4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
33 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_file.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fm/util.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/metaslab_impl.h>
52 #include <sys/kstat.h>
54 #include "zfeature_common.h"
59 * There are four basic locks for managing spa_t structures:
61 * spa_namespace_lock (global mutex)
63 * This lock must be acquired to do any of the following:
65 * - Lookup a spa_t by name
66 * - Add or remove a spa_t from the namespace
67 * - Increase spa_refcount from non-zero
68 * - Check if spa_refcount is zero
70 * - add/remove/attach/detach devices
71 * - Held for the duration of create/destroy/import/export
73 * It does not need to handle recursion. A create or destroy may
74 * reference objects (files or zvols) in other pools, but by
75 * definition they must have an existing reference, and will never need
76 * to lookup a spa_t by name.
78 * spa_refcount (per-spa refcount_t protected by mutex)
80 * This reference count keep track of any active users of the spa_t. The
81 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
82 * the refcount is never really 'zero' - opening a pool implicitly keeps
83 * some references in the DMU. Internally we check against spa_minref, but
84 * present the image of a zero/non-zero value to consumers.
86 * spa_config_lock[] (per-spa array of rwlocks)
88 * This protects the spa_t from config changes, and must be held in
89 * the following circumstances:
91 * - RW_READER to perform I/O to the spa
92 * - RW_WRITER to change the vdev config
94 * The locking order is fairly straightforward:
96 * spa_namespace_lock -> spa_refcount
98 * The namespace lock must be acquired to increase the refcount from 0
99 * or to check if it is zero.
101 * spa_refcount -> spa_config_lock[]
103 * There must be at least one valid reference on the spa_t to acquire
106 * spa_namespace_lock -> spa_config_lock[]
108 * The namespace lock must always be taken before the config lock.
111 * The spa_namespace_lock can be acquired directly and is globally visible.
113 * The namespace is manipulated using the following functions, all of which
114 * require the spa_namespace_lock to be held.
116 * spa_lookup() Lookup a spa_t by name.
118 * spa_add() Create a new spa_t in the namespace.
120 * spa_remove() Remove a spa_t from the namespace. This also
121 * frees up any memory associated with the spa_t.
123 * spa_next() Returns the next spa_t in the system, or the
124 * first if NULL is passed.
126 * spa_evict_all() Shutdown and remove all spa_t structures in
129 * spa_guid_exists() Determine whether a pool/device guid exists.
131 * The spa_refcount is manipulated using the following functions:
133 * spa_open_ref() Adds a reference to the given spa_t. Must be
134 * called with spa_namespace_lock held if the
135 * refcount is currently zero.
137 * spa_close() Remove a reference from the spa_t. This will
138 * not free the spa_t or remove it from the
139 * namespace. No locking is required.
141 * spa_refcount_zero() Returns true if the refcount is currently
142 * zero. Must be called with spa_namespace_lock
145 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
146 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
147 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
149 * To read the configuration, it suffices to hold one of these locks as reader.
150 * To modify the configuration, you must hold all locks as writer. To modify
151 * vdev state without altering the vdev tree's topology (e.g. online/offline),
152 * you must hold SCL_STATE and SCL_ZIO as writer.
154 * We use these distinct config locks to avoid recursive lock entry.
155 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
156 * block allocations (SCL_ALLOC), which may require reading space maps
157 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
159 * The spa config locks cannot be normal rwlocks because we need the
160 * ability to hand off ownership. For example, SCL_ZIO is acquired
161 * by the issuing thread and later released by an interrupt thread.
162 * They do, however, obey the usual write-wanted semantics to prevent
163 * writer (i.e. system administrator) starvation.
165 * The lock acquisition rules are as follows:
168 * Protects changes to the vdev tree topology, such as vdev
169 * add/remove/attach/detach. Protects the dirty config list
170 * (spa_config_dirty_list) and the set of spares and l2arc devices.
173 * Protects changes to pool state and vdev state, such as vdev
174 * online/offline/fault/degrade/clear. Protects the dirty state list
175 * (spa_state_dirty_list) and global pool state (spa_state).
178 * Protects changes to metaslab groups and classes.
179 * Held as reader by metaslab_alloc() and metaslab_claim().
182 * Held by bp-level zios (those which have no io_vd upon entry)
183 * to prevent changes to the vdev tree. The bp-level zio implicitly
184 * protects all of its vdev child zios, which do not hold SCL_ZIO.
187 * Protects changes to metaslab groups and classes.
188 * Held as reader by metaslab_free(). SCL_FREE is distinct from
189 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
190 * blocks in zio_done() while another i/o that holds either
191 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194 * Held as reader to prevent changes to the vdev tree during trivial
195 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
196 * other locks, and lower than all of them, to ensure that it's safe
197 * to acquire regardless of caller context.
199 * In addition, the following rules apply:
201 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
202 * The lock ordering is SCL_CONFIG > spa_props_lock.
204 * (b) I/O operations on leaf vdevs. For any zio operation that takes
205 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
206 * or zio_write_phys() -- the caller must ensure that the config cannot
207 * cannot change in the interim, and that the vdev cannot be reopened.
208 * SCL_STATE as reader suffices for both.
210 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
212 * spa_vdev_enter() Acquire the namespace lock and the config lock
215 * spa_vdev_exit() Release the config lock, wait for all I/O
216 * to complete, sync the updated configs to the
217 * cache, and release the namespace lock.
219 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
220 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
221 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
223 * spa_rename() is also implemented within this file since it requires
224 * manipulation of the namespace.
227 static avl_tree_t spa_namespace_avl
;
228 kmutex_t spa_namespace_lock
;
229 static kcondvar_t spa_namespace_cv
;
230 static int spa_active_count
;
231 int spa_max_replication_override
= SPA_DVAS_PER_BP
;
233 static kmutex_t spa_spare_lock
;
234 static avl_tree_t spa_spare_avl
;
235 static kmutex_t spa_l2cache_lock
;
236 static avl_tree_t spa_l2cache_avl
;
238 kmem_cache_t
*spa_buffer_pool
;
242 * Expiration time in milliseconds. This value has two meanings. First it is
243 * used to determine when the spa_deadman() logic should fire. By default the
244 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
245 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
246 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
249 unsigned long zfs_deadman_synctime_ms
= 1000000ULL;
252 * By default the deadman is enabled.
254 int zfs_deadman_enabled
= 1;
257 * The worst case is single-sector max-parity RAID-Z blocks, in which
258 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
259 * times the size; so just assume that. Add to this the fact that
260 * we can have up to 3 DVAs per bp, and one more factor of 2 because
261 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
263 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
265 int spa_asize_inflation
= 24;
268 * ==========================================================================
270 * ==========================================================================
273 spa_config_lock_init(spa_t
*spa
)
277 for (i
= 0; i
< SCL_LOCKS
; i
++) {
278 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
279 mutex_init(&scl
->scl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
280 cv_init(&scl
->scl_cv
, NULL
, CV_DEFAULT
, NULL
);
281 refcount_create_untracked(&scl
->scl_count
);
282 scl
->scl_writer
= NULL
;
283 scl
->scl_write_wanted
= 0;
288 spa_config_lock_destroy(spa_t
*spa
)
292 for (i
= 0; i
< SCL_LOCKS
; i
++) {
293 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
294 mutex_destroy(&scl
->scl_lock
);
295 cv_destroy(&scl
->scl_cv
);
296 refcount_destroy(&scl
->scl_count
);
297 ASSERT(scl
->scl_writer
== NULL
);
298 ASSERT(scl
->scl_write_wanted
== 0);
303 spa_config_tryenter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
307 for (i
= 0; i
< SCL_LOCKS
; i
++) {
308 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
309 if (!(locks
& (1 << i
)))
311 mutex_enter(&scl
->scl_lock
);
312 if (rw
== RW_READER
) {
313 if (scl
->scl_writer
|| scl
->scl_write_wanted
) {
314 mutex_exit(&scl
->scl_lock
);
315 spa_config_exit(spa
, locks
^ (1 << i
), tag
);
319 ASSERT(scl
->scl_writer
!= curthread
);
320 if (!refcount_is_zero(&scl
->scl_count
)) {
321 mutex_exit(&scl
->scl_lock
);
322 spa_config_exit(spa
, locks
^ (1 << i
), tag
);
325 scl
->scl_writer
= curthread
;
327 (void) refcount_add(&scl
->scl_count
, tag
);
328 mutex_exit(&scl
->scl_lock
);
334 spa_config_enter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
339 ASSERT3U(SCL_LOCKS
, <, sizeof (wlocks_held
) * NBBY
);
341 for (i
= 0; i
< SCL_LOCKS
; i
++) {
342 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
343 if (scl
->scl_writer
== curthread
)
344 wlocks_held
|= (1 << i
);
345 if (!(locks
& (1 << i
)))
347 mutex_enter(&scl
->scl_lock
);
348 if (rw
== RW_READER
) {
349 while (scl
->scl_writer
|| scl
->scl_write_wanted
) {
350 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
353 ASSERT(scl
->scl_writer
!= curthread
);
354 while (!refcount_is_zero(&scl
->scl_count
)) {
355 scl
->scl_write_wanted
++;
356 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
357 scl
->scl_write_wanted
--;
359 scl
->scl_writer
= curthread
;
361 (void) refcount_add(&scl
->scl_count
, tag
);
362 mutex_exit(&scl
->scl_lock
);
364 ASSERT(wlocks_held
<= locks
);
368 spa_config_exit(spa_t
*spa
, int locks
, void *tag
)
372 for (i
= SCL_LOCKS
- 1; i
>= 0; i
--) {
373 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
374 if (!(locks
& (1 << i
)))
376 mutex_enter(&scl
->scl_lock
);
377 ASSERT(!refcount_is_zero(&scl
->scl_count
));
378 if (refcount_remove(&scl
->scl_count
, tag
) == 0) {
379 ASSERT(scl
->scl_writer
== NULL
||
380 scl
->scl_writer
== curthread
);
381 scl
->scl_writer
= NULL
; /* OK in either case */
382 cv_broadcast(&scl
->scl_cv
);
384 mutex_exit(&scl
->scl_lock
);
389 spa_config_held(spa_t
*spa
, int locks
, krw_t rw
)
391 int i
, locks_held
= 0;
393 for (i
= 0; i
< SCL_LOCKS
; i
++) {
394 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
395 if (!(locks
& (1 << i
)))
397 if ((rw
== RW_READER
&& !refcount_is_zero(&scl
->scl_count
)) ||
398 (rw
== RW_WRITER
&& scl
->scl_writer
== curthread
))
399 locks_held
|= 1 << i
;
406 * ==========================================================================
407 * SPA namespace functions
408 * ==========================================================================
412 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
413 * Returns NULL if no matching spa_t is found.
416 spa_lookup(const char *name
)
418 static spa_t search
; /* spa_t is large; don't allocate on stack */
423 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
425 (void) strlcpy(search
.spa_name
, name
, sizeof (search
.spa_name
));
428 * If it's a full dataset name, figure out the pool name and
431 cp
= strpbrk(search
.spa_name
, "/@#");
435 spa
= avl_find(&spa_namespace_avl
, &search
, &where
);
441 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
442 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
443 * looking for potentially hung I/Os.
446 spa_deadman(void *arg
)
450 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
451 (gethrtime() - spa
->spa_sync_starttime
) / NANOSEC
,
452 ++spa
->spa_deadman_calls
);
453 if (zfs_deadman_enabled
)
454 vdev_deadman(spa
->spa_root_vdev
);
456 spa
->spa_deadman_tqid
= taskq_dispatch_delay(system_taskq
,
457 spa_deadman
, spa
, TQ_PUSHPAGE
, ddi_get_lbolt() +
458 NSEC_TO_TICK(spa
->spa_deadman_synctime
));
462 * Create an uninitialized spa_t with the given name. Requires
463 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
464 * exist by calling spa_lookup() first.
467 spa_add(const char *name
, nvlist_t
*config
, const char *altroot
)
470 spa_config_dirent_t
*dp
;
474 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
476 spa
= kmem_zalloc(sizeof (spa_t
), KM_PUSHPAGE
| KM_NODEBUG
);
478 mutex_init(&spa
->spa_async_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
479 mutex_init(&spa
->spa_errlist_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
480 mutex_init(&spa
->spa_errlog_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
481 mutex_init(&spa
->spa_history_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
482 mutex_init(&spa
->spa_proc_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
483 mutex_init(&spa
->spa_props_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
484 mutex_init(&spa
->spa_scrub_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
485 mutex_init(&spa
->spa_suspend_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
486 mutex_init(&spa
->spa_vdev_top_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
488 cv_init(&spa
->spa_async_cv
, NULL
, CV_DEFAULT
, NULL
);
489 cv_init(&spa
->spa_proc_cv
, NULL
, CV_DEFAULT
, NULL
);
490 cv_init(&spa
->spa_scrub_io_cv
, NULL
, CV_DEFAULT
, NULL
);
491 cv_init(&spa
->spa_suspend_cv
, NULL
, CV_DEFAULT
, NULL
);
493 for (t
= 0; t
< TXG_SIZE
; t
++)
494 bplist_create(&spa
->spa_free_bplist
[t
]);
496 (void) strlcpy(spa
->spa_name
, name
, sizeof (spa
->spa_name
));
497 spa
->spa_state
= POOL_STATE_UNINITIALIZED
;
498 spa
->spa_freeze_txg
= UINT64_MAX
;
499 spa
->spa_final_txg
= UINT64_MAX
;
500 spa
->spa_load_max_txg
= UINT64_MAX
;
502 spa
->spa_proc_state
= SPA_PROC_NONE
;
504 spa
->spa_deadman_synctime
= MSEC2NSEC(zfs_deadman_synctime_ms
);
506 refcount_create(&spa
->spa_refcount
);
507 spa_config_lock_init(spa
);
510 avl_add(&spa_namespace_avl
, spa
);
513 * Set the alternate root, if there is one.
516 spa
->spa_root
= spa_strdup(altroot
);
521 * Every pool starts with the default cachefile
523 list_create(&spa
->spa_config_list
, sizeof (spa_config_dirent_t
),
524 offsetof(spa_config_dirent_t
, scd_link
));
526 dp
= kmem_zalloc(sizeof (spa_config_dirent_t
), KM_PUSHPAGE
);
527 dp
->scd_path
= altroot
? NULL
: spa_strdup(spa_config_path
);
528 list_insert_head(&spa
->spa_config_list
, dp
);
530 VERIFY(nvlist_alloc(&spa
->spa_load_info
, NV_UNIQUE_NAME
,
533 if (config
!= NULL
) {
536 if (nvlist_lookup_nvlist(config
, ZPOOL_CONFIG_FEATURES_FOR_READ
,
538 VERIFY(nvlist_dup(features
, &spa
->spa_label_features
,
542 VERIFY(nvlist_dup(config
, &spa
->spa_config
, 0) == 0);
545 if (spa
->spa_label_features
== NULL
) {
546 VERIFY(nvlist_alloc(&spa
->spa_label_features
, NV_UNIQUE_NAME
,
550 spa
->spa_debug
= ((zfs_flags
& ZFS_DEBUG_SPA
) != 0);
553 * As a pool is being created, treat all features as disabled by
554 * setting SPA_FEATURE_DISABLED for all entries in the feature
557 for (i
= 0; i
< SPA_FEATURES
; i
++) {
558 spa
->spa_feat_refcount_cache
[i
] = SPA_FEATURE_DISABLED
;
565 * Removes a spa_t from the namespace, freeing up any memory used. Requires
566 * spa_namespace_lock. This is called only after the spa_t has been closed and
570 spa_remove(spa_t
*spa
)
572 spa_config_dirent_t
*dp
;
575 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
576 ASSERT(spa
->spa_state
== POOL_STATE_UNINITIALIZED
);
578 nvlist_free(spa
->spa_config_splitting
);
580 avl_remove(&spa_namespace_avl
, spa
);
581 cv_broadcast(&spa_namespace_cv
);
584 spa_strfree(spa
->spa_root
);
588 while ((dp
= list_head(&spa
->spa_config_list
)) != NULL
) {
589 list_remove(&spa
->spa_config_list
, dp
);
590 if (dp
->scd_path
!= NULL
)
591 spa_strfree(dp
->scd_path
);
592 kmem_free(dp
, sizeof (spa_config_dirent_t
));
595 list_destroy(&spa
->spa_config_list
);
597 nvlist_free(spa
->spa_label_features
);
598 nvlist_free(spa
->spa_load_info
);
599 spa_config_set(spa
, NULL
);
601 refcount_destroy(&spa
->spa_refcount
);
603 spa_stats_destroy(spa
);
604 spa_config_lock_destroy(spa
);
606 for (t
= 0; t
< TXG_SIZE
; t
++)
607 bplist_destroy(&spa
->spa_free_bplist
[t
]);
609 cv_destroy(&spa
->spa_async_cv
);
610 cv_destroy(&spa
->spa_proc_cv
);
611 cv_destroy(&spa
->spa_scrub_io_cv
);
612 cv_destroy(&spa
->spa_suspend_cv
);
614 mutex_destroy(&spa
->spa_async_lock
);
615 mutex_destroy(&spa
->spa_errlist_lock
);
616 mutex_destroy(&spa
->spa_errlog_lock
);
617 mutex_destroy(&spa
->spa_history_lock
);
618 mutex_destroy(&spa
->spa_proc_lock
);
619 mutex_destroy(&spa
->spa_props_lock
);
620 mutex_destroy(&spa
->spa_scrub_lock
);
621 mutex_destroy(&spa
->spa_suspend_lock
);
622 mutex_destroy(&spa
->spa_vdev_top_lock
);
624 kmem_free(spa
, sizeof (spa_t
));
628 * Given a pool, return the next pool in the namespace, or NULL if there is
629 * none. If 'prev' is NULL, return the first pool.
632 spa_next(spa_t
*prev
)
634 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
637 return (AVL_NEXT(&spa_namespace_avl
, prev
));
639 return (avl_first(&spa_namespace_avl
));
643 * ==========================================================================
644 * SPA refcount functions
645 * ==========================================================================
649 * Add a reference to the given spa_t. Must have at least one reference, or
650 * have the namespace lock held.
653 spa_open_ref(spa_t
*spa
, void *tag
)
655 ASSERT(refcount_count(&spa
->spa_refcount
) >= spa
->spa_minref
||
656 MUTEX_HELD(&spa_namespace_lock
));
657 (void) refcount_add(&spa
->spa_refcount
, tag
);
661 * Remove a reference to the given spa_t. Must have at least one reference, or
662 * have the namespace lock held.
665 spa_close(spa_t
*spa
, void *tag
)
667 ASSERT(refcount_count(&spa
->spa_refcount
) > spa
->spa_minref
||
668 MUTEX_HELD(&spa_namespace_lock
));
669 (void) refcount_remove(&spa
->spa_refcount
, tag
);
673 * Check to see if the spa refcount is zero. Must be called with
674 * spa_namespace_lock held. We really compare against spa_minref, which is the
675 * number of references acquired when opening a pool
678 spa_refcount_zero(spa_t
*spa
)
680 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
682 return (refcount_count(&spa
->spa_refcount
) == spa
->spa_minref
);
686 * ==========================================================================
687 * SPA spare and l2cache tracking
688 * ==========================================================================
692 * Hot spares and cache devices are tracked using the same code below,
693 * for 'auxiliary' devices.
696 typedef struct spa_aux
{
704 spa_aux_compare(const void *a
, const void *b
)
706 const spa_aux_t
*sa
= a
;
707 const spa_aux_t
*sb
= b
;
709 if (sa
->aux_guid
< sb
->aux_guid
)
711 else if (sa
->aux_guid
> sb
->aux_guid
)
718 spa_aux_add(vdev_t
*vd
, avl_tree_t
*avl
)
724 search
.aux_guid
= vd
->vdev_guid
;
725 if ((aux
= avl_find(avl
, &search
, &where
)) != NULL
) {
728 aux
= kmem_zalloc(sizeof (spa_aux_t
), KM_PUSHPAGE
);
729 aux
->aux_guid
= vd
->vdev_guid
;
731 avl_insert(avl
, aux
, where
);
736 spa_aux_remove(vdev_t
*vd
, avl_tree_t
*avl
)
742 search
.aux_guid
= vd
->vdev_guid
;
743 aux
= avl_find(avl
, &search
, &where
);
747 if (--aux
->aux_count
== 0) {
748 avl_remove(avl
, aux
);
749 kmem_free(aux
, sizeof (spa_aux_t
));
750 } else if (aux
->aux_pool
== spa_guid(vd
->vdev_spa
)) {
751 aux
->aux_pool
= 0ULL;
756 spa_aux_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
, avl_tree_t
*avl
)
758 spa_aux_t search
, *found
;
760 search
.aux_guid
= guid
;
761 found
= avl_find(avl
, &search
, NULL
);
765 *pool
= found
->aux_pool
;
772 *refcnt
= found
->aux_count
;
777 return (found
!= NULL
);
781 spa_aux_activate(vdev_t
*vd
, avl_tree_t
*avl
)
783 spa_aux_t search
, *found
;
786 search
.aux_guid
= vd
->vdev_guid
;
787 found
= avl_find(avl
, &search
, &where
);
788 ASSERT(found
!= NULL
);
789 ASSERT(found
->aux_pool
== 0ULL);
791 found
->aux_pool
= spa_guid(vd
->vdev_spa
);
795 * Spares are tracked globally due to the following constraints:
797 * - A spare may be part of multiple pools.
798 * - A spare may be added to a pool even if it's actively in use within
800 * - A spare in use in any pool can only be the source of a replacement if
801 * the target is a spare in the same pool.
803 * We keep track of all spares on the system through the use of a reference
804 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
805 * spare, then we bump the reference count in the AVL tree. In addition, we set
806 * the 'vdev_isspare' member to indicate that the device is a spare (active or
807 * inactive). When a spare is made active (used to replace a device in the
808 * pool), we also keep track of which pool its been made a part of.
810 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
811 * called under the spa_namespace lock as part of vdev reconfiguration. The
812 * separate spare lock exists for the status query path, which does not need to
813 * be completely consistent with respect to other vdev configuration changes.
817 spa_spare_compare(const void *a
, const void *b
)
819 return (spa_aux_compare(a
, b
));
823 spa_spare_add(vdev_t
*vd
)
825 mutex_enter(&spa_spare_lock
);
826 ASSERT(!vd
->vdev_isspare
);
827 spa_aux_add(vd
, &spa_spare_avl
);
828 vd
->vdev_isspare
= B_TRUE
;
829 mutex_exit(&spa_spare_lock
);
833 spa_spare_remove(vdev_t
*vd
)
835 mutex_enter(&spa_spare_lock
);
836 ASSERT(vd
->vdev_isspare
);
837 spa_aux_remove(vd
, &spa_spare_avl
);
838 vd
->vdev_isspare
= B_FALSE
;
839 mutex_exit(&spa_spare_lock
);
843 spa_spare_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
)
847 mutex_enter(&spa_spare_lock
);
848 found
= spa_aux_exists(guid
, pool
, refcnt
, &spa_spare_avl
);
849 mutex_exit(&spa_spare_lock
);
855 spa_spare_activate(vdev_t
*vd
)
857 mutex_enter(&spa_spare_lock
);
858 ASSERT(vd
->vdev_isspare
);
859 spa_aux_activate(vd
, &spa_spare_avl
);
860 mutex_exit(&spa_spare_lock
);
864 * Level 2 ARC devices are tracked globally for the same reasons as spares.
865 * Cache devices currently only support one pool per cache device, and so
866 * for these devices the aux reference count is currently unused beyond 1.
870 spa_l2cache_compare(const void *a
, const void *b
)
872 return (spa_aux_compare(a
, b
));
876 spa_l2cache_add(vdev_t
*vd
)
878 mutex_enter(&spa_l2cache_lock
);
879 ASSERT(!vd
->vdev_isl2cache
);
880 spa_aux_add(vd
, &spa_l2cache_avl
);
881 vd
->vdev_isl2cache
= B_TRUE
;
882 mutex_exit(&spa_l2cache_lock
);
886 spa_l2cache_remove(vdev_t
*vd
)
888 mutex_enter(&spa_l2cache_lock
);
889 ASSERT(vd
->vdev_isl2cache
);
890 spa_aux_remove(vd
, &spa_l2cache_avl
);
891 vd
->vdev_isl2cache
= B_FALSE
;
892 mutex_exit(&spa_l2cache_lock
);
896 spa_l2cache_exists(uint64_t guid
, uint64_t *pool
)
900 mutex_enter(&spa_l2cache_lock
);
901 found
= spa_aux_exists(guid
, pool
, NULL
, &spa_l2cache_avl
);
902 mutex_exit(&spa_l2cache_lock
);
908 spa_l2cache_activate(vdev_t
*vd
)
910 mutex_enter(&spa_l2cache_lock
);
911 ASSERT(vd
->vdev_isl2cache
);
912 spa_aux_activate(vd
, &spa_l2cache_avl
);
913 mutex_exit(&spa_l2cache_lock
);
917 * ==========================================================================
919 * ==========================================================================
923 * Lock the given spa_t for the purpose of adding or removing a vdev.
924 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
925 * It returns the next transaction group for the spa_t.
928 spa_vdev_enter(spa_t
*spa
)
930 mutex_enter(&spa
->spa_vdev_top_lock
);
931 mutex_enter(&spa_namespace_lock
);
932 return (spa_vdev_config_enter(spa
));
936 * Internal implementation for spa_vdev_enter(). Used when a vdev
937 * operation requires multiple syncs (i.e. removing a device) while
938 * keeping the spa_namespace_lock held.
941 spa_vdev_config_enter(spa_t
*spa
)
943 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
945 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
947 return (spa_last_synced_txg(spa
) + 1);
951 * Used in combination with spa_vdev_config_enter() to allow the syncing
952 * of multiple transactions without releasing the spa_namespace_lock.
955 spa_vdev_config_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
, char *tag
)
957 int config_changed
= B_FALSE
;
959 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
960 ASSERT(txg
> spa_last_synced_txg(spa
));
962 spa
->spa_pending_vdev
= NULL
;
967 vdev_dtl_reassess(spa
->spa_root_vdev
, 0, 0, B_FALSE
);
969 if (error
== 0 && !list_is_empty(&spa
->spa_config_dirty_list
)) {
970 config_changed
= B_TRUE
;
971 spa
->spa_config_generation
++;
975 * Verify the metaslab classes.
977 ASSERT(metaslab_class_validate(spa_normal_class(spa
)) == 0);
978 ASSERT(metaslab_class_validate(spa_log_class(spa
)) == 0);
980 spa_config_exit(spa
, SCL_ALL
, spa
);
983 * Panic the system if the specified tag requires it. This
984 * is useful for ensuring that configurations are updated
987 if (zio_injection_enabled
)
988 zio_handle_panic_injection(spa
, tag
, 0);
991 * Note: this txg_wait_synced() is important because it ensures
992 * that there won't be more than one config change per txg.
993 * This allows us to use the txg as the generation number.
996 txg_wait_synced(spa
->spa_dsl_pool
, txg
);
999 ASSERT(!vd
->vdev_detached
|| vd
->vdev_dtl_sm
== NULL
);
1000 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
1002 spa_config_exit(spa
, SCL_ALL
, spa
);
1006 * If the config changed, update the config cache.
1009 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1013 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1014 * locking of spa_vdev_enter(), we also want make sure the transactions have
1015 * synced to disk, and then update the global configuration cache with the new
1019 spa_vdev_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
)
1021 spa_vdev_config_exit(spa
, vd
, txg
, error
, FTAG
);
1022 mutex_exit(&spa_namespace_lock
);
1023 mutex_exit(&spa
->spa_vdev_top_lock
);
1029 * Lock the given spa_t for the purpose of changing vdev state.
1032 spa_vdev_state_enter(spa_t
*spa
, int oplocks
)
1034 int locks
= SCL_STATE_ALL
| oplocks
;
1037 * Root pools may need to read of the underlying devfs filesystem
1038 * when opening up a vdev. Unfortunately if we're holding the
1039 * SCL_ZIO lock it will result in a deadlock when we try to issue
1040 * the read from the root filesystem. Instead we "prefetch"
1041 * the associated vnodes that we need prior to opening the
1042 * underlying devices and cache them so that we can prevent
1043 * any I/O when we are doing the actual open.
1045 if (spa_is_root(spa
)) {
1046 int low
= locks
& ~(SCL_ZIO
- 1);
1047 int high
= locks
& ~low
;
1049 spa_config_enter(spa
, high
, spa
, RW_WRITER
);
1050 vdev_hold(spa
->spa_root_vdev
);
1051 spa_config_enter(spa
, low
, spa
, RW_WRITER
);
1053 spa_config_enter(spa
, locks
, spa
, RW_WRITER
);
1055 spa
->spa_vdev_locks
= locks
;
1059 spa_vdev_state_exit(spa_t
*spa
, vdev_t
*vd
, int error
)
1061 boolean_t config_changed
= B_FALSE
;
1063 if (vd
!= NULL
|| error
== 0)
1064 vdev_dtl_reassess(vd
? vd
->vdev_top
: spa
->spa_root_vdev
,
1068 vdev_state_dirty(vd
->vdev_top
);
1069 config_changed
= B_TRUE
;
1070 spa
->spa_config_generation
++;
1073 if (spa_is_root(spa
))
1074 vdev_rele(spa
->spa_root_vdev
);
1076 ASSERT3U(spa
->spa_vdev_locks
, >=, SCL_STATE_ALL
);
1077 spa_config_exit(spa
, spa
->spa_vdev_locks
, spa
);
1080 * If anything changed, wait for it to sync. This ensures that,
1081 * from the system administrator's perspective, zpool(1M) commands
1082 * are synchronous. This is important for things like zpool offline:
1083 * when the command completes, you expect no further I/O from ZFS.
1086 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1089 * If the config changed, update the config cache.
1091 if (config_changed
) {
1092 mutex_enter(&spa_namespace_lock
);
1093 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1094 mutex_exit(&spa_namespace_lock
);
1101 * ==========================================================================
1102 * Miscellaneous functions
1103 * ==========================================================================
1107 spa_activate_mos_feature(spa_t
*spa
, const char *feature
, dmu_tx_t
*tx
)
1109 if (!nvlist_exists(spa
->spa_label_features
, feature
)) {
1110 fnvlist_add_boolean(spa
->spa_label_features
, feature
);
1112 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1113 * dirty the vdev config because lock SCL_CONFIG is not held.
1114 * Thankfully, in this case we don't need to dirty the config
1115 * because it will be written out anyway when we finish
1116 * creating the pool.
1118 if (tx
->tx_txg
!= TXG_INITIAL
)
1119 vdev_config_dirty(spa
->spa_root_vdev
);
1124 spa_deactivate_mos_feature(spa_t
*spa
, const char *feature
)
1126 if (nvlist_remove_all(spa
->spa_label_features
, feature
) == 0)
1127 vdev_config_dirty(spa
->spa_root_vdev
);
1134 spa_rename(const char *name
, const char *newname
)
1140 * Lookup the spa_t and grab the config lock for writing. We need to
1141 * actually open the pool so that we can sync out the necessary labels.
1142 * It's OK to call spa_open() with the namespace lock held because we
1143 * allow recursive calls for other reasons.
1145 mutex_enter(&spa_namespace_lock
);
1146 if ((err
= spa_open(name
, &spa
, FTAG
)) != 0) {
1147 mutex_exit(&spa_namespace_lock
);
1151 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1153 avl_remove(&spa_namespace_avl
, spa
);
1154 (void) strlcpy(spa
->spa_name
, newname
, sizeof (spa
->spa_name
));
1155 avl_add(&spa_namespace_avl
, spa
);
1158 * Sync all labels to disk with the new names by marking the root vdev
1159 * dirty and waiting for it to sync. It will pick up the new pool name
1162 vdev_config_dirty(spa
->spa_root_vdev
);
1164 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1166 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1169 * Sync the updated config cache.
1171 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
1173 spa_close(spa
, FTAG
);
1175 mutex_exit(&spa_namespace_lock
);
1181 * Return the spa_t associated with given pool_guid, if it exists. If
1182 * device_guid is non-zero, determine whether the pool exists *and* contains
1183 * a device with the specified device_guid.
1186 spa_by_guid(uint64_t pool_guid
, uint64_t device_guid
)
1189 avl_tree_t
*t
= &spa_namespace_avl
;
1191 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1193 for (spa
= avl_first(t
); spa
!= NULL
; spa
= AVL_NEXT(t
, spa
)) {
1194 if (spa
->spa_state
== POOL_STATE_UNINITIALIZED
)
1196 if (spa
->spa_root_vdev
== NULL
)
1198 if (spa_guid(spa
) == pool_guid
) {
1199 if (device_guid
== 0)
1202 if (vdev_lookup_by_guid(spa
->spa_root_vdev
,
1203 device_guid
) != NULL
)
1207 * Check any devices we may be in the process of adding.
1209 if (spa
->spa_pending_vdev
) {
1210 if (vdev_lookup_by_guid(spa
->spa_pending_vdev
,
1211 device_guid
) != NULL
)
1221 * Determine whether a pool with the given pool_guid exists.
1224 spa_guid_exists(uint64_t pool_guid
, uint64_t device_guid
)
1226 return (spa_by_guid(pool_guid
, device_guid
) != NULL
);
1230 spa_strdup(const char *s
)
1236 new = kmem_alloc(len
+ 1, KM_PUSHPAGE
);
1244 spa_strfree(char *s
)
1246 kmem_free(s
, strlen(s
) + 1);
1250 spa_get_random(uint64_t range
)
1256 (void) random_get_pseudo_bytes((void *)&r
, sizeof (uint64_t));
1262 spa_generate_guid(spa_t
*spa
)
1264 uint64_t guid
= spa_get_random(-1ULL);
1267 while (guid
== 0 || spa_guid_exists(spa_guid(spa
), guid
))
1268 guid
= spa_get_random(-1ULL);
1270 while (guid
== 0 || spa_guid_exists(guid
, 0))
1271 guid
= spa_get_random(-1ULL);
1278 snprintf_blkptr(char *buf
, size_t buflen
, const blkptr_t
*bp
)
1281 char *checksum
= NULL
;
1282 char *compress
= NULL
;
1285 if (BP_GET_TYPE(bp
) & DMU_OT_NEWTYPE
) {
1286 dmu_object_byteswap_t bswap
=
1287 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
1288 (void) snprintf(type
, sizeof (type
), "bswap %s %s",
1289 DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)) ?
1290 "metadata" : "data",
1291 dmu_ot_byteswap
[bswap
].ob_name
);
1293 (void) strlcpy(type
, dmu_ot
[BP_GET_TYPE(bp
)].ot_name
,
1296 checksum
= zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_name
;
1297 compress
= zio_compress_table
[BP_GET_COMPRESS(bp
)].ci_name
;
1300 SNPRINTF_BLKPTR(snprintf
, ' ', buf
, buflen
, bp
, type
, checksum
,
1305 spa_freeze(spa_t
*spa
)
1307 uint64_t freeze_txg
= 0;
1309 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1310 if (spa
->spa_freeze_txg
== UINT64_MAX
) {
1311 freeze_txg
= spa_last_synced_txg(spa
) + TXG_SIZE
;
1312 spa
->spa_freeze_txg
= freeze_txg
;
1314 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1315 if (freeze_txg
!= 0)
1316 txg_wait_synced(spa_get_dsl(spa
), freeze_txg
);
1320 * This is a stripped-down version of strtoull, suitable only for converting
1321 * lowercase hexadecimal numbers that don't overflow.
1324 strtonum(const char *str
, char **nptr
)
1330 while ((c
= *str
) != '\0') {
1331 if (c
>= '0' && c
<= '9')
1333 else if (c
>= 'a' && c
<= 'f')
1334 digit
= 10 + c
- 'a';
1345 *nptr
= (char *)str
;
1351 * ==========================================================================
1352 * Accessor functions
1353 * ==========================================================================
1357 spa_shutting_down(spa_t
*spa
)
1359 return (spa
->spa_async_suspended
);
1363 spa_get_dsl(spa_t
*spa
)
1365 return (spa
->spa_dsl_pool
);
1369 spa_is_initializing(spa_t
*spa
)
1371 return (spa
->spa_is_initializing
);
1375 spa_get_rootblkptr(spa_t
*spa
)
1377 return (&spa
->spa_ubsync
.ub_rootbp
);
1381 spa_set_rootblkptr(spa_t
*spa
, const blkptr_t
*bp
)
1383 spa
->spa_uberblock
.ub_rootbp
= *bp
;
1387 spa_altroot(spa_t
*spa
, char *buf
, size_t buflen
)
1389 if (spa
->spa_root
== NULL
)
1392 (void) strncpy(buf
, spa
->spa_root
, buflen
);
1396 spa_sync_pass(spa_t
*spa
)
1398 return (spa
->spa_sync_pass
);
1402 spa_name(spa_t
*spa
)
1404 return (spa
->spa_name
);
1408 spa_guid(spa_t
*spa
)
1410 dsl_pool_t
*dp
= spa_get_dsl(spa
);
1414 * If we fail to parse the config during spa_load(), we can go through
1415 * the error path (which posts an ereport) and end up here with no root
1416 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1419 if (spa
->spa_root_vdev
== NULL
)
1420 return (spa
->spa_config_guid
);
1422 guid
= spa
->spa_last_synced_guid
!= 0 ?
1423 spa
->spa_last_synced_guid
: spa
->spa_root_vdev
->vdev_guid
;
1426 * Return the most recently synced out guid unless we're
1427 * in syncing context.
1429 if (dp
&& dsl_pool_sync_context(dp
))
1430 return (spa
->spa_root_vdev
->vdev_guid
);
1436 spa_load_guid(spa_t
*spa
)
1439 * This is a GUID that exists solely as a reference for the
1440 * purposes of the arc. It is generated at load time, and
1441 * is never written to persistent storage.
1443 return (spa
->spa_load_guid
);
1447 spa_last_synced_txg(spa_t
*spa
)
1449 return (spa
->spa_ubsync
.ub_txg
);
1453 spa_first_txg(spa_t
*spa
)
1455 return (spa
->spa_first_txg
);
1459 spa_syncing_txg(spa_t
*spa
)
1461 return (spa
->spa_syncing_txg
);
1465 spa_state(spa_t
*spa
)
1467 return (spa
->spa_state
);
1471 spa_load_state(spa_t
*spa
)
1473 return (spa
->spa_load_state
);
1477 spa_freeze_txg(spa_t
*spa
)
1479 return (spa
->spa_freeze_txg
);
1484 spa_get_asize(spa_t
*spa
, uint64_t lsize
)
1486 return (lsize
* spa_asize_inflation
);
1490 spa_get_dspace(spa_t
*spa
)
1492 return (spa
->spa_dspace
);
1496 spa_update_dspace(spa_t
*spa
)
1498 spa
->spa_dspace
= metaslab_class_get_dspace(spa_normal_class(spa
)) +
1499 ddt_get_dedup_dspace(spa
);
1503 * Return the failure mode that has been set to this pool. The default
1504 * behavior will be to block all I/Os when a complete failure occurs.
1507 spa_get_failmode(spa_t
*spa
)
1509 return (spa
->spa_failmode
);
1513 spa_suspended(spa_t
*spa
)
1515 return (spa
->spa_suspended
);
1519 spa_version(spa_t
*spa
)
1521 return (spa
->spa_ubsync
.ub_version
);
1525 spa_deflate(spa_t
*spa
)
1527 return (spa
->spa_deflate
);
1531 spa_normal_class(spa_t
*spa
)
1533 return (spa
->spa_normal_class
);
1537 spa_log_class(spa_t
*spa
)
1539 return (spa
->spa_log_class
);
1543 spa_max_replication(spa_t
*spa
)
1546 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1547 * handle BPs with more than one DVA allocated. Set our max
1548 * replication level accordingly.
1550 if (spa_version(spa
) < SPA_VERSION_DITTO_BLOCKS
)
1552 return (MIN(SPA_DVAS_PER_BP
, spa_max_replication_override
));
1556 spa_prev_software_version(spa_t
*spa
)
1558 return (spa
->spa_prev_software_version
);
1562 spa_deadman_synctime(spa_t
*spa
)
1564 return (spa
->spa_deadman_synctime
);
1568 dva_get_dsize_sync(spa_t
*spa
, const dva_t
*dva
)
1570 uint64_t asize
= DVA_GET_ASIZE(dva
);
1571 uint64_t dsize
= asize
;
1573 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
1575 if (asize
!= 0 && spa
->spa_deflate
) {
1576 vdev_t
*vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
1578 dsize
= (asize
>> SPA_MINBLOCKSHIFT
) *
1579 vd
->vdev_deflate_ratio
;
1586 bp_get_dsize_sync(spa_t
*spa
, const blkptr_t
*bp
)
1591 for (d
= 0; d
< SPA_DVAS_PER_BP
; d
++)
1592 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
1598 bp_get_dsize(spa_t
*spa
, const blkptr_t
*bp
)
1603 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
1605 for (d
= 0; d
< SPA_DVAS_PER_BP
; d
++)
1606 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
1608 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
1614 * ==========================================================================
1615 * Initialization and Termination
1616 * ==========================================================================
1620 spa_name_compare(const void *a1
, const void *a2
)
1622 const spa_t
*s1
= a1
;
1623 const spa_t
*s2
= a2
;
1626 s
= strcmp(s1
->spa_name
, s2
->spa_name
);
1643 mutex_init(&spa_namespace_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1644 mutex_init(&spa_spare_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1645 mutex_init(&spa_l2cache_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1646 cv_init(&spa_namespace_cv
, NULL
, CV_DEFAULT
, NULL
);
1648 avl_create(&spa_namespace_avl
, spa_name_compare
, sizeof (spa_t
),
1649 offsetof(spa_t
, spa_avl
));
1651 avl_create(&spa_spare_avl
, spa_spare_compare
, sizeof (spa_aux_t
),
1652 offsetof(spa_aux_t
, aux_avl
));
1654 avl_create(&spa_l2cache_avl
, spa_l2cache_compare
, sizeof (spa_aux_t
),
1655 offsetof(spa_aux_t
, aux_avl
));
1657 spa_mode_global
= mode
;
1660 if (spa_mode_global
!= FREAD
&& dprintf_find_string("watch")) {
1661 struct sigaction sa
;
1663 sa
.sa_flags
= SA_SIGINFO
;
1664 sigemptyset(&sa
.sa_mask
);
1665 sa
.sa_sigaction
= arc_buf_sigsegv
;
1667 if (sigaction(SIGSEGV
, &sa
, NULL
) == -1) {
1668 perror("could not enable watchpoints: "
1669 "sigaction(SIGSEGV, ...) = ");
1684 vdev_cache_stat_init();
1688 zpool_feature_init();
1701 vdev_cache_stat_fini();
1711 avl_destroy(&spa_namespace_avl
);
1712 avl_destroy(&spa_spare_avl
);
1713 avl_destroy(&spa_l2cache_avl
);
1715 cv_destroy(&spa_namespace_cv
);
1716 mutex_destroy(&spa_namespace_lock
);
1717 mutex_destroy(&spa_spare_lock
);
1718 mutex_destroy(&spa_l2cache_lock
);
1722 * Return whether this pool has slogs. No locking needed.
1723 * It's not a problem if the wrong answer is returned as it's only for
1724 * performance and not correctness
1727 spa_has_slogs(spa_t
*spa
)
1729 return (spa
->spa_log_class
->mc_rotor
!= NULL
);
1733 spa_get_log_state(spa_t
*spa
)
1735 return (spa
->spa_log_state
);
1739 spa_set_log_state(spa_t
*spa
, spa_log_state_t state
)
1741 spa
->spa_log_state
= state
;
1745 spa_is_root(spa_t
*spa
)
1747 return (spa
->spa_is_root
);
1751 spa_writeable(spa_t
*spa
)
1753 return (!!(spa
->spa_mode
& FWRITE
));
1757 spa_mode(spa_t
*spa
)
1759 return (spa
->spa_mode
);
1763 spa_bootfs(spa_t
*spa
)
1765 return (spa
->spa_bootfs
);
1769 spa_delegation(spa_t
*spa
)
1771 return (spa
->spa_delegation
);
1775 spa_meta_objset(spa_t
*spa
)
1777 return (spa
->spa_meta_objset
);
1781 spa_dedup_checksum(spa_t
*spa
)
1783 return (spa
->spa_dedup_checksum
);
1787 * Reset pool scan stat per scan pass (or reboot).
1790 spa_scan_stat_init(spa_t
*spa
)
1792 /* data not stored on disk */
1793 spa
->spa_scan_pass_start
= gethrestime_sec();
1794 spa
->spa_scan_pass_exam
= 0;
1795 vdev_scan_stat_init(spa
->spa_root_vdev
);
1799 * Get scan stats for zpool status reports
1802 spa_scan_get_stats(spa_t
*spa
, pool_scan_stat_t
*ps
)
1804 dsl_scan_t
*scn
= spa
->spa_dsl_pool
? spa
->spa_dsl_pool
->dp_scan
: NULL
;
1806 if (scn
== NULL
|| scn
->scn_phys
.scn_func
== POOL_SCAN_NONE
)
1807 return (SET_ERROR(ENOENT
));
1808 bzero(ps
, sizeof (pool_scan_stat_t
));
1810 /* data stored on disk */
1811 ps
->pss_func
= scn
->scn_phys
.scn_func
;
1812 ps
->pss_start_time
= scn
->scn_phys
.scn_start_time
;
1813 ps
->pss_end_time
= scn
->scn_phys
.scn_end_time
;
1814 ps
->pss_to_examine
= scn
->scn_phys
.scn_to_examine
;
1815 ps
->pss_examined
= scn
->scn_phys
.scn_examined
;
1816 ps
->pss_to_process
= scn
->scn_phys
.scn_to_process
;
1817 ps
->pss_processed
= scn
->scn_phys
.scn_processed
;
1818 ps
->pss_errors
= scn
->scn_phys
.scn_errors
;
1819 ps
->pss_state
= scn
->scn_phys
.scn_state
;
1821 /* data not stored on disk */
1822 ps
->pss_pass_start
= spa
->spa_scan_pass_start
;
1823 ps
->pss_pass_exam
= spa
->spa_scan_pass_exam
;
1829 spa_debug_enabled(spa_t
*spa
)
1831 return (spa
->spa_debug
);
1834 #if defined(_KERNEL) && defined(HAVE_SPL)
1835 /* Namespace manipulation */
1836 EXPORT_SYMBOL(spa_lookup
);
1837 EXPORT_SYMBOL(spa_add
);
1838 EXPORT_SYMBOL(spa_remove
);
1839 EXPORT_SYMBOL(spa_next
);
1841 /* Refcount functions */
1842 EXPORT_SYMBOL(spa_open_ref
);
1843 EXPORT_SYMBOL(spa_close
);
1844 EXPORT_SYMBOL(spa_refcount_zero
);
1846 /* Pool configuration lock */
1847 EXPORT_SYMBOL(spa_config_tryenter
);
1848 EXPORT_SYMBOL(spa_config_enter
);
1849 EXPORT_SYMBOL(spa_config_exit
);
1850 EXPORT_SYMBOL(spa_config_held
);
1852 /* Pool vdev add/remove lock */
1853 EXPORT_SYMBOL(spa_vdev_enter
);
1854 EXPORT_SYMBOL(spa_vdev_exit
);
1856 /* Pool vdev state change lock */
1857 EXPORT_SYMBOL(spa_vdev_state_enter
);
1858 EXPORT_SYMBOL(spa_vdev_state_exit
);
1860 /* Accessor functions */
1861 EXPORT_SYMBOL(spa_shutting_down
);
1862 EXPORT_SYMBOL(spa_get_dsl
);
1863 EXPORT_SYMBOL(spa_get_rootblkptr
);
1864 EXPORT_SYMBOL(spa_set_rootblkptr
);
1865 EXPORT_SYMBOL(spa_altroot
);
1866 EXPORT_SYMBOL(spa_sync_pass
);
1867 EXPORT_SYMBOL(spa_name
);
1868 EXPORT_SYMBOL(spa_guid
);
1869 EXPORT_SYMBOL(spa_last_synced_txg
);
1870 EXPORT_SYMBOL(spa_first_txg
);
1871 EXPORT_SYMBOL(spa_syncing_txg
);
1872 EXPORT_SYMBOL(spa_version
);
1873 EXPORT_SYMBOL(spa_state
);
1874 EXPORT_SYMBOL(spa_load_state
);
1875 EXPORT_SYMBOL(spa_freeze_txg
);
1876 EXPORT_SYMBOL(spa_get_asize
);
1877 EXPORT_SYMBOL(spa_get_dspace
);
1878 EXPORT_SYMBOL(spa_update_dspace
);
1879 EXPORT_SYMBOL(spa_deflate
);
1880 EXPORT_SYMBOL(spa_normal_class
);
1881 EXPORT_SYMBOL(spa_log_class
);
1882 EXPORT_SYMBOL(spa_max_replication
);
1883 EXPORT_SYMBOL(spa_prev_software_version
);
1884 EXPORT_SYMBOL(spa_get_failmode
);
1885 EXPORT_SYMBOL(spa_suspended
);
1886 EXPORT_SYMBOL(spa_bootfs
);
1887 EXPORT_SYMBOL(spa_delegation
);
1888 EXPORT_SYMBOL(spa_meta_objset
);
1890 /* Miscellaneous support routines */
1891 EXPORT_SYMBOL(spa_rename
);
1892 EXPORT_SYMBOL(spa_guid_exists
);
1893 EXPORT_SYMBOL(spa_strdup
);
1894 EXPORT_SYMBOL(spa_strfree
);
1895 EXPORT_SYMBOL(spa_get_random
);
1896 EXPORT_SYMBOL(spa_generate_guid
);
1897 EXPORT_SYMBOL(snprintf_blkptr
);
1898 EXPORT_SYMBOL(spa_freeze
);
1899 EXPORT_SYMBOL(spa_upgrade
);
1900 EXPORT_SYMBOL(spa_evict_all
);
1901 EXPORT_SYMBOL(spa_lookup_by_guid
);
1902 EXPORT_SYMBOL(spa_has_spare
);
1903 EXPORT_SYMBOL(dva_get_dsize_sync
);
1904 EXPORT_SYMBOL(bp_get_dsize_sync
);
1905 EXPORT_SYMBOL(bp_get_dsize
);
1906 EXPORT_SYMBOL(spa_has_slogs
);
1907 EXPORT_SYMBOL(spa_is_root
);
1908 EXPORT_SYMBOL(spa_writeable
);
1909 EXPORT_SYMBOL(spa_mode
);
1911 EXPORT_SYMBOL(spa_namespace_lock
);
1913 module_param(zfs_deadman_synctime_ms
, ulong
, 0644);
1914 MODULE_PARM_DESC(zfs_deadman_synctime_ms
, "Expiration time in milliseconds");
1916 module_param(zfs_deadman_enabled
, int, 0644);
1917 MODULE_PARM_DESC(zfs_deadman_enabled
, "Enable deadman timer");
1919 module_param(spa_asize_inflation
, int, 0644);
1920 MODULE_PARM_DESC(spa_asize_inflation
,
1921 "SPA size estimate multiplication factor");