tools/adflib: build only host variant which is used by Sam440 target
[AROS.git] / workbench / devs / monitors / IntelGMA / i915_3d.h
blob04531f3325da5cb7006d13c28129890a92f67e9e
1 /* -*- c-basic-offset: 4 -*- */
2 /*
3 * Copyright © 2006,2010 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Chris Wilson <chris@chris-wilson.co.uk>
30 /* Each instruction is 3 dwords long, though most don't require all
31 * this space. Maximum of 123 instructions. Smaller maxes per insn
32 * type.
34 #define _3DSTATE_PIXEL_SHADER_PROGRAM (CMD_3D|(0x1d<<24)|(0x5<<16))
36 #define REG_TYPE_R 0 /* temporary regs, no need to
37 * dcl, must be written before
38 * read -- Preserved between
39 * phases.
41 #define REG_TYPE_T 1 /* Interpolated values, must be
42 * dcl'ed before use.
44 * 0..7: texture coord,
45 * 8: diffuse spec,
46 * 9: specular color,
47 * 10: fog parameter in w.
49 #define REG_TYPE_CONST 2 /* Restriction: only one const
50 * can be referenced per
51 * instruction, though it may be
52 * selected for multiple inputs.
53 * Constants not initialized
54 * default to zero.
56 #define REG_TYPE_S 3 /* sampler */
57 #define REG_TYPE_OC 4 /* output color (rgba) */
58 #define REG_TYPE_OD 5 /* output depth (w), xyz are
59 * temporaries. If not written,
60 * interpolated depth is used?
62 #define REG_TYPE_U 6 /* unpreserved temporaries */
63 #define REG_TYPE_MASK 0x7
64 #define REG_TYPE_SHIFT 4
65 #define REG_NR_MASK 0xf
67 /* REG_TYPE_T:
69 #define T_TEX0 0
70 #define T_TEX1 1
71 #define T_TEX2 2
72 #define T_TEX3 3
73 #define T_TEX4 4
74 #define T_TEX5 5
75 #define T_TEX6 6
76 #define T_TEX7 7
77 #define T_DIFFUSE 8
78 #define T_SPECULAR 9
79 #define T_FOG_W 10 /* interpolated fog is in W coord */
81 /* Arithmetic instructions */
83 /* .replicate_swizzle == selection and replication of a particular
84 * scalar channel, ie., .xxxx, .yyyy, .zzzz or .wwww
86 #define A0_NOP (0x0<<24) /* no operation */
87 #define A0_ADD (0x1<<24) /* dst = src0 + src1 */
88 #define A0_MOV (0x2<<24) /* dst = src0 */
89 #define A0_MUL (0x3<<24) /* dst = src0 * src1 */
90 #define A0_MAD (0x4<<24) /* dst = src0 * src1 + src2 */
91 #define A0_DP2ADD (0x5<<24) /* dst.xyzw = src0.xy dot src1.xy + src2.replicate_swizzle */
92 #define A0_DP3 (0x6<<24) /* dst.xyzw = src0.xyz dot src1.xyz */
93 #define A0_DP4 (0x7<<24) /* dst.xyzw = src0.xyzw dot src1.xyzw */
94 #define A0_FRC (0x8<<24) /* dst = src0 - floor(src0) */
95 #define A0_RCP (0x9<<24) /* dst.xyzw = 1/(src0.replicate_swizzle) */
96 #define A0_RSQ (0xa<<24) /* dst.xyzw = 1/(sqrt(abs(src0.replicate_swizzle))) */
97 #define A0_EXP (0xb<<24) /* dst.xyzw = exp2(src0.replicate_swizzle) */
98 #define A0_LOG (0xc<<24) /* dst.xyzw = log2(abs(src0.replicate_swizzle)) */
99 #define A0_CMP (0xd<<24) /* dst = (src0 >= 0.0) ? src1 : src2 */
100 #define A0_MIN (0xe<<24) /* dst = (src0 < src1) ? src0 : src1 */
101 #define A0_MAX (0xf<<24) /* dst = (src0 >= src1) ? src0 : src1 */
102 #define A0_FLR (0x10<<24) /* dst = floor(src0) */
103 #define A0_MOD (0x11<<24) /* dst = src0 fmod 1.0 */
104 #define A0_TRC (0x12<<24) /* dst = int(src0) */
105 #define A0_SGE (0x13<<24) /* dst = src0 >= src1 ? 1.0 : 0.0 */
106 #define A0_SLT (0x14<<24) /* dst = src0 < src1 ? 1.0 : 0.0 */
107 #define A0_DEST_SATURATE (1<<22)
108 #define A0_DEST_TYPE_SHIFT 19
109 /* Allow: R, OC, OD, U */
110 #define A0_DEST_NR_SHIFT 14
111 /* Allow R: 0..15, OC,OD: 0..0, U: 0..2 */
112 #define A0_DEST_CHANNEL_X (1<<10)
113 #define A0_DEST_CHANNEL_Y (2<<10)
114 #define A0_DEST_CHANNEL_Z (4<<10)
115 #define A0_DEST_CHANNEL_W (8<<10)
116 #define A0_DEST_CHANNEL_ALL (0xf<<10)
117 #define A0_DEST_CHANNEL_SHIFT 10
118 #define A0_SRC0_TYPE_SHIFT 7
119 #define A0_SRC0_NR_SHIFT 2
121 #define A0_DEST_CHANNEL_XY (A0_DEST_CHANNEL_X|A0_DEST_CHANNEL_Y)
122 #define A0_DEST_CHANNEL_XYZ (A0_DEST_CHANNEL_XY|A0_DEST_CHANNEL_Z)
124 #define SRC_X 0
125 #define SRC_Y 1
126 #define SRC_Z 2
127 #define SRC_W 3
128 #define SRC_ZERO 4
129 #define SRC_ONE 5
131 #define A1_SRC0_CHANNEL_X_NEGATE (1<<31)
132 #define A1_SRC0_CHANNEL_X_SHIFT 28
133 #define A1_SRC0_CHANNEL_Y_NEGATE (1<<27)
134 #define A1_SRC0_CHANNEL_Y_SHIFT 24
135 #define A1_SRC0_CHANNEL_Z_NEGATE (1<<23)
136 #define A1_SRC0_CHANNEL_Z_SHIFT 20
137 #define A1_SRC0_CHANNEL_W_NEGATE (1<<19)
138 #define A1_SRC0_CHANNEL_W_SHIFT 16
139 #define A1_SRC1_TYPE_SHIFT 13
140 #define A1_SRC1_NR_SHIFT 8
141 #define A1_SRC1_CHANNEL_X_NEGATE (1<<7)
142 #define A1_SRC1_CHANNEL_X_SHIFT 4
143 #define A1_SRC1_CHANNEL_Y_NEGATE (1<<3)
144 #define A1_SRC1_CHANNEL_Y_SHIFT 0
146 #define A2_SRC1_CHANNEL_Z_NEGATE (1<<31)
147 #define A2_SRC1_CHANNEL_Z_SHIFT 28
148 #define A2_SRC1_CHANNEL_W_NEGATE (1<<27)
149 #define A2_SRC1_CHANNEL_W_SHIFT 24
150 #define A2_SRC2_TYPE_SHIFT 21
151 #define A2_SRC2_NR_SHIFT 16
152 #define A2_SRC2_CHANNEL_X_NEGATE (1<<15)
153 #define A2_SRC2_CHANNEL_X_SHIFT 12
154 #define A2_SRC2_CHANNEL_Y_NEGATE (1<<11)
155 #define A2_SRC2_CHANNEL_Y_SHIFT 8
156 #define A2_SRC2_CHANNEL_Z_NEGATE (1<<7)
157 #define A2_SRC2_CHANNEL_Z_SHIFT 4
158 #define A2_SRC2_CHANNEL_W_NEGATE (1<<3)
159 #define A2_SRC2_CHANNEL_W_SHIFT 0
161 /* Texture instructions */
162 #define T0_TEXLD (0x15<<24) /* Sample texture using predeclared
163 * sampler and address, and output
164 * filtered texel data to destination
165 * register */
166 #define T0_TEXLDP (0x16<<24) /* Same as texld but performs a
167 * perspective divide of the texture
168 * coordinate .xyz values by .w before
169 * sampling. */
170 #define T0_TEXLDB (0x17<<24) /* Same as texld but biases the
171 * computed LOD by w. Only S4.6 two's
172 * comp is used. This implies that a
173 * float to fixed conversion is
174 * done. */
175 #define T0_TEXKILL (0x18<<24) /* Does not perform a sampling
176 * operation. Simply kills the pixel
177 * if any channel of the address
178 * register is < 0.0. */
179 #define T0_DEST_TYPE_SHIFT 19
180 /* Allow: R, OC, OD, U */
181 /* Note: U (unpreserved) regs do not retain their values between
182 * phases (cannot be used for feedback)
184 * Note: oC and OD registers can only be used as the destination of a
185 * texture instruction once per phase (this is an implementation
186 * restriction).
188 #define T0_DEST_NR_SHIFT 14
189 /* Allow R: 0..15, OC,OD: 0..0, U: 0..2 */
190 #define T0_SAMPLER_NR_SHIFT 0 /* This field ignored for TEXKILL */
191 #define T0_SAMPLER_NR_MASK (0xf<<0)
193 #define T1_ADDRESS_REG_TYPE_SHIFT 24 /* Reg to use as texture coord */
194 /* Allow R, T, OC, OD -- R, OC, OD are 'dependent' reads, new program phase */
195 #define T1_ADDRESS_REG_NR_SHIFT 17
196 #define T2_MBZ 0
198 /* Declaration instructions */
199 #define D0_DCL (0x19<<24) /* Declare a t (interpolated attrib)
200 * register or an s (sampler)
201 * register. */
202 #define D0_SAMPLE_TYPE_SHIFT 22
203 #define D0_SAMPLE_TYPE_2D (0x0<<22)
204 #define D0_SAMPLE_TYPE_CUBE (0x1<<22)
205 #define D0_SAMPLE_TYPE_VOLUME (0x2<<22)
206 #define D0_SAMPLE_TYPE_MASK (0x3<<22)
208 #define D0_TYPE_SHIFT 19
209 /* Allow: T, S */
210 #define D0_NR_SHIFT 14
211 /* Allow T: 0..10, S: 0..15 */
212 #define D0_CHANNEL_X (1<<10)
213 #define D0_CHANNEL_Y (2<<10)
214 #define D0_CHANNEL_Z (4<<10)
215 #define D0_CHANNEL_W (8<<10)
216 #define D0_CHANNEL_ALL (0xf<<10)
217 #define D0_CHANNEL_NONE (0<<10)
219 #define D0_CHANNEL_XY (D0_CHANNEL_X|D0_CHANNEL_Y)
220 #define D0_CHANNEL_XYZ (D0_CHANNEL_XY|D0_CHANNEL_Z)
222 /* I915 Errata: Do not allow (xz), (xw), (xzw) combinations for diffuse
223 * or specular declarations.
225 * For T dcls, only allow: (x), (xy), (xyz), (w), (xyzw)
227 * Must be zero for S (sampler) dcls
229 #define D1_MBZ 0
230 #define D2_MBZ 0
233 /* MASK_* are the unshifted bitmasks of the destination mask in arithmetic
234 * operations
236 #define MASK_X 0x1
237 #define MASK_Y 0x2
238 #define MASK_Z 0x4
239 #define MASK_W 0x8
240 #define MASK_XYZ (MASK_X | MASK_Y | MASK_Z)
241 #define MASK_XYZW (MASK_XYZ | MASK_W)
242 #define MASK_SATURATE 0x10
244 /* Temporary, undeclared regs. Preserved between phases */
245 #define FS_R0 ((REG_TYPE_R << REG_TYPE_SHIFT) | 0)
246 #define FS_R1 ((REG_TYPE_R << REG_TYPE_SHIFT) | 1)
247 #define FS_R2 ((REG_TYPE_R << REG_TYPE_SHIFT) | 2)
248 #define FS_R3 ((REG_TYPE_R << REG_TYPE_SHIFT) | 3)
250 /* Texture coordinate regs. Must be declared. */
251 #define FS_T0 ((REG_TYPE_T << REG_TYPE_SHIFT) | 0)
252 #define FS_T1 ((REG_TYPE_T << REG_TYPE_SHIFT) | 1)
253 #define FS_T2 ((REG_TYPE_T << REG_TYPE_SHIFT) | 2)
254 #define FS_T3 ((REG_TYPE_T << REG_TYPE_SHIFT) | 3)
255 #define FS_T4 ((REG_TYPE_T << REG_TYPE_SHIFT) | 4)
256 #define FS_T5 ((REG_TYPE_T << REG_TYPE_SHIFT) | 5)
257 #define FS_T6 ((REG_TYPE_T << REG_TYPE_SHIFT) | 6)
258 #define FS_T7 ((REG_TYPE_T << REG_TYPE_SHIFT) | 7)
259 #define FS_T8 ((REG_TYPE_T << REG_TYPE_SHIFT) | 8)
260 #define FS_T9 ((REG_TYPE_T << REG_TYPE_SHIFT) | 9)
261 #define FS_T10 ((REG_TYPE_T << REG_TYPE_SHIFT) | 10)
263 /* Constant values */
264 #define FS_C0 ((REG_TYPE_CONST << REG_TYPE_SHIFT) | 0)
265 #define FS_C1 ((REG_TYPE_CONST << REG_TYPE_SHIFT) | 1)
266 #define FS_C2 ((REG_TYPE_CONST << REG_TYPE_SHIFT) | 2)
267 #define FS_C3 ((REG_TYPE_CONST << REG_TYPE_SHIFT) | 3)
268 #define FS_C4 ((REG_TYPE_CONST << REG_TYPE_SHIFT) | 4)
269 #define FS_C5 ((REG_TYPE_CONST << REG_TYPE_SHIFT) | 5)
270 #define FS_C6 ((REG_TYPE_CONST << REG_TYPE_SHIFT) | 6)
271 #define FS_C7 ((REG_TYPE_CONST << REG_TYPE_SHIFT) | 7)
273 /* Sampler regs */
274 #define FS_S0 ((REG_TYPE_S << REG_TYPE_SHIFT) | 0)
275 #define FS_S1 ((REG_TYPE_S << REG_TYPE_SHIFT) | 1)
276 #define FS_S2 ((REG_TYPE_S << REG_TYPE_SHIFT) | 2)
277 #define FS_S3 ((REG_TYPE_S << REG_TYPE_SHIFT) | 3)
279 /* Output color */
280 #define FS_OC ((REG_TYPE_OC << REG_TYPE_SHIFT) | 0)
282 /* Output depth */
283 #define FS_OD ((REG_TYPE_OD << REG_TYPE_SHIFT) | 0)
285 /* Unpreserved temporary regs */
286 #define FS_U0 ((REG_TYPE_U << REG_TYPE_SHIFT) | 0)
287 #define FS_U1 ((REG_TYPE_U << REG_TYPE_SHIFT) | 1)
288 #define FS_U2 ((REG_TYPE_U << REG_TYPE_SHIFT) | 2)
289 #define FS_U3 ((REG_TYPE_U << REG_TYPE_SHIFT) | 3)
291 #define X_CHANNEL_SHIFT (REG_TYPE_SHIFT + 3)
292 #define Y_CHANNEL_SHIFT (X_CHANNEL_SHIFT + 4)
293 #define Z_CHANNEL_SHIFT (Y_CHANNEL_SHIFT + 4)
294 #define W_CHANNEL_SHIFT (Z_CHANNEL_SHIFT + 4)
296 #define REG_CHANNEL_MASK 0xf
298 #define REG_NR(reg) ((reg) & REG_NR_MASK)
299 #define REG_TYPE(reg) (((reg) >> REG_TYPE_SHIFT) & REG_TYPE_MASK)
300 #define REG_X(reg) (((reg) >> X_CHANNEL_SHIFT) & REG_CHANNEL_MASK)
301 #define REG_Y(reg) (((reg) >> Y_CHANNEL_SHIFT) & REG_CHANNEL_MASK)
302 #define REG_Z(reg) (((reg) >> Z_CHANNEL_SHIFT) & REG_CHANNEL_MASK)
303 #define REG_W(reg) (((reg) >> W_CHANNEL_SHIFT) & REG_CHANNEL_MASK)
305 enum i915_fs_channel {
306 X_CHANNEL_VAL = 0,
307 Y_CHANNEL_VAL,
308 Z_CHANNEL_VAL,
309 W_CHANNEL_VAL,
310 ZERO_CHANNEL_VAL,
311 ONE_CHANNEL_VAL,
313 NEG_X_CHANNEL_VAL = X_CHANNEL_VAL | 0x8,
314 NEG_Y_CHANNEL_VAL = Y_CHANNEL_VAL | 0x8,
315 NEG_Z_CHANNEL_VAL = Z_CHANNEL_VAL | 0x8,
316 NEG_W_CHANNEL_VAL = W_CHANNEL_VAL | 0x8,
317 NEG_ONE_CHANNEL_VAL = ONE_CHANNEL_VAL | 0x8
320 #define i915_fs_operand(reg, x, y, z, w) \
321 (reg) | \
322 (x##_CHANNEL_VAL << X_CHANNEL_SHIFT) | \
323 (y##_CHANNEL_VAL << Y_CHANNEL_SHIFT) | \
324 (z##_CHANNEL_VAL << Z_CHANNEL_SHIFT) | \
325 (w##_CHANNEL_VAL << W_CHANNEL_SHIFT)
328 * Construct an operand description for using a register with no swizzling
330 #define i915_fs_operand_reg(reg) \
331 i915_fs_operand(reg, X, Y, Z, W)
333 #define i915_fs_operand_reg_negate(reg) \
334 i915_fs_operand(reg, NEG_X, NEG_Y, NEG_Z, NEG_W)
337 * Returns an operand containing (0.0, 0.0, 0.0, 0.0).
339 #define i915_fs_operand_zero() i915_fs_operand(FS_R0, ZERO, ZERO, ZERO, ZERO)
342 * Returns an unused operand
344 #define i915_fs_operand_none() i915_fs_operand_zero()
347 * Returns an operand containing (1.0, 1.0, 1.0, 1.0).
349 #define i915_fs_operand_one() i915_fs_operand(FS_R0, ONE, ONE, ONE, ONE)
351 #define i915_get_hardware_channel_val(val, shift, negate) \
352 (((val & 0x7) << shift) | ((val & 0x8) ? negate : 0))
355 * Outputs a fragment shader command to declare a sampler or texture register.
357 #define i915_fs_dcl(reg) \
358 do { \
359 OUT_BATCH(D0_DCL | \
360 (REG_TYPE(reg) << D0_TYPE_SHIFT) | \
361 (REG_NR(reg) << D0_NR_SHIFT) | \
362 ((REG_TYPE(reg) != REG_TYPE_S) ? D0_CHANNEL_ALL : 0)); \
363 OUT_BATCH(0); \
364 OUT_BATCH(0); \
365 } while (0)
367 #define i915_fs_texld(dest_reg, sampler_reg, address_reg) \
368 do { \
369 OUT_BATCH(T0_TEXLD | \
370 (REG_TYPE(dest_reg) << T0_DEST_TYPE_SHIFT) | \
371 (REG_NR(dest_reg) << T0_DEST_NR_SHIFT) | \
372 (REG_NR(sampler_reg) << T0_SAMPLER_NR_SHIFT)); \
373 OUT_BATCH((REG_TYPE(address_reg) << T1_ADDRESS_REG_TYPE_SHIFT) | \
374 (REG_NR(address_reg) << T1_ADDRESS_REG_NR_SHIFT)); \
375 OUT_BATCH(0); \
376 } while (0)
378 #define i915_fs_texldp(dest_reg, sampler_reg, address_reg) \
379 do { \
380 OUT_BATCH(T0_TEXLDP | \
381 (REG_TYPE(dest_reg) << T0_DEST_TYPE_SHIFT) | \
382 (REG_NR(dest_reg) << T0_DEST_NR_SHIFT) | \
383 (REG_NR(sampler_reg) << T0_SAMPLER_NR_SHIFT)); \
384 OUT_BATCH((REG_TYPE(address_reg) << T1_ADDRESS_REG_TYPE_SHIFT) | \
385 (REG_NR(address_reg) << T1_ADDRESS_REG_NR_SHIFT)); \
386 OUT_BATCH(0); \
387 } while (0)
389 #define i915_fs_arith_masked(op, dest_reg, dest_mask, operand0, operand1, operand2) \
390 _i915_fs_arith_masked(A0_##op, dest_reg, dest_mask, operand0, operand1, operand2)
392 #define i915_fs_arith(op, dest_reg, operand0, operand1, operand2) \
393 _i915_fs_arith(A0_##op, dest_reg, operand0, operand1, operand2)
395 #define _i915_fs_arith_masked(cmd, dest_reg, dest_mask, operand0, operand1, operand2) \
396 do { \
397 /* Set up destination register and write mask */ \
398 OUT_BATCH(cmd | \
399 (REG_TYPE(dest_reg) << A0_DEST_TYPE_SHIFT) | \
400 (REG_NR(dest_reg) << A0_DEST_NR_SHIFT) | \
401 (((dest_mask) & ~MASK_SATURATE) << A0_DEST_CHANNEL_SHIFT) | \
402 (((dest_mask) & MASK_SATURATE) ? A0_DEST_SATURATE : 0) | \
403 /* Set up operand 0 */ \
404 (REG_TYPE(operand0) << A0_SRC0_TYPE_SHIFT) | \
405 (REG_NR(operand0) << A0_SRC0_NR_SHIFT)); \
406 OUT_BATCH(i915_get_hardware_channel_val(REG_X(operand0), \
407 A1_SRC0_CHANNEL_X_SHIFT, \
408 A1_SRC0_CHANNEL_X_NEGATE) | \
409 i915_get_hardware_channel_val(REG_Y(operand0), \
410 A1_SRC0_CHANNEL_Y_SHIFT, \
411 A1_SRC0_CHANNEL_Y_NEGATE) | \
412 i915_get_hardware_channel_val(REG_Z(operand0), \
413 A1_SRC0_CHANNEL_Z_SHIFT, \
414 A1_SRC0_CHANNEL_Z_NEGATE) | \
415 i915_get_hardware_channel_val(REG_W(operand0), \
416 A1_SRC0_CHANNEL_W_SHIFT, \
417 A1_SRC0_CHANNEL_W_NEGATE) | \
418 /* Set up operand 1 */ \
419 (REG_TYPE(operand1) << A1_SRC1_TYPE_SHIFT) | \
420 (REG_NR(operand1) << A1_SRC1_NR_SHIFT) | \
421 i915_get_hardware_channel_val(REG_X(operand1), \
422 A1_SRC1_CHANNEL_X_SHIFT, \
423 A1_SRC1_CHANNEL_X_NEGATE) | \
424 i915_get_hardware_channel_val(REG_Y(operand1), \
425 A1_SRC1_CHANNEL_Y_SHIFT, \
426 A1_SRC1_CHANNEL_Y_NEGATE)); \
427 OUT_BATCH(i915_get_hardware_channel_val(REG_Z(operand1), \
428 A2_SRC1_CHANNEL_Z_SHIFT, \
429 A2_SRC1_CHANNEL_Z_NEGATE) | \
430 i915_get_hardware_channel_val(REG_W(operand1), \
431 A2_SRC1_CHANNEL_W_SHIFT, \
432 A2_SRC1_CHANNEL_W_NEGATE) | \
433 /* Set up operand 2 */ \
434 (REG_TYPE(operand2) << A2_SRC2_TYPE_SHIFT) | \
435 (REG_NR(operand2) << A2_SRC2_NR_SHIFT) | \
436 i915_get_hardware_channel_val(REG_X(operand2), \
437 A2_SRC2_CHANNEL_X_SHIFT, \
438 A2_SRC2_CHANNEL_X_NEGATE) | \
439 i915_get_hardware_channel_val(REG_Y(operand2), \
440 A2_SRC2_CHANNEL_Y_SHIFT, \
441 A2_SRC2_CHANNEL_Y_NEGATE) | \
442 i915_get_hardware_channel_val(REG_Z(operand2), \
443 A2_SRC2_CHANNEL_Z_SHIFT, \
444 A2_SRC2_CHANNEL_Z_NEGATE) | \
445 i915_get_hardware_channel_val(REG_W(operand2), \
446 A2_SRC2_CHANNEL_W_SHIFT, \
447 A2_SRC2_CHANNEL_W_NEGATE)); \
448 } while (0)
450 #define _i915_fs_arith(cmd, dest_reg, operand0, operand1, operand2) do {\
451 /* Set up destination register and write mask */ \
452 OUT_BATCH(cmd | \
453 (REG_TYPE(dest_reg) << A0_DEST_TYPE_SHIFT) | \
454 (REG_NR(dest_reg) << A0_DEST_NR_SHIFT) | \
455 (A0_DEST_CHANNEL_ALL) | \
456 /* Set up operand 0 */ \
457 (REG_TYPE(operand0) << A0_SRC0_TYPE_SHIFT) | \
458 (REG_NR(operand0) << A0_SRC0_NR_SHIFT)); \
459 OUT_BATCH(i915_get_hardware_channel_val(REG_X(operand0), \
460 A1_SRC0_CHANNEL_X_SHIFT, \
461 A1_SRC0_CHANNEL_X_NEGATE) | \
462 i915_get_hardware_channel_val(REG_Y(operand0), \
463 A1_SRC0_CHANNEL_Y_SHIFT, \
464 A1_SRC0_CHANNEL_Y_NEGATE) | \
465 i915_get_hardware_channel_val(REG_Z(operand0), \
466 A1_SRC0_CHANNEL_Z_SHIFT, \
467 A1_SRC0_CHANNEL_Z_NEGATE) | \
468 i915_get_hardware_channel_val(REG_W(operand0), \
469 A1_SRC0_CHANNEL_W_SHIFT, \
470 A1_SRC0_CHANNEL_W_NEGATE) | \
471 /* Set up operand 1 */ \
472 (REG_TYPE(operand1) << A1_SRC1_TYPE_SHIFT) | \
473 (REG_NR(operand1) << A1_SRC1_NR_SHIFT) | \
474 i915_get_hardware_channel_val(REG_X(operand1), \
475 A1_SRC1_CHANNEL_X_SHIFT, \
476 A1_SRC1_CHANNEL_X_NEGATE) | \
477 i915_get_hardware_channel_val(REG_Y(operand1), \
478 A1_SRC1_CHANNEL_Y_SHIFT, \
479 A1_SRC1_CHANNEL_Y_NEGATE)); \
480 OUT_BATCH(i915_get_hardware_channel_val(REG_Z(operand1), \
481 A2_SRC1_CHANNEL_Z_SHIFT, \
482 A2_SRC1_CHANNEL_Z_NEGATE) | \
483 i915_get_hardware_channel_val(REG_W(operand1), \
484 A2_SRC1_CHANNEL_W_SHIFT, \
485 A2_SRC1_CHANNEL_W_NEGATE) | \
486 /* Set up operand 2 */ \
487 (REG_TYPE(operand2) << A2_SRC2_TYPE_SHIFT) | \
488 (REG_NR(operand2) << A2_SRC2_NR_SHIFT) | \
489 i915_get_hardware_channel_val(REG_X(operand2), \
490 A2_SRC2_CHANNEL_X_SHIFT, \
491 A2_SRC2_CHANNEL_X_NEGATE) | \
492 i915_get_hardware_channel_val(REG_Y(operand2), \
493 A2_SRC2_CHANNEL_Y_SHIFT, \
494 A2_SRC2_CHANNEL_Y_NEGATE) | \
495 i915_get_hardware_channel_val(REG_Z(operand2), \
496 A2_SRC2_CHANNEL_Z_SHIFT, \
497 A2_SRC2_CHANNEL_Z_NEGATE) | \
498 i915_get_hardware_channel_val(REG_W(operand2), \
499 A2_SRC2_CHANNEL_W_SHIFT, \
500 A2_SRC2_CHANNEL_W_NEGATE)); \
501 } while (0)
503 #define i915_fs_mov(dest_reg, operand0) \
504 i915_fs_arith(MOV, dest_reg, \
505 operand0, \
506 i915_fs_operand_none(), \
507 i915_fs_operand_none())
509 #define i915_fs_mov_masked(dest_reg, dest_mask, operand0) \
510 i915_fs_arith_masked (MOV, dest_reg, dest_mask, \
511 operand0, \
512 i915_fs_operand_none(), \
513 i915_fs_operand_none())
516 #define i915_fs_frc(dest_reg, operand0) \
517 i915_fs_arith (FRC, dest_reg, \
518 operand0, \
519 i915_fs_operand_none(), \
520 i915_fs_operand_none())
522 /** Add operand0 and operand1 and put the result in dest_reg */
523 #define i915_fs_add(dest_reg, operand0, operand1) \
524 i915_fs_arith (ADD, dest_reg, \
525 operand0, operand1, \
526 i915_fs_operand_none())
528 /** Multiply operand0 and operand1 and put the result in dest_reg */
529 #define i915_fs_mul(dest_reg, operand0, operand1) \
530 i915_fs_arith (MUL, dest_reg, \
531 operand0, operand1, \
532 i915_fs_operand_none())
534 /** Computes 1/sqrt(operand0.replicate_swizzle) puts the result in dest_reg */
535 #define i915_fs_rsq(dest_reg, dest_mask, operand0) \
536 do { \
537 if (dest_mask) { \
538 i915_fs_arith_masked (RSQ, dest_reg, dest_mask, \
539 operand0, \
540 i915_fs_operand_none (), \
541 i915_fs_operand_none ()); \
542 } else { \
543 i915_fs_arith (RSQ, dest_reg, \
544 operand0, \
545 i915_fs_operand_none (), \
546 i915_fs_operand_none ()); \
548 } while (0)
550 /** Puts the minimum of operand0 and operand1 in dest_reg */
551 #define i915_fs_min(dest_reg, operand0, operand1) \
552 i915_fs_arith (MIN, dest_reg, \
553 operand0, operand1, \
554 i915_fs_operand_none())
556 /** Puts the maximum of operand0 and operand1 in dest_reg */
557 #define i915_fs_max(dest_reg, operand0, operand1) \
558 i915_fs_arith (MAX, dest_reg, \
559 operand0, operand1, \
560 i915_fs_operand_none())
562 #define i915_fs_cmp(dest_reg, operand0, operand1, operand2) \
563 i915_fs_arith (CMP, dest_reg, operand0, operand1, operand2)
565 /** Perform operand0 * operand1 + operand2 and put the result in dest_reg */
566 #define i915_fs_mad(dest_reg, dest_mask, op0, op1, op2) \
567 do { \
568 if (dest_mask) { \
569 i915_fs_arith_masked (MAD, dest_reg, dest_mask, op0, op1, op2); \
570 } else { \
571 i915_fs_arith (MAD, dest_reg, op0, op1, op2); \
573 } while (0)
575 #define i915_fs_dp2add(dest_reg, dest_mask, op0, op1, op2) \
576 do { \
577 if (dest_mask) { \
578 i915_fs_arith_masked (DP2ADD, dest_reg, dest_mask, op0, op1, op2); \
579 } else { \
580 i915_fs_arith (DP2ADD, dest_reg, op0, op1, op2); \
582 } while (0)
585 * Perform a 3-component dot-product of operand0 and operand1 and put the
586 * resulting scalar in the channels of dest_reg specified by the dest_mask.
588 #define i915_fs_dp3(dest_reg, dest_mask, op0, op1) \
589 do { \
590 if (dest_mask) { \
591 i915_fs_arith_masked (DP3, dest_reg, dest_mask, \
592 op0, op1,\
593 i915_fs_operand_none()); \
594 } else { \
595 i915_fs_arith (DP3, dest_reg, op0, op1,\
596 i915_fs_operand_none()); \
598 } while (0)
601 * Sets up local state for accumulating a fragment shader buffer.
603 * \param x maximum number of shader commands that may be used between
604 * a FS_START and FS_END
606 #define FS_LOCALS() \
607 uint32_t _shader_offset
609 #define FS_BEGIN() \
610 do { \
611 _shader_offset = intel->batch_used++; \
612 } while (0)
614 #define FS_END() \
615 do { \
616 intel->batch_ptr[_shader_offset] = \
617 _3DSTATE_PIXEL_SHADER_PROGRAM | \
618 (intel->batch_used - _shader_offset - 2); \
619 } while (0);