4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
27 * ARC buffer data (ABD).
29 * ABDs are an abstract data structure for the ARC which can use two
30 * different ways of storing the underlying data:
32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
35 * +-------------------+
38 * | abd_size = ... | +--------------------------------+
39 * | abd_buf ------------->| raw buffer of size abd_size |
40 * +-------------------+ +--------------------------------+
43 * (b) Scattered buffer. In this case, the data in the ABD is split into
44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
45 * to the chunks recorded in an array at the end of the ABD structure.
47 * +-------------------+
51 * | abd_offset = 0 | +-----------+
52 * | abd_chunks[0] ----------------------------->| chunk 0 |
53 * | abd_chunks[1] ---------------------+ +-----------+
54 * | ... | | +-----------+
55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
56 * +-------------------+ | +-----------+
59 * +----------------->| chunk N-1 |
62 * In addition to directly allocating a linear or scattered ABD, it is also
63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
64 * within an existing ABD. In linear buffers this is simple (set abd_buf of
65 * the new ABD to the starting point within the original raw buffer), but
66 * scattered ABDs are a little more complex. The new ABD makes a copy of the
67 * relevant abd_chunks pointers (but not the underlying data). However, to
68 * provide arbitrary rather than only chunk-aligned starting offsets, it also
69 * tracks an abd_offset field which represents the starting point of the data
70 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
71 * creating an offset ABD marks the original ABD as the offset's parent, and the
72 * original ABD's abd_children refcount is incremented. This data allows us to
73 * ensure the root ABD isn't deleted before its children.
75 * Most consumers should never need to know what type of ABD they're using --
76 * the ABD public API ensures that it's possible to transparently switch from
77 * using a linear ABD to a scattered one when doing so would be beneficial.
79 * If you need to use the data within an ABD directly, if you know it's linear
80 * (because you allocated it) you can use abd_to_buf() to access the underlying
81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
82 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
83 * functions to return any raw buffers that are no longer necessary when you're
86 * There are a variety of ABD APIs that implement basic buffer operations:
87 * compare, copy, read, write, and fill with zeroes. If you need a custom
88 * function which progressively accesses the whole ABD, use the abd_iterate_*
91 * As an additional feature, linear and scatter ABD's can be stitched together
92 * by using the gang ABD type (abd_alloc_gang_abd()). This allows for
93 * multiple ABDs to be viewed as a singular ABD.
95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
99 #include <sys/abd_impl.h>
100 #include <sys/param.h>
102 #include <sys/zfs_context.h>
103 #include <sys/zfs_znode.h>
105 /* see block comment above for description */
106 int zfs_abd_scatter_enabled
= B_TRUE
;
109 abd_verify(abd_t
*abd
)
112 ASSERT3U(abd
->abd_size
, <=, SPA_MAXBLOCKSIZE
);
113 ASSERT3U(abd
->abd_flags
, ==, abd
->abd_flags
& (ABD_FLAG_LINEAR
|
114 ABD_FLAG_OWNER
| ABD_FLAG_META
| ABD_FLAG_MULTI_ZONE
|
115 ABD_FLAG_MULTI_CHUNK
| ABD_FLAG_LINEAR_PAGE
| ABD_FLAG_GANG
|
116 ABD_FLAG_GANG_FREE
| ABD_FLAG_ZEROS
| ABD_FLAG_ALLOCD
));
117 IMPLY(abd
->abd_parent
!= NULL
, !(abd
->abd_flags
& ABD_FLAG_OWNER
));
118 IMPLY(abd
->abd_flags
& ABD_FLAG_META
, abd
->abd_flags
& ABD_FLAG_OWNER
);
119 if (abd_is_linear(abd
)) {
120 ASSERT3U(abd
->abd_size
, >, 0);
121 ASSERT3P(ABD_LINEAR_BUF(abd
), !=, NULL
);
122 } else if (abd_is_gang(abd
)) {
123 uint_t child_sizes
= 0;
124 for (abd_t
*cabd
= list_head(&ABD_GANG(abd
).abd_gang_chain
);
126 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
)) {
127 ASSERT(list_link_active(&cabd
->abd_gang_link
));
128 child_sizes
+= cabd
->abd_size
;
131 ASSERT3U(abd
->abd_size
, ==, child_sizes
);
133 ASSERT3U(abd
->abd_size
, >, 0);
134 abd_verify_scatter(abd
);
140 abd_init_struct(abd_t
*abd
)
142 list_link_init(&abd
->abd_gang_link
);
143 mutex_init(&abd
->abd_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
146 zfs_refcount_create(&abd
->abd_children
);
147 abd
->abd_parent
= NULL
;
153 abd_fini_struct(abd_t
*abd
)
155 mutex_destroy(&abd
->abd_mtx
);
156 ASSERT(!list_link_active(&abd
->abd_gang_link
));
158 zfs_refcount_destroy(&abd
->abd_children
);
163 abd_alloc_struct(size_t size
)
165 abd_t
*abd
= abd_alloc_struct_impl(size
);
166 abd_init_struct(abd
);
167 abd
->abd_flags
|= ABD_FLAG_ALLOCD
;
172 abd_free_struct(abd_t
*abd
)
174 abd_fini_struct(abd
);
175 abd_free_struct_impl(abd
);
179 * Allocate an ABD, along with its own underlying data buffers. Use this if you
180 * don't care whether the ABD is linear or not.
183 abd_alloc(size_t size
, boolean_t is_metadata
)
185 if (abd_size_alloc_linear(size
))
186 return (abd_alloc_linear(size
, is_metadata
));
188 VERIFY3U(size
, <=, SPA_MAXBLOCKSIZE
);
190 abd_t
*abd
= abd_alloc_struct(size
);
191 abd
->abd_flags
|= ABD_FLAG_OWNER
;
192 abd
->abd_u
.abd_scatter
.abd_offset
= 0;
193 abd_alloc_chunks(abd
, size
);
196 abd
->abd_flags
|= ABD_FLAG_META
;
198 abd
->abd_size
= size
;
200 abd_update_scatter_stats(abd
, ABDSTAT_INCR
);
206 * Allocate an ABD that must be linear, along with its own underlying data
207 * buffer. Only use this when it would be very annoying to write your ABD
208 * consumer with a scattered ABD.
211 abd_alloc_linear(size_t size
, boolean_t is_metadata
)
213 abd_t
*abd
= abd_alloc_struct(0);
215 VERIFY3U(size
, <=, SPA_MAXBLOCKSIZE
);
217 abd
->abd_flags
|= ABD_FLAG_LINEAR
| ABD_FLAG_OWNER
;
219 abd
->abd_flags
|= ABD_FLAG_META
;
221 abd
->abd_size
= size
;
224 ABD_LINEAR_BUF(abd
) = zio_buf_alloc(size
);
226 ABD_LINEAR_BUF(abd
) = zio_data_buf_alloc(size
);
229 abd_update_linear_stats(abd
, ABDSTAT_INCR
);
235 abd_free_linear(abd_t
*abd
)
237 if (abd_is_linear_page(abd
)) {
238 abd_free_linear_page(abd
);
241 if (abd
->abd_flags
& ABD_FLAG_META
) {
242 zio_buf_free(ABD_LINEAR_BUF(abd
), abd
->abd_size
);
244 zio_data_buf_free(ABD_LINEAR_BUF(abd
), abd
->abd_size
);
247 abd_update_linear_stats(abd
, ABDSTAT_DECR
);
251 abd_free_gang(abd_t
*abd
)
253 ASSERT(abd_is_gang(abd
));
256 while ((cabd
= list_head(&ABD_GANG(abd
).abd_gang_chain
)) != NULL
) {
258 * We must acquire the child ABDs mutex to ensure that if it
259 * is being added to another gang ABD we will set the link
260 * as inactive when removing it from this gang ABD and before
261 * adding it to the other gang ABD.
263 mutex_enter(&cabd
->abd_mtx
);
264 ASSERT(list_link_active(&cabd
->abd_gang_link
));
265 list_remove(&ABD_GANG(abd
).abd_gang_chain
, cabd
);
266 mutex_exit(&cabd
->abd_mtx
);
267 if (cabd
->abd_flags
& ABD_FLAG_GANG_FREE
)
270 list_destroy(&ABD_GANG(abd
).abd_gang_chain
);
274 abd_free_scatter(abd_t
*abd
)
276 abd_free_chunks(abd
);
277 abd_update_scatter_stats(abd
, ABDSTAT_DECR
);
281 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*()
282 * and abd_get_*(), including abd_get_offset_struct().
284 * If the ABD was created with abd_alloc_*(), the underlying data
285 * (scatterlist or linear buffer) will also be freed. (Subject to ownership
286 * changes via abd_*_ownership_of_buf().)
288 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will
299 IMPLY(abd
->abd_flags
& ABD_FLAG_OWNER
, abd
->abd_parent
== NULL
);
302 if (abd_is_gang(abd
)) {
304 } else if (abd_is_linear(abd
)) {
305 if (abd
->abd_flags
& ABD_FLAG_OWNER
)
306 abd_free_linear(abd
);
308 if (abd
->abd_flags
& ABD_FLAG_OWNER
)
309 abd_free_scatter(abd
);
313 if (abd
->abd_parent
!= NULL
) {
314 (void) zfs_refcount_remove_many(&abd
->abd_parent
->abd_children
,
319 abd_fini_struct(abd
);
320 if (abd
->abd_flags
& ABD_FLAG_ALLOCD
)
321 abd_free_struct_impl(abd
);
325 * Allocate an ABD of the same format (same metadata flag, same scatterize
326 * setting) as another ABD.
329 abd_alloc_sametype(abd_t
*sabd
, size_t size
)
331 boolean_t is_metadata
= (sabd
->abd_flags
& ABD_FLAG_META
) != 0;
332 if (abd_is_linear(sabd
) &&
333 !abd_is_linear_page(sabd
)) {
334 return (abd_alloc_linear(size
, is_metadata
));
336 return (abd_alloc(size
, is_metadata
));
341 * Create gang ABD that will be the head of a list of ABD's. This is used
342 * to "chain" scatter/gather lists together when constructing aggregated
343 * IO's. To free this abd, abd_free() must be called.
348 abd_t
*abd
= abd_alloc_struct(0);
349 abd
->abd_flags
|= ABD_FLAG_GANG
| ABD_FLAG_OWNER
;
350 list_create(&ABD_GANG(abd
).abd_gang_chain
,
351 sizeof (abd_t
), offsetof(abd_t
, abd_gang_link
));
356 * Add a child gang ABD to a parent gang ABDs chained list.
359 abd_gang_add_gang(abd_t
*pabd
, abd_t
*cabd
, boolean_t free_on_free
)
361 ASSERT(abd_is_gang(pabd
));
362 ASSERT(abd_is_gang(cabd
));
366 * If the parent is responsible for freeing the child gang
367 * ABD we will just splice the child's children ABD list to
368 * the parent's list and immediately free the child gang ABD
369 * struct. The parent gang ABDs children from the child gang
370 * will retain all the free_on_free settings after being
371 * added to the parents list.
375 * If cabd had abd_parent, we have to drop it here. We can't
376 * transfer it to pabd, nor we can clear abd_size leaving it.
378 if (cabd
->abd_parent
!= NULL
) {
379 (void) zfs_refcount_remove_many(
380 &cabd
->abd_parent
->abd_children
,
381 cabd
->abd_size
, cabd
);
382 cabd
->abd_parent
= NULL
;
385 pabd
->abd_size
+= cabd
->abd_size
;
387 list_move_tail(&ABD_GANG(pabd
).abd_gang_chain
,
388 &ABD_GANG(cabd
).abd_gang_chain
);
389 ASSERT(list_is_empty(&ABD_GANG(cabd
).abd_gang_chain
));
393 for (abd_t
*child
= list_head(&ABD_GANG(cabd
).abd_gang_chain
);
395 child
= list_next(&ABD_GANG(cabd
).abd_gang_chain
, child
)) {
397 * We always pass B_FALSE for free_on_free as it is the
398 * original child gang ABDs responsibility to determine
399 * if any of its child ABDs should be free'd on the call
402 abd_gang_add(pabd
, child
, B_FALSE
);
409 * Add a child ABD to a gang ABD's chained list.
412 abd_gang_add(abd_t
*pabd
, abd_t
*cabd
, boolean_t free_on_free
)
414 ASSERT(abd_is_gang(pabd
));
415 abd_t
*child_abd
= NULL
;
418 * If the child being added is a gang ABD, we will add the
419 * child's ABDs to the parent gang ABD. This allows us to account
420 * for the offset correctly in the parent gang ABD.
422 if (abd_is_gang(cabd
)) {
423 ASSERT(!list_link_active(&cabd
->abd_gang_link
));
424 return (abd_gang_add_gang(pabd
, cabd
, free_on_free
));
426 ASSERT(!abd_is_gang(cabd
));
429 * In order to verify that an ABD is not already part of
430 * another gang ABD, we must lock the child ABD's abd_mtx
431 * to check its abd_gang_link status. We unlock the abd_mtx
432 * only after it is has been added to a gang ABD, which
433 * will update the abd_gang_link's status. See comment below
434 * for how an ABD can be in multiple gang ABD's simultaneously.
436 mutex_enter(&cabd
->abd_mtx
);
437 if (list_link_active(&cabd
->abd_gang_link
)) {
439 * If the child ABD is already part of another
440 * gang ABD then we must allocate a new
441 * ABD to use a separate link. We mark the newly
442 * allocated ABD with ABD_FLAG_GANG_FREE, before
443 * adding it to the gang ABD's list, to make the
444 * gang ABD aware that it is responsible to call
445 * abd_free(). We use abd_get_offset() in order
446 * to just allocate a new ABD but avoid copying the
447 * data over into the newly allocated ABD.
449 * An ABD may become part of multiple gang ABD's. For
450 * example, when writing ditto bocks, the same ABD
451 * is used to write 2 or 3 locations with 2 or 3
452 * zio_t's. Each of the zio's may be aggregated with
453 * different adjacent zio's. zio aggregation uses gang
454 * zio's, so the single ABD can become part of multiple
457 * The ASSERT below is to make sure that if
458 * free_on_free is passed as B_TRUE, the ABD can
459 * not be in multiple gang ABD's. The gang ABD
460 * can not be responsible for cleaning up the child
461 * ABD memory allocation if the ABD can be in
462 * multiple gang ABD's at one time.
464 ASSERT3B(free_on_free
, ==, B_FALSE
);
465 child_abd
= abd_get_offset(cabd
, 0);
466 child_abd
->abd_flags
|= ABD_FLAG_GANG_FREE
;
470 child_abd
->abd_flags
|= ABD_FLAG_GANG_FREE
;
472 ASSERT3P(child_abd
, !=, NULL
);
474 list_insert_tail(&ABD_GANG(pabd
).abd_gang_chain
, child_abd
);
475 mutex_exit(&cabd
->abd_mtx
);
476 pabd
->abd_size
+= child_abd
->abd_size
;
480 * Locate the ABD for the supplied offset in the gang ABD.
481 * Return a new offset relative to the returned ABD.
484 abd_gang_get_offset(abd_t
*abd
, size_t *off
)
488 ASSERT(abd_is_gang(abd
));
489 ASSERT3U(*off
, <, abd
->abd_size
);
490 for (cabd
= list_head(&ABD_GANG(abd
).abd_gang_chain
); cabd
!= NULL
;
491 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
)) {
492 if (*off
>= cabd
->abd_size
)
493 *off
-= cabd
->abd_size
;
497 VERIFY3P(cabd
, !=, NULL
);
502 * Allocate a new ABD, using the provided struct (if non-NULL, and if
503 * circumstances allow - otherwise allocate the struct). The returned ABD will
504 * point to offset off of sabd. It shares the underlying buffer data with sabd.
505 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist.
508 abd_get_offset_impl(abd_t
*abd
, abd_t
*sabd
, size_t off
, size_t size
)
511 ASSERT3U(off
+ size
, <=, sabd
->abd_size
);
513 if (abd_is_linear(sabd
)) {
515 abd
= abd_alloc_struct(0);
517 * Even if this buf is filesystem metadata, we only track that
518 * if we own the underlying data buffer, which is not true in
519 * this case. Therefore, we don't ever use ABD_FLAG_META here.
521 abd
->abd_flags
|= ABD_FLAG_LINEAR
;
523 ABD_LINEAR_BUF(abd
) = (char *)ABD_LINEAR_BUF(sabd
) + off
;
524 } else if (abd_is_gang(sabd
)) {
527 abd
= abd_alloc_gang();
529 abd
->abd_flags
|= ABD_FLAG_GANG
;
530 list_create(&ABD_GANG(abd
).abd_gang_chain
,
531 sizeof (abd_t
), offsetof(abd_t
, abd_gang_link
));
534 abd
->abd_flags
&= ~ABD_FLAG_OWNER
;
535 for (abd_t
*cabd
= abd_gang_get_offset(sabd
, &off
);
536 cabd
!= NULL
&& left
> 0;
537 cabd
= list_next(&ABD_GANG(sabd
).abd_gang_chain
, cabd
)) {
538 int csize
= MIN(left
, cabd
->abd_size
- off
);
540 abd_t
*nabd
= abd_get_offset_size(cabd
, off
, csize
);
541 abd_gang_add(abd
, nabd
, B_TRUE
);
545 ASSERT3U(left
, ==, 0);
547 abd
= abd_get_offset_scatter(abd
, sabd
, off
, size
);
550 ASSERT3P(abd
, !=, NULL
);
551 abd
->abd_size
= size
;
553 abd
->abd_parent
= sabd
;
554 (void) zfs_refcount_add_many(&sabd
->abd_children
, abd
->abd_size
, abd
);
560 * Like abd_get_offset_size(), but memory for the abd_t is provided by the
561 * caller. Using this routine can improve performance by avoiding the cost
562 * of allocating memory for the abd_t struct, and updating the abd stats.
563 * Usually, the provided abd is returned, but in some circumstances (FreeBSD,
564 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to
565 * be allocated. Therefore callers should be careful to use the returned
569 abd_get_offset_struct(abd_t
*abd
, abd_t
*sabd
, size_t off
, size_t size
)
572 abd_init_struct(abd
);
573 result
= abd_get_offset_impl(abd
, sabd
, off
, size
);
575 abd_fini_struct(abd
);
580 abd_get_offset(abd_t
*sabd
, size_t off
)
582 size_t size
= sabd
->abd_size
> off
? sabd
->abd_size
- off
: 0;
583 VERIFY3U(size
, >, 0);
584 return (abd_get_offset_impl(NULL
, sabd
, off
, size
));
588 abd_get_offset_size(abd_t
*sabd
, size_t off
, size_t size
)
590 ASSERT3U(off
+ size
, <=, sabd
->abd_size
);
591 return (abd_get_offset_impl(NULL
, sabd
, off
, size
));
595 * Return a size scatter ABD containing only zeros.
598 abd_get_zeros(size_t size
)
600 ASSERT3P(abd_zero_scatter
, !=, NULL
);
601 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
602 return (abd_get_offset_size(abd_zero_scatter
, 0, size
));
606 * Allocate a linear ABD structure for buf.
609 abd_get_from_buf(void *buf
, size_t size
)
611 abd_t
*abd
= abd_alloc_struct(0);
613 VERIFY3U(size
, <=, SPA_MAXBLOCKSIZE
);
616 * Even if this buf is filesystem metadata, we only track that if we
617 * own the underlying data buffer, which is not true in this case.
618 * Therefore, we don't ever use ABD_FLAG_META here.
620 abd
->abd_flags
|= ABD_FLAG_LINEAR
;
621 abd
->abd_size
= size
;
623 ABD_LINEAR_BUF(abd
) = buf
;
629 * Get the raw buffer associated with a linear ABD.
632 abd_to_buf(abd_t
*abd
)
634 ASSERT(abd_is_linear(abd
));
636 return (ABD_LINEAR_BUF(abd
));
640 * Borrow a raw buffer from an ABD without copying the contents of the ABD
641 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
642 * whose contents are undefined. To copy over the existing data in the ABD, use
643 * abd_borrow_buf_copy() instead.
646 abd_borrow_buf(abd_t
*abd
, size_t n
)
650 ASSERT3U(abd
->abd_size
, >=, n
);
651 if (abd_is_linear(abd
)) {
652 buf
= abd_to_buf(abd
);
654 buf
= zio_buf_alloc(n
);
657 (void) zfs_refcount_add_many(&abd
->abd_children
, n
, buf
);
663 abd_borrow_buf_copy(abd_t
*abd
, size_t n
)
665 void *buf
= abd_borrow_buf(abd
, n
);
666 if (!abd_is_linear(abd
)) {
667 abd_copy_to_buf(buf
, abd
, n
);
673 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
674 * not change the contents of the ABD and will ASSERT that you didn't modify
675 * the buffer since it was borrowed. If you want any changes you made to buf to
676 * be copied back to abd, use abd_return_buf_copy() instead.
679 abd_return_buf(abd_t
*abd
, void *buf
, size_t n
)
682 ASSERT3U(abd
->abd_size
, >=, n
);
684 (void) zfs_refcount_remove_many(&abd
->abd_children
, n
, buf
);
686 if (abd_is_linear(abd
)) {
687 ASSERT3P(buf
, ==, abd_to_buf(abd
));
689 ASSERT0(abd_cmp_buf(abd
, buf
, n
));
690 zio_buf_free(buf
, n
);
695 abd_return_buf_copy(abd_t
*abd
, void *buf
, size_t n
)
697 if (!abd_is_linear(abd
)) {
698 abd_copy_from_buf(abd
, buf
, n
);
700 abd_return_buf(abd
, buf
, n
);
704 abd_release_ownership_of_buf(abd_t
*abd
)
706 ASSERT(abd_is_linear(abd
));
707 ASSERT(abd
->abd_flags
& ABD_FLAG_OWNER
);
710 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
711 * Since that flag does not survive the
712 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
713 * abd_take_ownership_of_buf() sequence, we don't allow releasing
714 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
716 ASSERT(!abd_is_linear_page(abd
));
720 abd
->abd_flags
&= ~ABD_FLAG_OWNER
;
721 /* Disable this flag since we no longer own the data buffer */
722 abd
->abd_flags
&= ~ABD_FLAG_META
;
724 abd_update_linear_stats(abd
, ABDSTAT_DECR
);
729 * Give this ABD ownership of the buffer that it's storing. Can only be used on
730 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
731 * with abd_alloc_linear() which subsequently released ownership of their buf
732 * with abd_release_ownership_of_buf().
735 abd_take_ownership_of_buf(abd_t
*abd
, boolean_t is_metadata
)
737 ASSERT(abd_is_linear(abd
));
738 ASSERT(!(abd
->abd_flags
& ABD_FLAG_OWNER
));
741 abd
->abd_flags
|= ABD_FLAG_OWNER
;
743 abd
->abd_flags
|= ABD_FLAG_META
;
746 abd_update_linear_stats(abd
, ABDSTAT_INCR
);
750 * Initializes an abd_iter based on whether the abd is a gang ABD
751 * or just a single ABD.
753 static inline abd_t
*
754 abd_init_abd_iter(abd_t
*abd
, struct abd_iter
*aiter
, size_t off
)
758 if (abd_is_gang(abd
)) {
759 cabd
= abd_gang_get_offset(abd
, &off
);
761 abd_iter_init(aiter
, cabd
);
762 abd_iter_advance(aiter
, off
);
765 abd_iter_init(aiter
, abd
);
766 abd_iter_advance(aiter
, off
);
772 * Advances an abd_iter. We have to be careful with gang ABD as
773 * advancing could mean that we are at the end of a particular ABD and
774 * must grab the ABD in the gang ABD's list.
776 static inline abd_t
*
777 abd_advance_abd_iter(abd_t
*abd
, abd_t
*cabd
, struct abd_iter
*aiter
,
780 abd_iter_advance(aiter
, len
);
781 if (abd_is_gang(abd
) && abd_iter_at_end(aiter
)) {
782 ASSERT3P(cabd
, !=, NULL
);
783 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
);
785 abd_iter_init(aiter
, cabd
);
786 abd_iter_advance(aiter
, 0);
793 abd_iterate_func(abd_t
*abd
, size_t off
, size_t size
,
794 abd_iter_func_t
*func
, void *private)
796 struct abd_iter aiter
;
803 ASSERT3U(off
+ size
, <=, abd
->abd_size
);
805 boolean_t gang
= abd_is_gang(abd
);
806 abd_t
*c_abd
= abd_init_abd_iter(abd
, &aiter
, off
);
809 /* If we are at the end of the gang ABD we are done */
813 abd_iter_map(&aiter
);
815 size_t len
= MIN(aiter
.iter_mapsize
, size
);
818 ret
= func(aiter
.iter_mapaddr
, len
, private);
820 abd_iter_unmap(&aiter
);
826 c_abd
= abd_advance_abd_iter(abd
, c_abd
, &aiter
, len
);
837 abd_copy_to_buf_off_cb(void *buf
, size_t size
, void *private)
839 struct buf_arg
*ba_ptr
= private;
841 (void) memcpy(ba_ptr
->arg_buf
, buf
, size
);
842 ba_ptr
->arg_buf
= (char *)ba_ptr
->arg_buf
+ size
;
848 * Copy abd to buf. (off is the offset in abd.)
851 abd_copy_to_buf_off(void *buf
, abd_t
*abd
, size_t off
, size_t size
)
853 struct buf_arg ba_ptr
= { buf
};
855 (void) abd_iterate_func(abd
, off
, size
, abd_copy_to_buf_off_cb
,
860 abd_cmp_buf_off_cb(void *buf
, size_t size
, void *private)
863 struct buf_arg
*ba_ptr
= private;
865 ret
= memcmp(buf
, ba_ptr
->arg_buf
, size
);
866 ba_ptr
->arg_buf
= (char *)ba_ptr
->arg_buf
+ size
;
872 * Compare the contents of abd to buf. (off is the offset in abd.)
875 abd_cmp_buf_off(abd_t
*abd
, const void *buf
, size_t off
, size_t size
)
877 struct buf_arg ba_ptr
= { (void *) buf
};
879 return (abd_iterate_func(abd
, off
, size
, abd_cmp_buf_off_cb
, &ba_ptr
));
883 abd_copy_from_buf_off_cb(void *buf
, size_t size
, void *private)
885 struct buf_arg
*ba_ptr
= private;
887 (void) memcpy(buf
, ba_ptr
->arg_buf
, size
);
888 ba_ptr
->arg_buf
= (char *)ba_ptr
->arg_buf
+ size
;
894 * Copy from buf to abd. (off is the offset in abd.)
897 abd_copy_from_buf_off(abd_t
*abd
, const void *buf
, size_t off
, size_t size
)
899 struct buf_arg ba_ptr
= { (void *) buf
};
901 (void) abd_iterate_func(abd
, off
, size
, abd_copy_from_buf_off_cb
,
906 abd_zero_off_cb(void *buf
, size_t size
, void *private)
909 (void) memset(buf
, 0, size
);
914 * Zero out the abd from a particular offset to the end.
917 abd_zero_off(abd_t
*abd
, size_t off
, size_t size
)
919 (void) abd_iterate_func(abd
, off
, size
, abd_zero_off_cb
, NULL
);
923 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
924 * equal-sized chunks (passed to func as raw buffers). func could be called many
925 * times during this iteration.
928 abd_iterate_func2(abd_t
*dabd
, abd_t
*sabd
, size_t doff
, size_t soff
,
929 size_t size
, abd_iter_func2_t
*func
, void *private)
932 struct abd_iter daiter
, saiter
;
933 boolean_t dabd_is_gang_abd
, sabd_is_gang_abd
;
934 abd_t
*c_dabd
, *c_sabd
;
942 ASSERT3U(doff
+ size
, <=, dabd
->abd_size
);
943 ASSERT3U(soff
+ size
, <=, sabd
->abd_size
);
945 dabd_is_gang_abd
= abd_is_gang(dabd
);
946 sabd_is_gang_abd
= abd_is_gang(sabd
);
947 c_dabd
= abd_init_abd_iter(dabd
, &daiter
, doff
);
948 c_sabd
= abd_init_abd_iter(sabd
, &saiter
, soff
);
951 /* if we are at the end of the gang ABD we are done */
952 if ((dabd_is_gang_abd
&& !c_dabd
) ||
953 (sabd_is_gang_abd
&& !c_sabd
))
956 abd_iter_map(&daiter
);
957 abd_iter_map(&saiter
);
959 size_t dlen
= MIN(daiter
.iter_mapsize
, size
);
960 size_t slen
= MIN(saiter
.iter_mapsize
, size
);
961 size_t len
= MIN(dlen
, slen
);
962 ASSERT(dlen
> 0 || slen
> 0);
964 ret
= func(daiter
.iter_mapaddr
, saiter
.iter_mapaddr
, len
,
967 abd_iter_unmap(&saiter
);
968 abd_iter_unmap(&daiter
);
975 abd_advance_abd_iter(dabd
, c_dabd
, &daiter
, len
);
977 abd_advance_abd_iter(sabd
, c_sabd
, &saiter
, len
);
984 abd_copy_off_cb(void *dbuf
, void *sbuf
, size_t size
, void *private)
987 (void) memcpy(dbuf
, sbuf
, size
);
992 * Copy from sabd to dabd starting from soff and doff.
995 abd_copy_off(abd_t
*dabd
, abd_t
*sabd
, size_t doff
, size_t soff
, size_t size
)
997 (void) abd_iterate_func2(dabd
, sabd
, doff
, soff
, size
,
998 abd_copy_off_cb
, NULL
);
1002 abd_cmp_cb(void *bufa
, void *bufb
, size_t size
, void *private)
1005 return (memcmp(bufa
, bufb
, size
));
1009 * Compares the contents of two ABDs.
1012 abd_cmp(abd_t
*dabd
, abd_t
*sabd
)
1014 ASSERT3U(dabd
->abd_size
, ==, sabd
->abd_size
);
1015 return (abd_iterate_func2(dabd
, sabd
, 0, 0, dabd
->abd_size
,
1020 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1022 * @cabds parity ABDs, must have equal size
1023 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
1024 * @func_raidz_gen should be implemented so that its behaviour
1025 * is the same when taking linear and when taking scatter
1028 abd_raidz_gen_iterate(abd_t
**cabds
, abd_t
*dabd
,
1029 ssize_t csize
, ssize_t dsize
, const unsigned parity
,
1030 void (*func_raidz_gen
)(void **, const void *, size_t, size_t))
1034 struct abd_iter caiters
[3];
1035 struct abd_iter daiter
= {0};
1037 unsigned long flags __maybe_unused
= 0;
1039 abd_t
*c_dabd
= NULL
;
1040 boolean_t cabds_is_gang_abd
[3];
1041 boolean_t dabd_is_gang_abd
= B_FALSE
;
1043 ASSERT3U(parity
, <=, 3);
1045 for (i
= 0; i
< parity
; i
++) {
1046 cabds_is_gang_abd
[i
] = abd_is_gang(cabds
[i
]);
1047 c_cabds
[i
] = abd_init_abd_iter(cabds
[i
], &caiters
[i
], 0);
1051 dabd_is_gang_abd
= abd_is_gang(dabd
);
1052 c_dabd
= abd_init_abd_iter(dabd
, &daiter
, 0);
1055 ASSERT3S(dsize
, >=, 0);
1057 abd_enter_critical(flags
);
1059 /* if we are at the end of the gang ABD we are done */
1060 if (dabd_is_gang_abd
&& !c_dabd
)
1063 for (i
= 0; i
< parity
; i
++) {
1065 * If we are at the end of the gang ABD we are
1068 if (cabds_is_gang_abd
[i
] && !c_cabds
[i
])
1070 abd_iter_map(&caiters
[i
]);
1071 caddrs
[i
] = caiters
[i
].iter_mapaddr
;
1076 if (dabd
&& dsize
> 0)
1077 abd_iter_map(&daiter
);
1081 len
= MIN(caiters
[2].iter_mapsize
, len
);
1084 len
= MIN(caiters
[1].iter_mapsize
, len
);
1087 len
= MIN(caiters
[0].iter_mapsize
, len
);
1090 /* must be progressive */
1091 ASSERT3S(len
, >, 0);
1093 if (dabd
&& dsize
> 0) {
1094 /* this needs precise iter.length */
1095 len
= MIN(daiter
.iter_mapsize
, len
);
1100 /* must be progressive */
1101 ASSERT3S(len
, >, 0);
1103 * The iterated function likely will not do well if each
1104 * segment except the last one is not multiple of 512 (raidz).
1106 ASSERT3U(((uint64_t)len
& 511ULL), ==, 0);
1108 func_raidz_gen(caddrs
, daiter
.iter_mapaddr
, len
, dlen
);
1110 for (i
= parity
-1; i
>= 0; i
--) {
1111 abd_iter_unmap(&caiters
[i
]);
1113 abd_advance_abd_iter(cabds
[i
], c_cabds
[i
],
1117 if (dabd
&& dsize
> 0) {
1118 abd_iter_unmap(&daiter
);
1120 abd_advance_abd_iter(dabd
, c_dabd
, &daiter
,
1127 ASSERT3S(dsize
, >=, 0);
1128 ASSERT3S(csize
, >=, 0);
1130 abd_exit_critical(flags
);
1134 * Iterate over code ABDs and data reconstruction target ABDs and call
1135 * @func_raidz_rec. Function maps at most 6 pages atomically.
1137 * @cabds parity ABDs, must have equal size
1138 * @tabds rec target ABDs, at most 3
1139 * @tsize size of data target columns
1140 * @func_raidz_rec expects syndrome data in target columns. Function
1141 * reconstructs data and overwrites target columns.
1144 abd_raidz_rec_iterate(abd_t
**cabds
, abd_t
**tabds
,
1145 ssize_t tsize
, const unsigned parity
,
1146 void (*func_raidz_rec
)(void **t
, const size_t tsize
, void **c
,
1147 const unsigned *mul
),
1148 const unsigned *mul
)
1152 struct abd_iter citers
[3];
1153 struct abd_iter xiters
[3];
1154 void *caddrs
[3], *xaddrs
[3];
1155 unsigned long flags __maybe_unused
= 0;
1156 boolean_t cabds_is_gang_abd
[3];
1157 boolean_t tabds_is_gang_abd
[3];
1161 ASSERT3U(parity
, <=, 3);
1163 for (i
= 0; i
< parity
; i
++) {
1164 cabds_is_gang_abd
[i
] = abd_is_gang(cabds
[i
]);
1165 tabds_is_gang_abd
[i
] = abd_is_gang(tabds
[i
]);
1167 abd_init_abd_iter(cabds
[i
], &citers
[i
], 0);
1169 abd_init_abd_iter(tabds
[i
], &xiters
[i
], 0);
1172 abd_enter_critical(flags
);
1175 for (i
= 0; i
< parity
; i
++) {
1177 * If we are at the end of the gang ABD we
1180 if (cabds_is_gang_abd
[i
] && !c_cabds
[i
])
1182 if (tabds_is_gang_abd
[i
] && !c_tabds
[i
])
1184 abd_iter_map(&citers
[i
]);
1185 abd_iter_map(&xiters
[i
]);
1186 caddrs
[i
] = citers
[i
].iter_mapaddr
;
1187 xaddrs
[i
] = xiters
[i
].iter_mapaddr
;
1193 len
= MIN(xiters
[2].iter_mapsize
, len
);
1194 len
= MIN(citers
[2].iter_mapsize
, len
);
1197 len
= MIN(xiters
[1].iter_mapsize
, len
);
1198 len
= MIN(citers
[1].iter_mapsize
, len
);
1201 len
= MIN(xiters
[0].iter_mapsize
, len
);
1202 len
= MIN(citers
[0].iter_mapsize
, len
);
1204 /* must be progressive */
1205 ASSERT3S(len
, >, 0);
1207 * The iterated function likely will not do well if each
1208 * segment except the last one is not multiple of 512 (raidz).
1210 ASSERT3U(((uint64_t)len
& 511ULL), ==, 0);
1212 func_raidz_rec(xaddrs
, len
, caddrs
, mul
);
1214 for (i
= parity
-1; i
>= 0; i
--) {
1215 abd_iter_unmap(&xiters
[i
]);
1216 abd_iter_unmap(&citers
[i
]);
1218 abd_advance_abd_iter(tabds
[i
], c_tabds
[i
],
1221 abd_advance_abd_iter(cabds
[i
], c_cabds
[i
],
1226 ASSERT3S(tsize
, >=, 0);
1228 abd_exit_critical(flags
);