4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
25 #include <sys/zfs_context.h>
29 #include <sys/nvpair.h>
32 #include <sys/zfs_vfsops.h>
33 #include <sys/zfs_znode.h>
35 #include <sys/zfs_fuid.h>
38 * FUID Domain table(s).
40 * The FUID table is stored as a packed nvlist of an array
41 * of nvlists which contain an index, domain string and offset
43 * During file system initialization the nvlist(s) are read and
44 * two AVL trees are created. One tree is keyed by the index number
45 * and the other by the domain string. Nodes are never removed from
46 * trees, but new entries may be added. If a new entry is added then
47 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
48 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
52 #define FUID_IDX "fuid_idx"
53 #define FUID_DOMAIN "fuid_domain"
54 #define FUID_OFFSET "fuid_offset"
55 #define FUID_NVP_ARRAY "fuid_nvlist"
57 typedef struct fuid_domain
{
64 static const char *const nulldomain
= "";
67 * Compare two indexes.
70 idx_compare(const void *arg1
, const void *arg2
)
72 const fuid_domain_t
*node1
= (const fuid_domain_t
*)arg1
;
73 const fuid_domain_t
*node2
= (const fuid_domain_t
*)arg2
;
75 return (TREE_CMP(node1
->f_idx
, node2
->f_idx
));
79 * Compare two domain strings.
82 domain_compare(const void *arg1
, const void *arg2
)
84 const fuid_domain_t
*node1
= (const fuid_domain_t
*)arg1
;
85 const fuid_domain_t
*node2
= (const fuid_domain_t
*)arg2
;
88 val
= strcmp(node1
->f_ksid
->kd_name
, node2
->f_ksid
->kd_name
);
90 return (TREE_ISIGN(val
));
94 zfs_fuid_avl_tree_create(avl_tree_t
*idx_tree
, avl_tree_t
*domain_tree
)
96 avl_create(idx_tree
, idx_compare
,
97 sizeof (fuid_domain_t
), offsetof(fuid_domain_t
, f_idxnode
));
98 avl_create(domain_tree
, domain_compare
,
99 sizeof (fuid_domain_t
), offsetof(fuid_domain_t
, f_domnode
));
103 * load initial fuid domain and idx trees. This function is used by
104 * both the kernel and zdb.
107 zfs_fuid_table_load(objset_t
*os
, uint64_t fuid_obj
, avl_tree_t
*idx_tree
,
108 avl_tree_t
*domain_tree
)
113 ASSERT(fuid_obj
!= 0);
114 VERIFY(0 == dmu_bonus_hold(os
, fuid_obj
,
116 fuid_size
= *(uint64_t *)db
->db_data
;
117 dmu_buf_rele(db
, FTAG
);
121 nvlist_t
*nvp
= NULL
;
126 packed
= kmem_alloc(fuid_size
, KM_SLEEP
);
127 VERIFY(dmu_read(os
, fuid_obj
, 0,
128 fuid_size
, packed
, DMU_READ_PREFETCH
) == 0);
129 VERIFY(nvlist_unpack(packed
, fuid_size
,
131 VERIFY(nvlist_lookup_nvlist_array(nvp
, FUID_NVP_ARRAY
,
132 &fuidnvp
, &count
) == 0);
134 for (i
= 0; i
!= count
; i
++) {
135 fuid_domain_t
*domnode
;
139 VERIFY(nvlist_lookup_string(fuidnvp
[i
], FUID_DOMAIN
,
141 VERIFY(nvlist_lookup_uint64(fuidnvp
[i
], FUID_IDX
,
144 domnode
= kmem_alloc(sizeof (fuid_domain_t
), KM_SLEEP
);
146 domnode
->f_idx
= idx
;
147 domnode
->f_ksid
= ksid_lookupdomain(domain
);
148 avl_add(idx_tree
, domnode
);
149 avl_add(domain_tree
, domnode
);
152 kmem_free(packed
, fuid_size
);
158 zfs_fuid_table_destroy(avl_tree_t
*idx_tree
, avl_tree_t
*domain_tree
)
160 fuid_domain_t
*domnode
;
164 while ((domnode
= avl_destroy_nodes(domain_tree
, &cookie
)))
165 ksiddomain_rele(domnode
->f_ksid
);
167 avl_destroy(domain_tree
);
169 while ((domnode
= avl_destroy_nodes(idx_tree
, &cookie
)))
170 kmem_free(domnode
, sizeof (fuid_domain_t
));
171 avl_destroy(idx_tree
);
175 zfs_fuid_idx_domain(avl_tree_t
*idx_tree
, uint32_t idx
)
177 fuid_domain_t searchnode
, *findnode
;
180 searchnode
.f_idx
= idx
;
182 findnode
= avl_find(idx_tree
, &searchnode
, &loc
);
184 return (findnode
? findnode
->f_ksid
->kd_name
: nulldomain
);
189 * Load the fuid table(s) into memory.
192 zfs_fuid_init(zfsvfs_t
*zfsvfs
)
194 rw_enter(&zfsvfs
->z_fuid_lock
, RW_WRITER
);
196 if (zfsvfs
->z_fuid_loaded
) {
197 rw_exit(&zfsvfs
->z_fuid_lock
);
201 zfs_fuid_avl_tree_create(&zfsvfs
->z_fuid_idx
, &zfsvfs
->z_fuid_domain
);
203 (void) zap_lookup(zfsvfs
->z_os
, MASTER_NODE_OBJ
,
204 ZFS_FUID_TABLES
, 8, 1, &zfsvfs
->z_fuid_obj
);
205 if (zfsvfs
->z_fuid_obj
!= 0) {
206 zfsvfs
->z_fuid_size
= zfs_fuid_table_load(zfsvfs
->z_os
,
207 zfsvfs
->z_fuid_obj
, &zfsvfs
->z_fuid_idx
,
208 &zfsvfs
->z_fuid_domain
);
211 zfsvfs
->z_fuid_loaded
= B_TRUE
;
212 rw_exit(&zfsvfs
->z_fuid_lock
);
216 * sync out AVL trees to persistent storage.
219 zfs_fuid_sync(zfsvfs_t
*zfsvfs
, dmu_tx_t
*tx
)
226 fuid_domain_t
*domnode
;
230 if (!zfsvfs
->z_fuid_dirty
) {
234 rw_enter(&zfsvfs
->z_fuid_lock
, RW_WRITER
);
237 * First see if table needs to be created?
239 if (zfsvfs
->z_fuid_obj
== 0) {
240 zfsvfs
->z_fuid_obj
= dmu_object_alloc(zfsvfs
->z_os
,
241 DMU_OT_FUID
, 1 << 14, DMU_OT_FUID_SIZE
,
242 sizeof (uint64_t), tx
);
243 VERIFY(zap_add(zfsvfs
->z_os
, MASTER_NODE_OBJ
,
244 ZFS_FUID_TABLES
, sizeof (uint64_t), 1,
245 &zfsvfs
->z_fuid_obj
, tx
) == 0);
248 VERIFY(nvlist_alloc(&nvp
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
250 numnodes
= avl_numnodes(&zfsvfs
->z_fuid_idx
);
251 fuids
= kmem_alloc(numnodes
* sizeof (void *), KM_SLEEP
);
252 for (i
= 0, domnode
= avl_first(&zfsvfs
->z_fuid_domain
); domnode
; i
++,
253 domnode
= AVL_NEXT(&zfsvfs
->z_fuid_domain
, domnode
)) {
254 VERIFY(nvlist_alloc(&fuids
[i
], NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
255 VERIFY(nvlist_add_uint64(fuids
[i
], FUID_IDX
,
256 domnode
->f_idx
) == 0);
257 VERIFY(nvlist_add_uint64(fuids
[i
], FUID_OFFSET
, 0) == 0);
258 VERIFY(nvlist_add_string(fuids
[i
], FUID_DOMAIN
,
259 domnode
->f_ksid
->kd_name
) == 0);
261 fnvlist_add_nvlist_array(nvp
, FUID_NVP_ARRAY
,
262 (const nvlist_t
* const *)fuids
, numnodes
);
263 for (i
= 0; i
!= numnodes
; i
++)
264 nvlist_free(fuids
[i
]);
265 kmem_free(fuids
, numnodes
* sizeof (void *));
266 VERIFY(nvlist_size(nvp
, &nvsize
, NV_ENCODE_XDR
) == 0);
267 packed
= kmem_alloc(nvsize
, KM_SLEEP
);
268 VERIFY(nvlist_pack(nvp
, &packed
, &nvsize
,
269 NV_ENCODE_XDR
, KM_SLEEP
) == 0);
271 zfsvfs
->z_fuid_size
= nvsize
;
272 dmu_write(zfsvfs
->z_os
, zfsvfs
->z_fuid_obj
, 0,
273 zfsvfs
->z_fuid_size
, packed
, tx
);
274 kmem_free(packed
, zfsvfs
->z_fuid_size
);
275 VERIFY(0 == dmu_bonus_hold(zfsvfs
->z_os
, zfsvfs
->z_fuid_obj
,
277 dmu_buf_will_dirty(db
, tx
);
278 *(uint64_t *)db
->db_data
= zfsvfs
->z_fuid_size
;
279 dmu_buf_rele(db
, FTAG
);
281 zfsvfs
->z_fuid_dirty
= B_FALSE
;
282 rw_exit(&zfsvfs
->z_fuid_lock
);
286 * Query domain table for a given domain.
288 * If domain isn't found and addok is set, it is added to AVL trees and
289 * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be
290 * necessary for the caller or another thread to detect the dirty table
291 * and sync out the changes.
294 zfs_fuid_find_by_domain(zfsvfs_t
*zfsvfs
, const char *domain
,
295 const char **retdomain
, boolean_t addok
)
297 fuid_domain_t searchnode
, *findnode
;
299 krw_t rw
= RW_READER
;
302 * If the dummy "nobody" domain then return an index of 0
303 * to cause the created FUID to be a standard POSIX id
304 * for the user nobody.
306 if (domain
[0] == '\0') {
308 *retdomain
= nulldomain
;
312 searchnode
.f_ksid
= ksid_lookupdomain(domain
);
314 *retdomain
= searchnode
.f_ksid
->kd_name
;
315 if (!zfsvfs
->z_fuid_loaded
)
316 zfs_fuid_init(zfsvfs
);
319 rw_enter(&zfsvfs
->z_fuid_lock
, rw
);
320 findnode
= avl_find(&zfsvfs
->z_fuid_domain
, &searchnode
, &loc
);
323 rw_exit(&zfsvfs
->z_fuid_lock
);
324 ksiddomain_rele(searchnode
.f_ksid
);
325 return (findnode
->f_idx
);
327 fuid_domain_t
*domnode
;
330 if (rw
== RW_READER
&& !rw_tryupgrade(&zfsvfs
->z_fuid_lock
)) {
331 rw_exit(&zfsvfs
->z_fuid_lock
);
336 domnode
= kmem_alloc(sizeof (fuid_domain_t
), KM_SLEEP
);
337 domnode
->f_ksid
= searchnode
.f_ksid
;
339 retidx
= domnode
->f_idx
= avl_numnodes(&zfsvfs
->z_fuid_idx
) + 1;
341 avl_add(&zfsvfs
->z_fuid_domain
, domnode
);
342 avl_add(&zfsvfs
->z_fuid_idx
, domnode
);
343 zfsvfs
->z_fuid_dirty
= B_TRUE
;
344 rw_exit(&zfsvfs
->z_fuid_lock
);
347 rw_exit(&zfsvfs
->z_fuid_lock
);
353 * Query domain table by index, returning domain string
355 * Returns a pointer from an avl node of the domain string.
359 zfs_fuid_find_by_idx(zfsvfs_t
*zfsvfs
, uint32_t idx
)
363 if (idx
== 0 || !zfsvfs
->z_use_fuids
)
366 if (!zfsvfs
->z_fuid_loaded
)
367 zfs_fuid_init(zfsvfs
);
369 rw_enter(&zfsvfs
->z_fuid_lock
, RW_READER
);
371 if (zfsvfs
->z_fuid_obj
|| zfsvfs
->z_fuid_dirty
)
372 domain
= zfs_fuid_idx_domain(&zfsvfs
->z_fuid_idx
, idx
);
375 rw_exit(&zfsvfs
->z_fuid_lock
);
382 zfs_fuid_map_ids(znode_t
*zp
, cred_t
*cr
, uid_t
*uidp
, uid_t
*gidp
)
384 *uidp
= zfs_fuid_map_id(ZTOZSB(zp
), KUID_TO_SUID(ZTOUID(zp
)),
386 *gidp
= zfs_fuid_map_id(ZTOZSB(zp
), KGID_TO_SGID(ZTOGID(zp
)),
392 zfs_fuid_map_id(zfsvfs_t
*zfsvfs
, uint64_t fuid
,
393 cred_t
*cr
, zfs_fuid_type_t type
)
395 uint32_t index
= FUID_INDEX(fuid
);
402 #elif defined(__linux__)
404 zfs_fuid_map_id(zfsvfs_t
*zfsvfs
, uint64_t fuid
,
405 cred_t
*cr
, zfs_fuid_type_t type
)
408 * The Linux port only supports POSIX IDs, use the passed id.
415 zfs_fuid_map_id(zfsvfs_t
*zfsvfs
, uint64_t fuid
,
416 cred_t
*cr
, zfs_fuid_type_t type
)
418 uint32_t index
= FUID_INDEX(fuid
);
425 domain
= zfs_fuid_find_by_idx(zfsvfs
, index
);
426 ASSERT(domain
!= NULL
);
428 if (type
== ZFS_OWNER
|| type
== ZFS_ACE_USER
) {
429 (void) kidmap_getuidbysid(crgetzone(cr
), domain
,
430 FUID_RID(fuid
), &id
);
432 (void) kidmap_getgidbysid(crgetzone(cr
), domain
,
433 FUID_RID(fuid
), &id
);
440 * Add a FUID node to the list of fuid's being created for this
443 * If ACL has multiple domains, then keep only one copy of each unique
447 zfs_fuid_node_add(zfs_fuid_info_t
**fuidpp
, const char *domain
, uint32_t rid
,
448 uint64_t idx
, uint64_t id
, zfs_fuid_type_t type
)
451 zfs_fuid_domain_t
*fuid_domain
;
452 zfs_fuid_info_t
*fuidp
;
454 boolean_t found
= B_FALSE
;
457 *fuidpp
= zfs_fuid_info_alloc();
461 * First find fuid domain index in linked list
463 * If one isn't found then create an entry.
466 for (fuididx
= 1, fuid_domain
= list_head(&fuidp
->z_domains
);
467 fuid_domain
; fuid_domain
= list_next(&fuidp
->z_domains
,
468 fuid_domain
), fuididx
++) {
469 if (idx
== fuid_domain
->z_domidx
) {
476 fuid_domain
= kmem_alloc(sizeof (zfs_fuid_domain_t
), KM_SLEEP
);
477 fuid_domain
->z_domain
= domain
;
478 fuid_domain
->z_domidx
= idx
;
479 list_insert_tail(&fuidp
->z_domains
, fuid_domain
);
480 fuidp
->z_domain_str_sz
+= strlen(domain
) + 1;
481 fuidp
->z_domain_cnt
++;
484 if (type
== ZFS_ACE_USER
|| type
== ZFS_ACE_GROUP
) {
487 * Now allocate fuid entry and add it on the end of the list
490 fuid
= kmem_alloc(sizeof (zfs_fuid_t
), KM_SLEEP
);
492 fuid
->z_domidx
= idx
;
493 fuid
->z_logfuid
= FUID_ENCODE(fuididx
, rid
);
495 list_insert_tail(&fuidp
->z_fuids
, fuid
);
498 if (type
== ZFS_OWNER
)
499 fuidp
->z_fuid_owner
= FUID_ENCODE(fuididx
, rid
);
501 fuidp
->z_fuid_group
= FUID_ENCODE(fuididx
, rid
);
507 * Create a file system FUID, based on information in the users cred
509 * If cred contains KSID_OWNER then it should be used to determine
510 * the uid otherwise cred's uid will be used. By default cred's gid
511 * is used unless it's an ephemeral ID in which case KSID_GROUP will
512 * be used if it exists.
515 zfs_fuid_create_cred(zfsvfs_t
*zfsvfs
, zfs_fuid_type_t type
,
516 cred_t
*cr
, zfs_fuid_info_t
**fuidp
)
521 const char *kdomain
, *domain
;
524 VERIFY(type
== ZFS_OWNER
|| type
== ZFS_GROUP
);
526 ksid
= crgetsid(cr
, (type
== ZFS_OWNER
) ? KSID_OWNER
: KSID_GROUP
);
528 if (!zfsvfs
->z_use_fuids
|| (ksid
== NULL
)) {
529 id
= (type
== ZFS_OWNER
) ? crgetuid(cr
) : crgetgid(cr
);
531 if (IS_EPHEMERAL(id
))
532 return ((type
== ZFS_OWNER
) ? UID_NOBODY
: GID_NOBODY
);
534 return ((uint64_t)id
);
538 * ksid is present and FUID is supported
540 id
= (type
== ZFS_OWNER
) ? ksid_getid(ksid
) : crgetgid(cr
);
542 if (!IS_EPHEMERAL(id
))
543 return ((uint64_t)id
);
545 if (type
== ZFS_GROUP
)
546 id
= ksid_getid(ksid
);
548 rid
= ksid_getrid(ksid
);
549 domain
= ksid_getdomain(ksid
);
551 idx
= zfs_fuid_find_by_domain(zfsvfs
, domain
, &kdomain
, B_TRUE
);
553 zfs_fuid_node_add(fuidp
, kdomain
, rid
, idx
, id
, type
);
555 return (FUID_ENCODE(idx
, rid
));
557 #endif /* HAVE_KSID */
560 * Create a file system FUID for an ACL ace
561 * or a chown/chgrp of the file.
562 * This is similar to zfs_fuid_create_cred, except that
563 * we can't find the domain + rid information in the
564 * cred. Instead we have to query Winchester for the
567 * During replay operations the domain+rid information is
568 * found in the zfs_fuid_info_t that the replay code has
569 * attached to the zfsvfs of the file system.
572 zfs_fuid_create(zfsvfs_t
*zfsvfs
, uint64_t id
, cred_t
*cr
,
573 zfs_fuid_type_t type
, zfs_fuid_info_t
**fuidpp
)
576 const char *domain
, *kdomain
;
577 uint32_t fuid_idx
= FUID_INDEX(id
);
580 uint64_t idx
= UID_NOBODY
;
581 zfs_fuid_t
*zfuid
= NULL
;
582 zfs_fuid_info_t
*fuidp
= NULL
;
585 * If POSIX ID, or entry is already a FUID then
588 * We may also be handed an already FUID'ized id via
592 if (!zfsvfs
->z_use_fuids
|| !IS_EPHEMERAL(id
) || fuid_idx
!= 0)
595 if (zfsvfs
->z_replay
) {
596 fuidp
= zfsvfs
->z_fuid_replay
;
599 * If we are passed an ephemeral id, but no
600 * fuid_info was logged then return NOBODY.
601 * This is most likely a result of idmap service
602 * not being available.
607 VERIFY3U(type
, >=, ZFS_OWNER
);
608 VERIFY3U(type
, <=, ZFS_ACE_GROUP
);
613 zfuid
= list_head(&fuidp
->z_fuids
);
614 rid
= FUID_RID(zfuid
->z_logfuid
);
615 idx
= FUID_INDEX(zfuid
->z_logfuid
);
618 rid
= FUID_RID(fuidp
->z_fuid_owner
);
619 idx
= FUID_INDEX(fuidp
->z_fuid_owner
);
622 rid
= FUID_RID(fuidp
->z_fuid_group
);
623 idx
= FUID_INDEX(fuidp
->z_fuid_group
);
626 domain
= fuidp
->z_domain_table
[idx
- 1];
628 if (type
== ZFS_OWNER
|| type
== ZFS_ACE_USER
)
629 status
= kidmap_getsidbyuid(crgetzone(cr
), id
,
632 status
= kidmap_getsidbygid(crgetzone(cr
), id
,
637 * When returning nobody we will need to
638 * make a dummy fuid table entry for logging
646 idx
= zfs_fuid_find_by_domain(zfsvfs
, domain
, &kdomain
, B_TRUE
);
648 if (!zfsvfs
->z_replay
)
649 zfs_fuid_node_add(fuidpp
, kdomain
,
651 else if (zfuid
!= NULL
) {
652 list_remove(&fuidp
->z_fuids
, zfuid
);
653 kmem_free(zfuid
, sizeof (zfs_fuid_t
));
655 return (FUID_ENCODE(idx
, rid
));
658 * The Linux port only supports POSIX IDs, use the passed id.
665 zfs_fuid_destroy(zfsvfs_t
*zfsvfs
)
667 rw_enter(&zfsvfs
->z_fuid_lock
, RW_WRITER
);
668 if (!zfsvfs
->z_fuid_loaded
) {
669 rw_exit(&zfsvfs
->z_fuid_lock
);
672 zfs_fuid_table_destroy(&zfsvfs
->z_fuid_idx
, &zfsvfs
->z_fuid_domain
);
673 rw_exit(&zfsvfs
->z_fuid_lock
);
677 * Allocate zfs_fuid_info for tracking FUIDs created during
678 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
681 zfs_fuid_info_alloc(void)
683 zfs_fuid_info_t
*fuidp
;
685 fuidp
= kmem_zalloc(sizeof (zfs_fuid_info_t
), KM_SLEEP
);
686 list_create(&fuidp
->z_domains
, sizeof (zfs_fuid_domain_t
),
687 offsetof(zfs_fuid_domain_t
, z_next
));
688 list_create(&fuidp
->z_fuids
, sizeof (zfs_fuid_t
),
689 offsetof(zfs_fuid_t
, z_next
));
694 * Release all memory associated with zfs_fuid_info_t
697 zfs_fuid_info_free(zfs_fuid_info_t
*fuidp
)
700 zfs_fuid_domain_t
*zdomain
;
702 while ((zfuid
= list_head(&fuidp
->z_fuids
)) != NULL
) {
703 list_remove(&fuidp
->z_fuids
, zfuid
);
704 kmem_free(zfuid
, sizeof (zfs_fuid_t
));
707 if (fuidp
->z_domain_table
!= NULL
)
708 kmem_free(fuidp
->z_domain_table
,
709 (sizeof (char *)) * fuidp
->z_domain_cnt
);
711 while ((zdomain
= list_head(&fuidp
->z_domains
)) != NULL
) {
712 list_remove(&fuidp
->z_domains
, zdomain
);
713 kmem_free(zdomain
, sizeof (zfs_fuid_domain_t
));
716 kmem_free(fuidp
, sizeof (zfs_fuid_info_t
));
720 * Check to see if id is a groupmember. If cred
721 * has ksid info then sidlist is checked first
722 * and if still not found then POSIX groups are checked
724 * Will use a straight FUID compare when possible.
727 zfs_groupmember(zfsvfs_t
*zfsvfs
, uint64_t id
, cred_t
*cr
)
732 ksid_t
*ksid
= crgetsid(cr
, KSID_GROUP
);
733 ksidlist_t
*ksidlist
= crgetsidlist(cr
);
735 if (ksid
&& ksidlist
) {
738 uint32_t idx
= FUID_INDEX(id
);
739 uint32_t rid
= FUID_RID(id
);
741 ksid_groups
= ksidlist
->ksl_sids
;
743 for (i
= 0; i
!= ksidlist
->ksl_nsid
; i
++) {
745 if (id
!= IDMAP_WK_CREATOR_GROUP_GID
&&
746 id
== ksid_groups
[i
].ks_id
) {
752 domain
= zfs_fuid_find_by_idx(zfsvfs
, idx
);
753 ASSERT(domain
!= NULL
);
756 IDMAP_WK_CREATOR_SID_AUTHORITY
) == 0)
760 ksid_groups
[i
].ks_domain
->kd_name
) == 0) &&
761 rid
== ksid_groups
[i
].ks_rid
)
769 * Not found in ksidlist, check posix groups
771 gid
= zfs_fuid_map_id(zfsvfs
, id
, cr
, ZFS_GROUP
);
772 return (groupmember(gid
, cr
));
776 zfs_fuid_txhold(zfsvfs_t
*zfsvfs
, dmu_tx_t
*tx
)
778 if (zfsvfs
->z_fuid_obj
== 0) {
779 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
780 dmu_tx_hold_write(tx
, DMU_NEW_OBJECT
, 0,
781 FUID_SIZE_ESTIMATE(zfsvfs
));
782 dmu_tx_hold_zap(tx
, MASTER_NODE_OBJ
, FALSE
, NULL
);
784 dmu_tx_hold_bonus(tx
, zfsvfs
->z_fuid_obj
);
785 dmu_tx_hold_write(tx
, zfsvfs
->z_fuid_obj
, 0,
786 FUID_SIZE_ESTIMATE(zfsvfs
));
791 * buf must be big enough (eg, 32 bytes)
794 zfs_id_to_fuidstr(zfsvfs_t
*zfsvfs
, const char *domain
, uid_t rid
,
795 char *buf
, size_t len
, boolean_t addok
)
800 if (domain
&& domain
[0]) {
801 domainid
= zfs_fuid_find_by_domain(zfsvfs
, domain
, NULL
, addok
);
803 return (SET_ERROR(ENOENT
));
805 fuid
= FUID_ENCODE(domainid
, rid
);
806 (void) snprintf(buf
, len
, "%llx", (longlong_t
)fuid
);