= NULL
;
2265 sip
= list_prev(&shl
->procfs_list
.pl_list
, sip
)) {
2266 if (sip
->pool_guid
== pool_guid
) {
2267 sip
->spa_load_state
= load_state
;
2272 mutex_exit(&shl
->procfs_list
.pl_lock
);
2278 spa_import_progress_set_max_txg(uint64_t pool_guid
, uint64_t load_max_txg
)
2280 spa_history_list_t
*shl
= spa_import_progress_list
;
2281 spa_import_progress_t
*sip
;
2287 mutex_enter(&shl
->procfs_list
.pl_lock
);
2288 for (sip
= list_tail(&shl
->procfs_list
.pl_list
); sip
!= NULL
;
2289 sip
= list_prev(&shl
->procfs_list
.pl_list
, sip
)) {
2290 if (sip
->pool_guid
== pool_guid
) {
2291 sip
->spa_load_max_txg
= load_max_txg
;
2296 mutex_exit(&shl
->procfs_list
.pl_lock
);
2302 spa_import_progress_set_mmp_check(uint64_t pool_guid
,
2303 uint64_t mmp_sec_remaining
)
2305 spa_history_list_t
*shl
= spa_import_progress_list
;
2306 spa_import_progress_t
*sip
;
2312 mutex_enter(&shl
->procfs_list
.pl_lock
);
2313 for (sip
= list_tail(&shl
->procfs_list
.pl_list
); sip
!= NULL
;
2314 sip
= list_prev(&shl
->procfs_list
.pl_list
, sip
)) {
2315 if (sip
->pool_guid
== pool_guid
) {
2316 sip
->mmp_sec_remaining
= mmp_sec_remaining
;
2321 mutex_exit(&shl
->procfs_list
.pl_lock
);
2327 * A new import is in progress, add an entry.
2330 spa_import_progress_add(spa_t
*spa
)
2332 spa_history_list_t
*shl
= spa_import_progress_list
;
2333 spa_import_progress_t
*sip
;
2334 const char *poolname
= NULL
;
2336 sip
= kmem_zalloc(sizeof (spa_import_progress_t
), KM_SLEEP
);
2337 sip
->pool_guid
= spa_guid(spa
);
2339 (void) nvlist_lookup_string(spa
->spa_config
, ZPOOL_CONFIG_POOL_NAME
,
2341 if (poolname
== NULL
)
2342 poolname
= spa_name(spa
);
2343 sip
->pool_name
= spa_strdup(poolname
);
2344 sip
->spa_load_state
= spa_load_state(spa
);
2346 mutex_enter(&shl
->procfs_list
.pl_lock
);
2347 procfs_list_add(&shl
->procfs_list
, sip
);
2349 mutex_exit(&shl
->procfs_list
.pl_lock
);
2353 spa_import_progress_remove(uint64_t pool_guid
)
2355 spa_history_list_t
*shl
= spa_import_progress_list
;
2356 spa_import_progress_t
*sip
;
2358 mutex_enter(&shl
->procfs_list
.pl_lock
);
2359 for (sip
= list_tail(&shl
->procfs_list
.pl_list
); sip
!= NULL
;
2360 sip
= list_prev(&shl
->procfs_list
.pl_list
, sip
)) {
2361 if (sip
->pool_guid
== pool_guid
) {
2363 spa_strfree(sip
->pool_name
);
2364 list_remove(&shl
->procfs_list
.pl_list
, sip
);
2366 kmem_free(sip
, sizeof (spa_import_progress_t
));
2370 mutex_exit(&shl
->procfs_list
.pl_lock
);
2374 * ==========================================================================
2375 * Initialization and Termination
2376 * ==========================================================================
2380 spa_name_compare(const void *a1
, const void *a2
)
2382 const spa_t
*s1
= a1
;
2383 const spa_t
*s2
= a2
;
2386 s
= strcmp(s1
->spa_name
, s2
->spa_name
);
2388 return (TREE_ISIGN(s
));
2398 spa_init(spa_mode_t mode
)
2400 mutex_init(&spa_namespace_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
2401 mutex_init(&spa_spare_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
2402 mutex_init(&spa_l2cache_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
2403 cv_init(&spa_namespace_cv
, NULL
, CV_DEFAULT
, NULL
);
2405 avl_create(&spa_namespace_avl
, spa_name_compare
, sizeof (spa_t
),
2406 offsetof(spa_t
, spa_avl
));
2408 avl_create(&spa_spare_avl
, spa_spare_compare
, sizeof (spa_aux_t
),
2409 offsetof(spa_aux_t
, aux_avl
));
2411 avl_create(&spa_l2cache_avl
, spa_l2cache_compare
, sizeof (spa_aux_t
),
2412 offsetof(spa_aux_t
, aux_avl
));
2414 spa_mode_global
= mode
;
2417 if (spa_mode_global
!= SPA_MODE_READ
&& dprintf_find_string("watch")) {
2418 struct sigaction sa
;
2420 sa
.sa_flags
= SA_SIGINFO
;
2421 sigemptyset(&sa
.sa_mask
);
2422 sa
.sa_sigaction
= arc_buf_sigsegv
;
2424 if (sigaction(SIGSEGV
, &sa
, NULL
) == -1) {
2425 perror("could not enable watchpoints: "
2426 "sigaction(SIGSEGV, ...) = ");
2434 zfs_refcount_init();
2437 metaslab_stat_init();
2443 vdev_mirror_stat_init();
2444 vdev_raidz_math_init();
2449 zpool_feature_init();
2455 spa_import_progress_init();
2466 vdev_mirror_stat_fini();
2467 vdev_raidz_math_fini();
2474 metaslab_stat_fini();
2477 zfs_refcount_fini();
2481 spa_import_progress_destroy();
2483 avl_destroy(&spa_namespace_avl
);
2484 avl_destroy(&spa_spare_avl
);
2485 avl_destroy(&spa_l2cache_avl
);
2487 cv_destroy(&spa_namespace_cv
);
2488 mutex_destroy(&spa_namespace_lock
);
2489 mutex_destroy(&spa_spare_lock
);
2490 mutex_destroy(&spa_l2cache_lock
);
2494 * Return whether this pool has a dedicated slog device. No locking needed.
2495 * It's not a problem if the wrong answer is returned as it's only for
2496 * performance and not correctness.
2499 spa_has_slogs(spa_t
*spa
)
2501 return (spa
->spa_log_class
->mc_groups
!= 0);
2505 spa_get_log_state(spa_t
*spa
)
2507 return (spa
->spa_log_state
);
2511 spa_set_log_state(spa_t
*spa
, spa_log_state_t state
)
2513 spa
->spa_log_state
= state
;
2517 spa_is_root(spa_t
*spa
)
2519 return (spa
->spa_is_root
);
2523 spa_writeable(spa_t
*spa
)
2525 return (!!(spa
->spa_mode
& SPA_MODE_WRITE
) && spa
->spa_trust_config
);
2529 * Returns true if there is a pending sync task in any of the current
2530 * syncing txg, the current quiescing txg, or the current open txg.
2533 spa_has_pending_synctask(spa_t
*spa
)
2535 return (!txg_all_lists_empty(&spa
->spa_dsl_pool
->dp_sync_tasks
) ||
2536 !txg_all_lists_empty(&spa
->spa_dsl_pool
->dp_early_sync_tasks
));
2540 spa_mode(spa_t
*spa
)
2542 return (spa
->spa_mode
);
2546 spa_bootfs(spa_t
*spa
)
2548 return (spa
->spa_bootfs
);
2552 spa_delegation(spa_t
*spa
)
2554 return (spa
->spa_delegation
);
2558 spa_meta_objset(spa_t
*spa
)
2560 return (spa
->spa_meta_objset
);
2564 spa_dedup_checksum(spa_t
*spa
)
2566 return (spa
->spa_dedup_checksum
);
2570 * Reset pool scan stat per scan pass (or reboot).
2573 spa_scan_stat_init(spa_t
*spa
)
2575 /* data not stored on disk */
2576 spa
->spa_scan_pass_start
= gethrestime_sec();
2577 if (dsl_scan_is_paused_scrub(spa
->spa_dsl_pool
->dp_scan
))
2578 spa
->spa_scan_pass_scrub_pause
= spa
->spa_scan_pass_start
;
2580 spa
->spa_scan_pass_scrub_pause
= 0;
2582 if (dsl_errorscrub_is_paused(spa
->spa_dsl_pool
->dp_scan
))
2583 spa
->spa_scan_pass_errorscrub_pause
= spa
->spa_scan_pass_start
;
2585 spa
->spa_scan_pass_errorscrub_pause
= 0;
2587 spa
->spa_scan_pass_scrub_spent_paused
= 0;
2588 spa
->spa_scan_pass_exam
= 0;
2589 spa
->spa_scan_pass_issued
= 0;
2591 // error scrub stats
2592 spa
->spa_scan_pass_errorscrub_spent_paused
= 0;
2596 * Get scan stats for zpool status reports
2599 spa_scan_get_stats(spa_t
*spa
, pool_scan_stat_t
*ps
)
2601 dsl_scan_t
*scn
= spa
->spa_dsl_pool
? spa
->spa_dsl_pool
->dp_scan
: NULL
;
2603 if (scn
== NULL
|| (scn
->scn_phys
.scn_func
== POOL_SCAN_NONE
&&
2604 scn
->errorscrub_phys
.dep_func
== POOL_SCAN_NONE
))
2605 return (SET_ERROR(ENOENT
));
2607 memset(ps
, 0, sizeof (pool_scan_stat_t
));
2609 /* data stored on disk */
2610 ps
->pss_func
= scn
->scn_phys
.scn_func
;
2611 ps
->pss_state
= scn
->scn_phys
.scn_state
;
2612 ps
->pss_start_time
= scn
->scn_phys
.scn_start_time
;
2613 ps
->pss_end_time
= scn
->scn_phys
.scn_end_time
;
2614 ps
->pss_to_examine
= scn
->scn_phys
.scn_to_examine
;
2615 ps
->pss_examined
= scn
->scn_phys
.scn_examined
;
2616 ps
->pss_skipped
= scn
->scn_phys
.scn_skipped
;
2617 ps
->pss_processed
= scn
->scn_phys
.scn_processed
;
2618 ps
->pss_errors
= scn
->scn_phys
.scn_errors
;
2620 /* data not stored on disk */
2621 ps
->pss_pass_exam
= spa
->spa_scan_pass_exam
;
2622 ps
->pss_pass_start
= spa
->spa_scan_pass_start
;
2623 ps
->pss_pass_scrub_pause
= spa
->spa_scan_pass_scrub_pause
;
2624 ps
->pss_pass_scrub_spent_paused
= spa
->spa_scan_pass_scrub_spent_paused
;
2625 ps
->pss_pass_issued
= spa
->spa_scan_pass_issued
;
2627 scn
->scn_issued_before_pass
+ spa
->spa_scan_pass_issued
;
2629 /* error scrub data stored on disk */
2630 ps
->pss_error_scrub_func
= scn
->errorscrub_phys
.dep_func
;
2631 ps
->pss_error_scrub_state
= scn
->errorscrub_phys
.dep_state
;
2632 ps
->pss_error_scrub_start
= scn
->errorscrub_phys
.dep_start_time
;
2633 ps
->pss_error_scrub_end
= scn
->errorscrub_phys
.dep_end_time
;
2634 ps
->pss_error_scrub_examined
= scn
->errorscrub_phys
.dep_examined
;
2635 ps
->pss_error_scrub_to_be_examined
=
2636 scn
->errorscrub_phys
.dep_to_examine
;
2638 /* error scrub data not stored on disk */
2639 ps
->pss_pass_error_scrub_pause
= spa
->spa_scan_pass_errorscrub_pause
;
2645 spa_maxblocksize(spa_t
*spa
)
2647 if (spa_feature_is_enabled(spa
, SPA_FEATURE_LARGE_BLOCKS
))
2648 return (SPA_MAXBLOCKSIZE
);
2650 return (SPA_OLD_MAXBLOCKSIZE
);
2655 * Returns the txg that the last device removal completed. No indirect mappings
2656 * have been added since this txg.
2659 spa_get_last_removal_txg(spa_t
*spa
)
2662 uint64_t ret
= -1ULL;
2664 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2666 * sr_prev_indirect_vdev is only modified while holding all the
2667 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2670 vdevid
= spa
->spa_removing_phys
.sr_prev_indirect_vdev
;
2672 while (vdevid
!= -1ULL) {
2673 vdev_t
*vd
= vdev_lookup_top(spa
, vdevid
);
2674 vdev_indirect_births_t
*vib
= vd
->vdev_indirect_births
;
2676 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
2679 * If the removal did not remap any data, we don't care.
2681 if (vdev_indirect_births_count(vib
) != 0) {
2682 ret
= vdev_indirect_births_last_entry_txg(vib
);
2686 vdevid
= vd
->vdev_indirect_config
.vic_prev_indirect_vdev
;
2688 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2691 spa_feature_is_active(spa
, SPA_FEATURE_DEVICE_REMOVAL
));
2697 spa_maxdnodesize(spa_t
*spa
)
2699 if (spa_feature_is_enabled(spa
, SPA_FEATURE_LARGE_DNODE
))
2700 return (DNODE_MAX_SIZE
);
2702 return (DNODE_MIN_SIZE
);
2706 spa_multihost(spa_t
*spa
)
2708 return (spa
->spa_multihost
? B_TRUE
: B_FALSE
);
2712 spa_get_hostid(spa_t
*spa
)
2714 return (spa
->spa_hostid
);
2718 spa_trust_config(spa_t
*spa
)
2720 return (spa
->spa_trust_config
);
2724 spa_missing_tvds_allowed(spa_t
*spa
)
2726 return (spa
->spa_missing_tvds_allowed
);
2730 spa_syncing_log_sm(spa_t
*spa
)
2732 return (spa
->spa_syncing_log_sm
);
2736 spa_set_missing_tvds(spa_t
*spa
, uint64_t missing
)
2738 spa
->spa_missing_tvds
= missing
;
2742 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2745 spa_state_to_name(spa_t
*spa
)
2747 ASSERT3P(spa
, !=, NULL
);
2750 * it is possible for the spa to exist, without root vdev
2751 * as the spa transitions during import/export
2753 vdev_t
*rvd
= spa
->spa_root_vdev
;
2755 return ("TRANSITIONING");
2757 vdev_state_t state
= rvd
->vdev_state
;
2758 vdev_aux_t aux
= rvd
->vdev_stat
.vs_aux
;
2760 if (spa_suspended(spa
))
2761 return ("SUSPENDED");
2764 case VDEV_STATE_CLOSED
:
2765 case VDEV_STATE_OFFLINE
:
2767 case VDEV_STATE_REMOVED
:
2769 case VDEV_STATE_CANT_OPEN
:
2770 if (aux
== VDEV_AUX_CORRUPT_DATA
|| aux
== VDEV_AUX_BAD_LOG
)
2772 else if (aux
== VDEV_AUX_SPLIT_POOL
)
2776 case VDEV_STATE_FAULTED
:
2778 case VDEV_STATE_DEGRADED
:
2779 return ("DEGRADED");
2780 case VDEV_STATE_HEALTHY
:
2790 spa_top_vdevs_spacemap_addressable(spa_t
*spa
)
2792 vdev_t
*rvd
= spa
->spa_root_vdev
;
2793 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
2794 if (!vdev_is_spacemap_addressable(rvd
->vdev_child
[c
]))
2801 spa_has_checkpoint(spa_t
*spa
)
2803 return (spa
->spa_checkpoint_txg
!= 0);
2807 spa_importing_readonly_checkpoint(spa_t
*spa
)
2809 return ((spa
->spa_import_flags
& ZFS_IMPORT_CHECKPOINT
) &&
2810 spa
->spa_mode
== SPA_MODE_READ
);
2814 spa_min_claim_txg(spa_t
*spa
)
2816 uint64_t checkpoint_txg
= spa
->spa_uberblock
.ub_checkpoint_txg
;
2818 if (checkpoint_txg
!= 0)
2819 return (checkpoint_txg
+ 1);
2821 return (spa
->spa_first_txg
);
2825 * If there is a checkpoint, async destroys may consume more space from
2826 * the pool instead of freeing it. In an attempt to save the pool from
2827 * getting suspended when it is about to run out of space, we stop
2828 * processing async destroys.
2831 spa_suspend_async_destroy(spa_t
*spa
)
2833 dsl_pool_t
*dp
= spa_get_dsl(spa
);
2835 uint64_t unreserved
= dsl_pool_unreserved_space(dp
,
2836 ZFS_SPACE_CHECK_EXTRA_RESERVED
);
2837 uint64_t used
= dsl_dir_phys(dp
->dp_root_dir
)->dd_used_bytes
;
2838 uint64_t avail
= (unreserved
> used
) ? (unreserved
- used
) : 0;
2840 if (spa_has_checkpoint(spa
) && avail
== 0)
2846 #if defined(_KERNEL)
2849 param_set_deadman_failmode_common(const char *val
)
2855 return (SET_ERROR(EINVAL
));
2857 if ((p
= strchr(val
, '\n')) != NULL
)
2860 if (strcmp(val
, "wait") != 0 && strcmp(val
, "continue") != 0 &&
2861 strcmp(val
, "panic"))
2862 return (SET_ERROR(EINVAL
));
2864 if (spa_mode_global
!= SPA_MODE_UNINIT
) {
2865 mutex_enter(&spa_namespace_lock
);
2866 while ((spa
= spa_next(spa
)) != NULL
)
2867 spa_set_deadman_failmode(spa
, val
);
2868 mutex_exit(&spa_namespace_lock
);
2875 /* Namespace manipulation */
2876 EXPORT_SYMBOL(spa_lookup
);
2877 EXPORT_SYMBOL(spa_add
);
2878 EXPORT_SYMBOL(spa_remove
);
2879 EXPORT_SYMBOL(spa_next
);
2881 /* Refcount functions */
2882 EXPORT_SYMBOL(spa_open_ref
);
2883 EXPORT_SYMBOL(spa_close
);
2884 EXPORT_SYMBOL(spa_refcount_zero
);
2886 /* Pool configuration lock */
2887 EXPORT_SYMBOL(spa_config_tryenter
);
2888 EXPORT_SYMBOL(spa_config_enter
);
2889 EXPORT_SYMBOL(spa_config_exit
);
2890 EXPORT_SYMBOL(spa_config_held
);
2892 /* Pool vdev add/remove lock */
2893 EXPORT_SYMBOL(spa_vdev_enter
);
2894 EXPORT_SYMBOL(spa_vdev_exit
);
2896 /* Pool vdev state change lock */
2897 EXPORT_SYMBOL(spa_vdev_state_enter
);
2898 EXPORT_SYMBOL(spa_vdev_state_exit
);
2900 /* Accessor functions */
2901 EXPORT_SYMBOL(spa_shutting_down
);
2902 EXPORT_SYMBOL(spa_get_dsl
);
2903 EXPORT_SYMBOL(spa_get_rootblkptr
);
2904 EXPORT_SYMBOL(spa_set_rootblkptr
);
2905 EXPORT_SYMBOL(spa_altroot
);
2906 EXPORT_SYMBOL(spa_sync_pass
);
2907 EXPORT_SYMBOL(spa_name
);
2908 EXPORT_SYMBOL(spa_guid
);
2909 EXPORT_SYMBOL(spa_last_synced_txg
);
2910 EXPORT_SYMBOL(spa_first_txg
);
2911 EXPORT_SYMBOL(spa_syncing_txg
);
2912 EXPORT_SYMBOL(spa_version
);
2913 EXPORT_SYMBOL(spa_state
);
2914 EXPORT_SYMBOL(spa_load_state
);
2915 EXPORT_SYMBOL(spa_freeze_txg
);
2916 EXPORT_SYMBOL(spa_get_dspace
);
2917 EXPORT_SYMBOL(spa_update_dspace
);
2918 EXPORT_SYMBOL(spa_deflate
);
2919 EXPORT_SYMBOL(spa_normal_class
);
2920 EXPORT_SYMBOL(spa_log_class
);
2921 EXPORT_SYMBOL(spa_special_class
);
2922 EXPORT_SYMBOL(spa_preferred_class
);
2923 EXPORT_SYMBOL(spa_max_replication
);
2924 EXPORT_SYMBOL(spa_prev_software_version
);
2925 EXPORT_SYMBOL(spa_get_failmode
);
2926 EXPORT_SYMBOL(spa_suspended
);
2927 EXPORT_SYMBOL(spa_bootfs
);
2928 EXPORT_SYMBOL(spa_delegation
);
2929 EXPORT_SYMBOL(spa_meta_objset
);
2930 EXPORT_SYMBOL(spa_maxblocksize
);
2931 EXPORT_SYMBOL(spa_maxdnodesize
);
2933 /* Miscellaneous support routines */
2934 EXPORT_SYMBOL(spa_guid_exists
);
2935 EXPORT_SYMBOL(spa_strdup
);
2936 EXPORT_SYMBOL(spa_strfree
);
2937 EXPORT_SYMBOL(spa_generate_guid
);
2938 EXPORT_SYMBOL(snprintf_blkptr
);
2939 EXPORT_SYMBOL(spa_freeze
);
2940 EXPORT_SYMBOL(spa_upgrade
);
2941 EXPORT_SYMBOL(spa_evict_all
);
2942 EXPORT_SYMBOL(spa_lookup_by_guid
);
2943 EXPORT_SYMBOL(spa_has_spare
);
2944 EXPORT_SYMBOL(dva_get_dsize_sync
);
2945 EXPORT_SYMBOL(bp_get_dsize_sync
);
2946 EXPORT_SYMBOL(bp_get_dsize
);
2947 EXPORT_SYMBOL(spa_has_slogs
);
2948 EXPORT_SYMBOL(spa_is_root
);
2949 EXPORT_SYMBOL(spa_writeable
);
2950 EXPORT_SYMBOL(spa_mode
);
2951 EXPORT_SYMBOL(spa_namespace_lock
);
2952 EXPORT_SYMBOL(spa_trust_config
);
2953 EXPORT_SYMBOL(spa_missing_tvds_allowed
);
2954 EXPORT_SYMBOL(spa_set_missing_tvds
);
2955 EXPORT_SYMBOL(spa_state_to_name
);
2956 EXPORT_SYMBOL(spa_importing_readonly_checkpoint
);
2957 EXPORT_SYMBOL(spa_min_claim_txg
);
2958 EXPORT_SYMBOL(spa_suspend_async_destroy
);
2959 EXPORT_SYMBOL(spa_has_checkpoint
);
2960 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable
);
2962 ZFS_MODULE_PARAM(zfs
, zfs_
, flags
, UINT
, ZMOD_RW
,
2963 "Set additional debugging flags");
2965 ZFS_MODULE_PARAM(zfs
, zfs_
, recover
, INT
, ZMOD_RW
,
2966 "Set to attempt to recover from fatal errors");
2968 ZFS_MODULE_PARAM(zfs
, zfs_
, free_leak_on_eio
, INT
, ZMOD_RW
,
2969 "Set to ignore IO errors during free and permanently leak the space");
2971 ZFS_MODULE_PARAM(zfs_deadman
, zfs_deadman_
, checktime_ms
, U64
, ZMOD_RW
,
2972 "Dead I/O check interval in milliseconds");
2974 ZFS_MODULE_PARAM(zfs_deadman
, zfs_deadman_
, enabled
, INT
, ZMOD_RW
,
2975 "Enable deadman timer");
2977 ZFS_MODULE_PARAM(zfs_spa
, spa_
, asize_inflation
, UINT
, ZMOD_RW
,
2978 "SPA size estimate multiplication factor");
2980 ZFS_MODULE_PARAM(zfs
, zfs_
, ddt_data_is_special
, INT
, ZMOD_RW
,
2981 "Place DDT data into the special class");
2983 ZFS_MODULE_PARAM(zfs
, zfs_
, user_indirect_is_special
, INT
, ZMOD_RW
,
2984 "Place user data indirect blocks into the special class");
2987 ZFS_MODULE_PARAM_CALL(zfs_deadman
, zfs_deadman_
, failmode
,
2988 param_set_deadman_failmode
, param_get_charp
, ZMOD_RW
,
2989 "Failmode for deadman timer");
2991 ZFS_MODULE_PARAM_CALL(zfs_deadman
, zfs_deadman_
, synctime_ms
,
2992 param_set_deadman_synctime
, spl_param_get_u64
, ZMOD_RW
,
2993 "Pool sync expiration time in milliseconds");
2995 ZFS_MODULE_PARAM_CALL(zfs_deadman
, zfs_deadman_
, ziotime_ms
,
2996 param_set_deadman_ziotime
, spl_param_get_u64
, ZMOD_RW
,
2997 "IO expiration time in milliseconds");
2999 ZFS_MODULE_PARAM(zfs
, zfs_
, special_class_metadata_reserve_pct
, UINT
, ZMOD_RW
,
3000 "Small file blocks in special vdevs depends on this much "
3001 "free space available");
3004 ZFS_MODULE_PARAM_CALL(zfs_spa
, spa_
, slop_shift
, param_set_slop_shift
,
3005 param_get_uint
, ZMOD_RW
, "Reserved free space in pool");