4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains downsampling routines.
10 * Downsampling input data is counted in "row groups". A row group
11 * is defined to be max_v_samp_factor pixel rows of each component,
12 * from which the downsampler produces v_samp_factor sample rows.
13 * A single row group is processed in each call to the downsampler module.
15 * The downsampler is responsible for edge-expansion of its output data
16 * to fill an integral number of DCT blocks horizontally. The source buffer
17 * may be modified if it is helpful for this purpose (the source buffer is
18 * allocated wide enough to correspond to the desired output width).
19 * The caller (the prep controller) is responsible for vertical padding.
21 * The downsampler may request "context rows" by setting need_context_rows
22 * during startup. In this case, the input arrays will contain at least
23 * one row group's worth of pixels above and below the passed-in data;
24 * the caller will create dummy rows at image top and bottom by replicating
25 * the first or last real pixel row.
27 * An excellent reference for image resampling is
28 * Digital Image Warping, George Wolberg, 1990.
29 * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
31 * The downsampling algorithm used here is a simple average of the source
32 * pixels covered by the output pixel. The hi-falutin sampling literature
33 * refers to this as a "box filter". In general the characteristics of a box
34 * filter are not very good, but for the specific cases we normally use (1:1
35 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
36 * nearly so bad. If you intend to use other sampling ratios, you'd be well
37 * advised to improve this code.
39 * A simple input-smoothing capability is provided. This is mainly intended
40 * for cleaning up color-dithered GIF input files (if you find it inadequate,
41 * we suggest using an external filtering program such as pnmconvol). When
42 * enabled, each input pixel P is replaced by a weighted sum of itself and its
43 * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
44 * where SF = (smoothing_factor / 1024).
45 * Currently, smoothing is only supported for 2h2v sampling factors.
48 #define JPEG_INTERNALS
53 /* Pointer to routine to downsample a single component */
54 typedef JMETHOD(void, downsample1_ptr
,
55 (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
56 JSAMPARRAY input_data
, JSAMPARRAY output_data
));
58 /* Private subobject */
61 struct jpeg_downsampler pub
; /* public fields */
63 /* Downsampling method pointers, one per component */
64 downsample1_ptr methods
[MAX_COMPONENTS
];
66 /* Height of an output row group for each component. */
67 int rowgroup_height
[MAX_COMPONENTS
];
69 /* These arrays save pixel expansion factors so that int_downsample need not
70 * recompute them each time. They are unused for other downsampling methods.
72 UINT8 h_expand
[MAX_COMPONENTS
];
73 UINT8 v_expand
[MAX_COMPONENTS
];
76 typedef my_downsampler
* my_downsample_ptr
;
80 * Initialize for a downsampling pass.
84 start_pass_downsample (j_compress_ptr cinfo
)
91 * Expand a component horizontally from width input_cols to width output_cols,
92 * by duplicating the rightmost samples.
96 expand_right_edge (JSAMPARRAY image_data
, int num_rows
,
97 JDIMENSION input_cols
, JDIMENSION output_cols
)
99 register JSAMPROW ptr
;
100 register JSAMPLE pixval
;
103 int numcols
= (int) (output_cols
- input_cols
);
106 for (row
= 0; row
< num_rows
; row
++) {
107 ptr
= image_data
[row
] + input_cols
;
108 pixval
= ptr
[-1]; /* don't need GETJSAMPLE() here */
109 for (count
= numcols
; count
> 0; count
--)
117 * Do downsampling for a whole row group (all components).
119 * In this version we simply downsample each component independently.
123 sep_downsample (j_compress_ptr cinfo
,
124 JSAMPIMAGE input_buf
, JDIMENSION in_row_index
,
125 JSAMPIMAGE output_buf
, JDIMENSION out_row_group_index
)
127 my_downsample_ptr downsample
= (my_downsample_ptr
) cinfo
->downsample
;
129 jpeg_component_info
* compptr
;
130 JSAMPARRAY in_ptr
, out_ptr
;
132 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
134 in_ptr
= input_buf
[ci
] + in_row_index
;
135 out_ptr
= output_buf
[ci
] +
136 (out_row_group_index
* downsample
->rowgroup_height
[ci
]);
137 (*downsample
->methods
[ci
]) (cinfo
, compptr
, in_ptr
, out_ptr
);
143 * Downsample pixel values of a single component.
144 * One row group is processed per call.
145 * This version handles arbitrary integral sampling ratios, without smoothing.
146 * Note that this version is not actually used for customary sampling ratios.
150 int_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
151 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
153 my_downsample_ptr downsample
= (my_downsample_ptr
) cinfo
->downsample
;
154 int inrow
, outrow
, h_expand
, v_expand
, numpix
, numpix2
, h
, v
;
155 JDIMENSION outcol
, outcol_h
; /* outcol_h == outcol*h_expand */
156 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
157 JSAMPROW inptr
, outptr
;
160 h_expand
= downsample
->h_expand
[compptr
->component_index
];
161 v_expand
= downsample
->v_expand
[compptr
->component_index
];
162 numpix
= h_expand
* v_expand
;
165 /* Expand input data enough to let all the output samples be generated
166 * by the standard loop. Special-casing padded output would be more
169 expand_right_edge(input_data
, cinfo
->max_v_samp_factor
,
170 cinfo
->image_width
, output_cols
* h_expand
);
173 while (inrow
< cinfo
->max_v_samp_factor
) {
174 outptr
= output_data
[outrow
];
175 for (outcol
= 0, outcol_h
= 0; outcol
< output_cols
;
176 outcol
++, outcol_h
+= h_expand
) {
178 for (v
= 0; v
< v_expand
; v
++) {
179 inptr
= input_data
[inrow
+v
] + outcol_h
;
180 for (h
= 0; h
< h_expand
; h
++) {
181 outvalue
+= (INT32
) GETJSAMPLE(*inptr
++);
184 *outptr
++ = (JSAMPLE
) ((outvalue
+ numpix2
) / numpix
);
193 * Downsample pixel values of a single component.
194 * This version handles the special case of a full-size component,
199 fullsize_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
200 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
203 jcopy_sample_rows(input_data
, 0, output_data
, 0,
204 cinfo
->max_v_samp_factor
, cinfo
->image_width
);
206 expand_right_edge(output_data
, cinfo
->max_v_samp_factor
, cinfo
->image_width
,
207 compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
);
212 * Downsample pixel values of a single component.
213 * This version handles the common case of 2:1 horizontal and 1:1 vertical,
216 * A note about the "bias" calculations: when rounding fractional values to
217 * integer, we do not want to always round 0.5 up to the next integer.
218 * If we did that, we'd introduce a noticeable bias towards larger values.
219 * Instead, this code is arranged so that 0.5 will be rounded up or down at
220 * alternate pixel locations (a simple ordered dither pattern).
224 h2v1_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
225 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
229 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
230 register JSAMPROW inptr
, outptr
;
233 /* Expand input data enough to let all the output samples be generated
234 * by the standard loop. Special-casing padded output would be more
237 expand_right_edge(input_data
, cinfo
->max_v_samp_factor
,
238 cinfo
->image_width
, output_cols
* 2);
240 for (inrow
= 0; inrow
< cinfo
->max_v_samp_factor
; inrow
++) {
241 outptr
= output_data
[inrow
];
242 inptr
= input_data
[inrow
];
243 bias
= 0; /* bias = 0,1,0,1,... for successive samples */
244 for (outcol
= 0; outcol
< output_cols
; outcol
++) {
245 *outptr
++ = (JSAMPLE
) ((GETJSAMPLE(*inptr
) + GETJSAMPLE(inptr
[1])
247 bias
^= 1; /* 0=>1, 1=>0 */
255 * Downsample pixel values of a single component.
256 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
261 h2v2_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
262 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
266 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
267 register JSAMPROW inptr0
, inptr1
, outptr
;
270 /* Expand input data enough to let all the output samples be generated
271 * by the standard loop. Special-casing padded output would be more
274 expand_right_edge(input_data
, cinfo
->max_v_samp_factor
,
275 cinfo
->image_width
, output_cols
* 2);
278 while (inrow
< cinfo
->max_v_samp_factor
) {
279 outptr
= output_data
[outrow
];
280 inptr0
= input_data
[inrow
];
281 inptr1
= input_data
[inrow
+1];
282 bias
= 1; /* bias = 1,2,1,2,... for successive samples */
283 for (outcol
= 0; outcol
< output_cols
; outcol
++) {
284 *outptr
++ = (JSAMPLE
) ((GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[1]) +
285 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[1])
287 bias
^= 3; /* 1=>2, 2=>1 */
288 inptr0
+= 2; inptr1
+= 2;
296 #ifdef INPUT_SMOOTHING_SUPPORTED
299 * Downsample pixel values of a single component.
300 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
301 * with smoothing. One row of context is required.
305 h2v2_smooth_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
306 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
310 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
311 register JSAMPROW inptr0
, inptr1
, above_ptr
, below_ptr
, outptr
;
312 INT32 membersum
, neighsum
, memberscale
, neighscale
;
314 /* Expand input data enough to let all the output samples be generated
315 * by the standard loop. Special-casing padded output would be more
318 expand_right_edge(input_data
- 1, cinfo
->max_v_samp_factor
+ 2,
319 cinfo
->image_width
, output_cols
* 2);
321 /* We don't bother to form the individual "smoothed" input pixel values;
322 * we can directly compute the output which is the average of the four
323 * smoothed values. Each of the four member pixels contributes a fraction
324 * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
325 * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
326 * output. The four corner-adjacent neighbor pixels contribute a fraction
327 * SF to just one smoothed pixel, or SF/4 to the final output; while the
328 * eight edge-adjacent neighbors contribute SF to each of two smoothed
329 * pixels, or SF/2 overall. In order to use integer arithmetic, these
330 * factors are scaled by 2^16 = 65536.
331 * Also recall that SF = smoothing_factor / 1024.
334 memberscale
= 16384 - cinfo
->smoothing_factor
* 80; /* scaled (1-5*SF)/4 */
335 neighscale
= cinfo
->smoothing_factor
* 16; /* scaled SF/4 */
338 while (inrow
< cinfo
->max_v_samp_factor
) {
339 outptr
= output_data
[outrow
];
340 inptr0
= input_data
[inrow
];
341 inptr1
= input_data
[inrow
+1];
342 above_ptr
= input_data
[inrow
-1];
343 below_ptr
= input_data
[inrow
+2];
345 /* Special case for first column: pretend column -1 is same as column 0 */
346 membersum
= GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[1]) +
347 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[1]);
348 neighsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(above_ptr
[1]) +
349 GETJSAMPLE(*below_ptr
) + GETJSAMPLE(below_ptr
[1]) +
350 GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[2]) +
351 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[2]);
352 neighsum
+= neighsum
;
353 neighsum
+= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(above_ptr
[2]) +
354 GETJSAMPLE(*below_ptr
) + GETJSAMPLE(below_ptr
[2]);
355 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
356 *outptr
++ = (JSAMPLE
) ((membersum
+ 32768) >> 16);
357 inptr0
+= 2; inptr1
+= 2; above_ptr
+= 2; below_ptr
+= 2;
359 for (colctr
= output_cols
- 2; colctr
> 0; colctr
--) {
360 /* sum of pixels directly mapped to this output element */
361 membersum
= GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[1]) +
362 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[1]);
363 /* sum of edge-neighbor pixels */
364 neighsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(above_ptr
[1]) +
365 GETJSAMPLE(*below_ptr
) + GETJSAMPLE(below_ptr
[1]) +
366 GETJSAMPLE(inptr0
[-1]) + GETJSAMPLE(inptr0
[2]) +
367 GETJSAMPLE(inptr1
[-1]) + GETJSAMPLE(inptr1
[2]);
368 /* The edge-neighbors count twice as much as corner-neighbors */
369 neighsum
+= neighsum
;
370 /* Add in the corner-neighbors */
371 neighsum
+= GETJSAMPLE(above_ptr
[-1]) + GETJSAMPLE(above_ptr
[2]) +
372 GETJSAMPLE(below_ptr
[-1]) + GETJSAMPLE(below_ptr
[2]);
373 /* form final output scaled up by 2^16 */
374 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
375 /* round, descale and output it */
376 *outptr
++ = (JSAMPLE
) ((membersum
+ 32768) >> 16);
377 inptr0
+= 2; inptr1
+= 2; above_ptr
+= 2; below_ptr
+= 2;
380 /* Special case for last column */
381 membersum
= GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[1]) +
382 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[1]);
383 neighsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(above_ptr
[1]) +
384 GETJSAMPLE(*below_ptr
) + GETJSAMPLE(below_ptr
[1]) +
385 GETJSAMPLE(inptr0
[-1]) + GETJSAMPLE(inptr0
[1]) +
386 GETJSAMPLE(inptr1
[-1]) + GETJSAMPLE(inptr1
[1]);
387 neighsum
+= neighsum
;
388 neighsum
+= GETJSAMPLE(above_ptr
[-1]) + GETJSAMPLE(above_ptr
[1]) +
389 GETJSAMPLE(below_ptr
[-1]) + GETJSAMPLE(below_ptr
[1]);
390 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
391 *outptr
= (JSAMPLE
) ((membersum
+ 32768) >> 16);
400 * Downsample pixel values of a single component.
401 * This version handles the special case of a full-size component,
402 * with smoothing. One row of context is required.
406 fullsize_smooth_downsample (j_compress_ptr cinfo
, jpeg_component_info
*compptr
,
407 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
411 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
412 register JSAMPROW inptr
, above_ptr
, below_ptr
, outptr
;
413 INT32 membersum
, neighsum
, memberscale
, neighscale
;
414 int colsum
, lastcolsum
, nextcolsum
;
416 /* Expand input data enough to let all the output samples be generated
417 * by the standard loop. Special-casing padded output would be more
420 expand_right_edge(input_data
- 1, cinfo
->max_v_samp_factor
+ 2,
421 cinfo
->image_width
, output_cols
);
423 /* Each of the eight neighbor pixels contributes a fraction SF to the
424 * smoothed pixel, while the main pixel contributes (1-8*SF). In order
425 * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
426 * Also recall that SF = smoothing_factor / 1024.
429 memberscale
= 65536L - cinfo
->smoothing_factor
* 512L; /* scaled 1-8*SF */
430 neighscale
= cinfo
->smoothing_factor
* 64; /* scaled SF */
432 for (inrow
= 0; inrow
< cinfo
->max_v_samp_factor
; inrow
++) {
433 outptr
= output_data
[inrow
];
434 inptr
= input_data
[inrow
];
435 above_ptr
= input_data
[inrow
-1];
436 below_ptr
= input_data
[inrow
+1];
438 /* Special case for first column */
439 colsum
= GETJSAMPLE(*above_ptr
++) + GETJSAMPLE(*below_ptr
++) +
441 membersum
= GETJSAMPLE(*inptr
++);
442 nextcolsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(*below_ptr
) +
444 neighsum
= colsum
+ (colsum
- membersum
) + nextcolsum
;
445 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
446 *outptr
++ = (JSAMPLE
) ((membersum
+ 32768) >> 16);
447 lastcolsum
= colsum
; colsum
= nextcolsum
;
449 for (colctr
= output_cols
- 2; colctr
> 0; colctr
--) {
450 membersum
= GETJSAMPLE(*inptr
++);
451 above_ptr
++; below_ptr
++;
452 nextcolsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(*below_ptr
) +
454 neighsum
= lastcolsum
+ (colsum
- membersum
) + nextcolsum
;
455 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
456 *outptr
++ = (JSAMPLE
) ((membersum
+ 32768) >> 16);
457 lastcolsum
= colsum
; colsum
= nextcolsum
;
460 /* Special case for last column */
461 membersum
= GETJSAMPLE(*inptr
);
462 neighsum
= lastcolsum
+ (colsum
- membersum
) + colsum
;
463 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
464 *outptr
= (JSAMPLE
) ((membersum
+ 32768) >> 16);
469 #endif /* INPUT_SMOOTHING_SUPPORTED */
473 * Module initialization routine for downsampling.
474 * Note that we must select a routine for each component.
478 jinit_downsampler (j_compress_ptr cinfo
)
480 my_downsample_ptr downsample
;
482 jpeg_component_info
* compptr
;
483 boolean smoothok
= TRUE
;
484 int h_in_group
, v_in_group
, h_out_group
, v_out_group
;
486 downsample
= (my_downsample_ptr
)
487 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
488 SIZEOF(my_downsampler
));
489 cinfo
->downsample
= (struct jpeg_downsampler
*) downsample
;
490 downsample
->pub
.start_pass
= start_pass_downsample
;
491 downsample
->pub
.downsample
= sep_downsample
;
492 downsample
->pub
.need_context_rows
= FALSE
;
494 if (cinfo
->CCIR601_sampling
)
495 ERREXIT(cinfo
, JERR_CCIR601_NOTIMPL
);
497 /* Verify we can handle the sampling factors, and set up method pointers */
498 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
500 /* Compute size of an "output group" for DCT scaling. This many samples
501 * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
503 h_out_group
= (compptr
->h_samp_factor
* compptr
->DCT_h_scaled_size
) /
504 cinfo
->min_DCT_h_scaled_size
;
505 v_out_group
= (compptr
->v_samp_factor
* compptr
->DCT_v_scaled_size
) /
506 cinfo
->min_DCT_v_scaled_size
;
507 h_in_group
= cinfo
->max_h_samp_factor
;
508 v_in_group
= cinfo
->max_v_samp_factor
;
509 downsample
->rowgroup_height
[ci
] = v_out_group
; /* save for use later */
510 if (h_in_group
== h_out_group
&& v_in_group
== v_out_group
) {
511 #ifdef INPUT_SMOOTHING_SUPPORTED
512 if (cinfo
->smoothing_factor
) {
513 downsample
->methods
[ci
] = fullsize_smooth_downsample
;
514 downsample
->pub
.need_context_rows
= TRUE
;
517 downsample
->methods
[ci
] = fullsize_downsample
;
518 } else if (h_in_group
== h_out_group
* 2 &&
519 v_in_group
== v_out_group
) {
521 downsample
->methods
[ci
] = h2v1_downsample
;
522 } else if (h_in_group
== h_out_group
* 2 &&
523 v_in_group
== v_out_group
* 2) {
524 #ifdef INPUT_SMOOTHING_SUPPORTED
525 if (cinfo
->smoothing_factor
) {
526 downsample
->methods
[ci
] = h2v2_smooth_downsample
;
527 downsample
->pub
.need_context_rows
= TRUE
;
530 downsample
->methods
[ci
] = h2v2_downsample
;
531 } else if ((h_in_group
% h_out_group
) == 0 &&
532 (v_in_group
% v_out_group
) == 0) {
534 downsample
->methods
[ci
] = int_downsample
;
535 downsample
->h_expand
[ci
] = (UINT8
) (h_in_group
/ h_out_group
);
536 downsample
->v_expand
[ci
] = (UINT8
) (v_in_group
/ v_out_group
);
538 ERREXIT(cinfo
, JERR_FRACT_SAMPLE_NOTIMPL
);
541 #ifdef INPUT_SMOOTHING_SUPPORTED
542 if (cinfo
->smoothing_factor
&& !smoothok
)
543 TRACEMS(cinfo
, 0, JTRC_SMOOTH_NOTIMPL
);