1 /**************************************************************************
3 * Copyright 2007-2008 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * Copyright 2009-2010 VMware, Inc. All rights Reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 **************************************************************************/
30 * TGSI interpreter/executor.
32 * Flow control information:
34 * Since we operate on 'quads' (4 pixels or 4 vertices in parallel)
35 * flow control statements (IF/ELSE/ENDIF, LOOP/ENDLOOP) require special
36 * care since a condition may be true for some quad components but false
37 * for other components.
39 * We basically execute all statements (even if they're in the part of
40 * an IF/ELSE clause that's "not taken") and use a special mask to
41 * control writing to destination registers. This is the ExecMask.
44 * The ExecMask is computed from three other masks (CondMask, LoopMask and
45 * ContMask) which are controlled by the flow control instructions (namely:
46 * (IF/ELSE/ENDIF, LOOP/ENDLOOP and CONT).
54 #include "pipe/p_compiler.h"
55 #include "pipe/p_state.h"
56 #include "pipe/p_shader_tokens.h"
57 #include "tgsi/tgsi_dump.h"
58 #include "tgsi/tgsi_parse.h"
59 #include "tgsi/tgsi_util.h"
60 #include "tgsi_exec.h"
61 #include "util/u_memory.h"
62 #include "util/u_math.h"
67 #define TILE_TOP_LEFT 0
68 #define TILE_TOP_RIGHT 1
69 #define TILE_BOTTOM_LEFT 2
70 #define TILE_BOTTOM_RIGHT 3
73 micro_abs(union tgsi_exec_channel
*dst
,
74 const union tgsi_exec_channel
*src
)
76 dst
->f
[0] = fabsf(src
->f
[0]);
77 dst
->f
[1] = fabsf(src
->f
[1]);
78 dst
->f
[2] = fabsf(src
->f
[2]);
79 dst
->f
[3] = fabsf(src
->f
[3]);
83 micro_arl(union tgsi_exec_channel
*dst
,
84 const union tgsi_exec_channel
*src
)
86 dst
->i
[0] = (int)floorf(src
->f
[0]);
87 dst
->i
[1] = (int)floorf(src
->f
[1]);
88 dst
->i
[2] = (int)floorf(src
->f
[2]);
89 dst
->i
[3] = (int)floorf(src
->f
[3]);
93 micro_arr(union tgsi_exec_channel
*dst
,
94 const union tgsi_exec_channel
*src
)
96 dst
->i
[0] = (int)floorf(src
->f
[0] + 0.5f
);
97 dst
->i
[1] = (int)floorf(src
->f
[1] + 0.5f
);
98 dst
->i
[2] = (int)floorf(src
->f
[2] + 0.5f
);
99 dst
->i
[3] = (int)floorf(src
->f
[3] + 0.5f
);
103 micro_ceil(union tgsi_exec_channel
*dst
,
104 const union tgsi_exec_channel
*src
)
106 dst
->f
[0] = ceilf(src
->f
[0]);
107 dst
->f
[1] = ceilf(src
->f
[1]);
108 dst
->f
[2] = ceilf(src
->f
[2]);
109 dst
->f
[3] = ceilf(src
->f
[3]);
113 micro_clamp(union tgsi_exec_channel
*dst
,
114 const union tgsi_exec_channel
*src0
,
115 const union tgsi_exec_channel
*src1
,
116 const union tgsi_exec_channel
*src2
)
118 dst
->f
[0] = src0
->f
[0] < src1
->f
[0] ? src1
->f
[0] : src0
->f
[0] > src2
->f
[0] ? src2
->f
[0] : src0
->f
[0];
119 dst
->f
[1] = src0
->f
[1] < src1
->f
[1] ? src1
->f
[1] : src0
->f
[1] > src2
->f
[1] ? src2
->f
[1] : src0
->f
[1];
120 dst
->f
[2] = src0
->f
[2] < src1
->f
[2] ? src1
->f
[2] : src0
->f
[2] > src2
->f
[2] ? src2
->f
[2] : src0
->f
[2];
121 dst
->f
[3] = src0
->f
[3] < src1
->f
[3] ? src1
->f
[3] : src0
->f
[3] > src2
->f
[3] ? src2
->f
[3] : src0
->f
[3];
125 micro_cmp(union tgsi_exec_channel
*dst
,
126 const union tgsi_exec_channel
*src0
,
127 const union tgsi_exec_channel
*src1
,
128 const union tgsi_exec_channel
*src2
)
130 dst
->f
[0] = src0
->f
[0] < 0.0f
? src1
->f
[0] : src2
->f
[0];
131 dst
->f
[1] = src0
->f
[1] < 0.0f
? src1
->f
[1] : src2
->f
[1];
132 dst
->f
[2] = src0
->f
[2] < 0.0f
? src1
->f
[2] : src2
->f
[2];
133 dst
->f
[3] = src0
->f
[3] < 0.0f
? src1
->f
[3] : src2
->f
[3];
137 micro_cnd(union tgsi_exec_channel
*dst
,
138 const union tgsi_exec_channel
*src0
,
139 const union tgsi_exec_channel
*src1
,
140 const union tgsi_exec_channel
*src2
)
142 dst
->f
[0] = src2
->f
[0] > 0.5f
? src0
->f
[0] : src1
->f
[0];
143 dst
->f
[1] = src2
->f
[1] > 0.5f
? src0
->f
[1] : src1
->f
[1];
144 dst
->f
[2] = src2
->f
[2] > 0.5f
? src0
->f
[2] : src1
->f
[2];
145 dst
->f
[3] = src2
->f
[3] > 0.5f
? src0
->f
[3] : src1
->f
[3];
149 micro_cos(union tgsi_exec_channel
*dst
,
150 const union tgsi_exec_channel
*src
)
152 dst
->f
[0] = cosf(src
->f
[0]);
153 dst
->f
[1] = cosf(src
->f
[1]);
154 dst
->f
[2] = cosf(src
->f
[2]);
155 dst
->f
[3] = cosf(src
->f
[3]);
159 micro_ddx(union tgsi_exec_channel
*dst
,
160 const union tgsi_exec_channel
*src
)
165 dst
->f
[3] = src
->f
[TILE_BOTTOM_RIGHT
] - src
->f
[TILE_BOTTOM_LEFT
];
169 micro_ddy(union tgsi_exec_channel
*dst
,
170 const union tgsi_exec_channel
*src
)
175 dst
->f
[3] = src
->f
[TILE_BOTTOM_LEFT
] - src
->f
[TILE_TOP_LEFT
];
179 micro_exp2(union tgsi_exec_channel
*dst
,
180 const union tgsi_exec_channel
*src
)
183 dst
->f
[0] = util_fast_exp2(src
->f
[0]);
184 dst
->f
[1] = util_fast_exp2(src
->f
[1]);
185 dst
->f
[2] = util_fast_exp2(src
->f
[2]);
186 dst
->f
[3] = util_fast_exp2(src
->f
[3]);
189 /* Inf is okay for this instruction, so clamp it to silence assertions. */
191 union tgsi_exec_channel clamped
;
193 for (i
= 0; i
< 4; i
++) {
194 if (src
->f
[i
] > 127.99999f
) {
195 clamped
.f
[i
] = 127.99999f
;
196 } else if (src
->f
[i
] < -126.99999f
) {
197 clamped
.f
[i
] = -126.99999f
;
199 clamped
.f
[i
] = src
->f
[i
];
205 dst
->f
[0] = powf(2.0f
, src
->f
[0]);
206 dst
->f
[1] = powf(2.0f
, src
->f
[1]);
207 dst
->f
[2] = powf(2.0f
, src
->f
[2]);
208 dst
->f
[3] = powf(2.0f
, src
->f
[3]);
209 #endif /* FAST_MATH */
213 micro_flr(union tgsi_exec_channel
*dst
,
214 const union tgsi_exec_channel
*src
)
216 dst
->f
[0] = floorf(src
->f
[0]);
217 dst
->f
[1] = floorf(src
->f
[1]);
218 dst
->f
[2] = floorf(src
->f
[2]);
219 dst
->f
[3] = floorf(src
->f
[3]);
223 micro_frc(union tgsi_exec_channel
*dst
,
224 const union tgsi_exec_channel
*src
)
226 dst
->f
[0] = src
->f
[0] - floorf(src
->f
[0]);
227 dst
->f
[1] = src
->f
[1] - floorf(src
->f
[1]);
228 dst
->f
[2] = src
->f
[2] - floorf(src
->f
[2]);
229 dst
->f
[3] = src
->f
[3] - floorf(src
->f
[3]);
233 micro_iabs(union tgsi_exec_channel
*dst
,
234 const union tgsi_exec_channel
*src
)
236 dst
->i
[0] = src
->i
[0] >= 0 ? src
->i
[0] : -src
->i
[0];
237 dst
->i
[1] = src
->i
[1] >= 0 ? src
->i
[1] : -src
->i
[1];
238 dst
->i
[2] = src
->i
[2] >= 0 ? src
->i
[2] : -src
->i
[2];
239 dst
->i
[3] = src
->i
[3] >= 0 ? src
->i
[3] : -src
->i
[3];
243 micro_ineg(union tgsi_exec_channel
*dst
,
244 const union tgsi_exec_channel
*src
)
246 dst
->i
[0] = -src
->i
[0];
247 dst
->i
[1] = -src
->i
[1];
248 dst
->i
[2] = -src
->i
[2];
249 dst
->i
[3] = -src
->i
[3];
253 micro_lg2(union tgsi_exec_channel
*dst
,
254 const union tgsi_exec_channel
*src
)
257 dst
->f
[0] = util_fast_log2(src
->f
[0]);
258 dst
->f
[1] = util_fast_log2(src
->f
[1]);
259 dst
->f
[2] = util_fast_log2(src
->f
[2]);
260 dst
->f
[3] = util_fast_log2(src
->f
[3]);
262 dst
->f
[0] = logf(src
->f
[0]) * 1.442695f
;
263 dst
->f
[1] = logf(src
->f
[1]) * 1.442695f
;
264 dst
->f
[2] = logf(src
->f
[2]) * 1.442695f
;
265 dst
->f
[3] = logf(src
->f
[3]) * 1.442695f
;
270 micro_lrp(union tgsi_exec_channel
*dst
,
271 const union tgsi_exec_channel
*src0
,
272 const union tgsi_exec_channel
*src1
,
273 const union tgsi_exec_channel
*src2
)
275 dst
->f
[0] = src0
->f
[0] * (src1
->f
[0] - src2
->f
[0]) + src2
->f
[0];
276 dst
->f
[1] = src0
->f
[1] * (src1
->f
[1] - src2
->f
[1]) + src2
->f
[1];
277 dst
->f
[2] = src0
->f
[2] * (src1
->f
[2] - src2
->f
[2]) + src2
->f
[2];
278 dst
->f
[3] = src0
->f
[3] * (src1
->f
[3] - src2
->f
[3]) + src2
->f
[3];
282 micro_mad(union tgsi_exec_channel
*dst
,
283 const union tgsi_exec_channel
*src0
,
284 const union tgsi_exec_channel
*src1
,
285 const union tgsi_exec_channel
*src2
)
287 dst
->f
[0] = src0
->f
[0] * src1
->f
[0] + src2
->f
[0];
288 dst
->f
[1] = src0
->f
[1] * src1
->f
[1] + src2
->f
[1];
289 dst
->f
[2] = src0
->f
[2] * src1
->f
[2] + src2
->f
[2];
290 dst
->f
[3] = src0
->f
[3] * src1
->f
[3] + src2
->f
[3];
294 micro_mov(union tgsi_exec_channel
*dst
,
295 const union tgsi_exec_channel
*src
)
297 dst
->u
[0] = src
->u
[0];
298 dst
->u
[1] = src
->u
[1];
299 dst
->u
[2] = src
->u
[2];
300 dst
->u
[3] = src
->u
[3];
304 micro_rcp(union tgsi_exec_channel
*dst
,
305 const union tgsi_exec_channel
*src
)
307 #if 0 /* for debugging */
308 assert(src
->f
[0] != 0.0f
);
309 assert(src
->f
[1] != 0.0f
);
310 assert(src
->f
[2] != 0.0f
);
311 assert(src
->f
[3] != 0.0f
);
313 dst
->f
[0] = 1.0f
/ src
->f
[0];
314 dst
->f
[1] = 1.0f
/ src
->f
[1];
315 dst
->f
[2] = 1.0f
/ src
->f
[2];
316 dst
->f
[3] = 1.0f
/ src
->f
[3];
320 micro_rnd(union tgsi_exec_channel
*dst
,
321 const union tgsi_exec_channel
*src
)
323 dst
->f
[0] = floorf(src
->f
[0] + 0.5f
);
324 dst
->f
[1] = floorf(src
->f
[1] + 0.5f
);
325 dst
->f
[2] = floorf(src
->f
[2] + 0.5f
);
326 dst
->f
[3] = floorf(src
->f
[3] + 0.5f
);
330 micro_rsq(union tgsi_exec_channel
*dst
,
331 const union tgsi_exec_channel
*src
)
333 #if 0 /* for debugging */
334 assert(src
->f
[0] != 0.0f
);
335 assert(src
->f
[1] != 0.0f
);
336 assert(src
->f
[2] != 0.0f
);
337 assert(src
->f
[3] != 0.0f
);
339 dst
->f
[0] = 1.0f
/ sqrtf(fabsf(src
->f
[0]));
340 dst
->f
[1] = 1.0f
/ sqrtf(fabsf(src
->f
[1]));
341 dst
->f
[2] = 1.0f
/ sqrtf(fabsf(src
->f
[2]));
342 dst
->f
[3] = 1.0f
/ sqrtf(fabsf(src
->f
[3]));
346 micro_seq(union tgsi_exec_channel
*dst
,
347 const union tgsi_exec_channel
*src0
,
348 const union tgsi_exec_channel
*src1
)
350 dst
->f
[0] = src0
->f
[0] == src1
->f
[0] ? 1.0f
: 0.0f
;
351 dst
->f
[1] = src0
->f
[1] == src1
->f
[1] ? 1.0f
: 0.0f
;
352 dst
->f
[2] = src0
->f
[2] == src1
->f
[2] ? 1.0f
: 0.0f
;
353 dst
->f
[3] = src0
->f
[3] == src1
->f
[3] ? 1.0f
: 0.0f
;
357 micro_sge(union tgsi_exec_channel
*dst
,
358 const union tgsi_exec_channel
*src0
,
359 const union tgsi_exec_channel
*src1
)
361 dst
->f
[0] = src0
->f
[0] >= src1
->f
[0] ? 1.0f
: 0.0f
;
362 dst
->f
[1] = src0
->f
[1] >= src1
->f
[1] ? 1.0f
: 0.0f
;
363 dst
->f
[2] = src0
->f
[2] >= src1
->f
[2] ? 1.0f
: 0.0f
;
364 dst
->f
[3] = src0
->f
[3] >= src1
->f
[3] ? 1.0f
: 0.0f
;
368 micro_sgn(union tgsi_exec_channel
*dst
,
369 const union tgsi_exec_channel
*src
)
371 dst
->f
[0] = src
->f
[0] < 0.0f
? -1.0f
: src
->f
[0] > 0.0f
? 1.0f
: 0.0f
;
372 dst
->f
[1] = src
->f
[1] < 0.0f
? -1.0f
: src
->f
[1] > 0.0f
? 1.0f
: 0.0f
;
373 dst
->f
[2] = src
->f
[2] < 0.0f
? -1.0f
: src
->f
[2] > 0.0f
? 1.0f
: 0.0f
;
374 dst
->f
[3] = src
->f
[3] < 0.0f
? -1.0f
: src
->f
[3] > 0.0f
? 1.0f
: 0.0f
;
378 micro_sgt(union tgsi_exec_channel
*dst
,
379 const union tgsi_exec_channel
*src0
,
380 const union tgsi_exec_channel
*src1
)
382 dst
->f
[0] = src0
->f
[0] > src1
->f
[0] ? 1.0f
: 0.0f
;
383 dst
->f
[1] = src0
->f
[1] > src1
->f
[1] ? 1.0f
: 0.0f
;
384 dst
->f
[2] = src0
->f
[2] > src1
->f
[2] ? 1.0f
: 0.0f
;
385 dst
->f
[3] = src0
->f
[3] > src1
->f
[3] ? 1.0f
: 0.0f
;
389 micro_sin(union tgsi_exec_channel
*dst
,
390 const union tgsi_exec_channel
*src
)
392 dst
->f
[0] = sinf(src
->f
[0]);
393 dst
->f
[1] = sinf(src
->f
[1]);
394 dst
->f
[2] = sinf(src
->f
[2]);
395 dst
->f
[3] = sinf(src
->f
[3]);
399 micro_sle(union tgsi_exec_channel
*dst
,
400 const union tgsi_exec_channel
*src0
,
401 const union tgsi_exec_channel
*src1
)
403 dst
->f
[0] = src0
->f
[0] <= src1
->f
[0] ? 1.0f
: 0.0f
;
404 dst
->f
[1] = src0
->f
[1] <= src1
->f
[1] ? 1.0f
: 0.0f
;
405 dst
->f
[2] = src0
->f
[2] <= src1
->f
[2] ? 1.0f
: 0.0f
;
406 dst
->f
[3] = src0
->f
[3] <= src1
->f
[3] ? 1.0f
: 0.0f
;
410 micro_slt(union tgsi_exec_channel
*dst
,
411 const union tgsi_exec_channel
*src0
,
412 const union tgsi_exec_channel
*src1
)
414 dst
->f
[0] = src0
->f
[0] < src1
->f
[0] ? 1.0f
: 0.0f
;
415 dst
->f
[1] = src0
->f
[1] < src1
->f
[1] ? 1.0f
: 0.0f
;
416 dst
->f
[2] = src0
->f
[2] < src1
->f
[2] ? 1.0f
: 0.0f
;
417 dst
->f
[3] = src0
->f
[3] < src1
->f
[3] ? 1.0f
: 0.0f
;
421 micro_sne(union tgsi_exec_channel
*dst
,
422 const union tgsi_exec_channel
*src0
,
423 const union tgsi_exec_channel
*src1
)
425 dst
->f
[0] = src0
->f
[0] != src1
->f
[0] ? 1.0f
: 0.0f
;
426 dst
->f
[1] = src0
->f
[1] != src1
->f
[1] ? 1.0f
: 0.0f
;
427 dst
->f
[2] = src0
->f
[2] != src1
->f
[2] ? 1.0f
: 0.0f
;
428 dst
->f
[3] = src0
->f
[3] != src1
->f
[3] ? 1.0f
: 0.0f
;
432 micro_sfl(union tgsi_exec_channel
*dst
)
441 micro_str(union tgsi_exec_channel
*dst
)
450 micro_trunc(union tgsi_exec_channel
*dst
,
451 const union tgsi_exec_channel
*src
)
453 dst
->f
[0] = (float)(int)src
->f
[0];
454 dst
->f
[1] = (float)(int)src
->f
[1];
455 dst
->f
[2] = (float)(int)src
->f
[2];
456 dst
->f
[3] = (float)(int)src
->f
[3];
465 enum tgsi_exec_datatype
{
466 TGSI_EXEC_DATA_FLOAT
,
472 * Shorthand locations of various utility registers (_I = Index, _C = Channel)
474 #define TEMP_KILMASK_I TGSI_EXEC_TEMP_KILMASK_I
475 #define TEMP_KILMASK_C TGSI_EXEC_TEMP_KILMASK_C
476 #define TEMP_OUTPUT_I TGSI_EXEC_TEMP_OUTPUT_I
477 #define TEMP_OUTPUT_C TGSI_EXEC_TEMP_OUTPUT_C
478 #define TEMP_PRIMITIVE_I TGSI_EXEC_TEMP_PRIMITIVE_I
479 #define TEMP_PRIMITIVE_C TGSI_EXEC_TEMP_PRIMITIVE_C
482 /** The execution mask depends on the conditional mask and the loop mask */
483 #define UPDATE_EXEC_MASK(MACH) \
484 MACH->ExecMask = MACH->CondMask & MACH->LoopMask & MACH->ContMask & MACH->Switch.mask & MACH->FuncMask
487 static const union tgsi_exec_channel ZeroVec
=
488 { { 0.0, 0.0, 0.0, 0.0 } };
490 static const union tgsi_exec_channel OneVec
= {
491 {1.0f
, 1.0f
, 1.0f
, 1.0f
}
494 static const union tgsi_exec_channel P128Vec
= {
495 {128.0f
, 128.0f
, 128.0f
, 128.0f
}
498 static const union tgsi_exec_channel M128Vec
= {
499 {-128.0f
, -128.0f
, -128.0f
, -128.0f
}
504 * Assert that none of the float values in 'chan' are infinite or NaN.
505 * NaN and Inf may occur normally during program execution and should
506 * not lead to crashes, etc. But when debugging, it's helpful to catch
510 check_inf_or_nan(const union tgsi_exec_channel
*chan
)
512 assert(!util_is_inf_or_nan((chan
)->f
[0]));
513 assert(!util_is_inf_or_nan((chan
)->f
[1]));
514 assert(!util_is_inf_or_nan((chan
)->f
[2]));
515 assert(!util_is_inf_or_nan((chan
)->f
[3]));
521 print_chan(const char *msg
, const union tgsi_exec_channel
*chan
)
523 debug_printf("%s = {%f, %f, %f, %f}\n",
524 msg
, chan
->f
[0], chan
->f
[1], chan
->f
[2], chan
->f
[3]);
531 print_temp(const struct tgsi_exec_machine
*mach
, uint index
)
533 const struct tgsi_exec_vector
*tmp
= &mach
->Temps
[index
];
535 debug_printf("Temp[%u] =\n", index
);
536 for (i
= 0; i
< 4; i
++) {
537 debug_printf(" %c: { %f, %f, %f, %f }\n",
549 tgsi_exec_set_constant_buffers(struct tgsi_exec_machine
*mach
,
552 const unsigned *buf_sizes
)
556 for (i
= 0; i
< num_bufs
; i
++) {
557 mach
->Consts
[i
] = bufs
[i
];
558 mach
->ConstsSize
[i
] = buf_sizes
[i
];
564 * Check if there's a potential src/dst register data dependency when
565 * using SOA execution.
568 * This would expand into:
573 * The second instruction will have the wrong value for t0 if executed as-is.
576 tgsi_check_soa_dependencies(const struct tgsi_full_instruction
*inst
)
580 uint writemask
= inst
->Dst
[0].Register
.WriteMask
;
581 if (writemask
== TGSI_WRITEMASK_X
||
582 writemask
== TGSI_WRITEMASK_Y
||
583 writemask
== TGSI_WRITEMASK_Z
||
584 writemask
== TGSI_WRITEMASK_W
||
585 writemask
== TGSI_WRITEMASK_NONE
) {
586 /* no chance of data dependency */
590 /* loop over src regs */
591 for (i
= 0; i
< inst
->Instruction
.NumSrcRegs
; i
++) {
592 if ((inst
->Src
[i
].Register
.File
==
593 inst
->Dst
[0].Register
.File
) &&
594 ((inst
->Src
[i
].Register
.Index
==
595 inst
->Dst
[0].Register
.Index
) ||
596 inst
->Src
[i
].Register
.Indirect
||
597 inst
->Dst
[0].Register
.Indirect
)) {
598 /* loop over dest channels */
599 uint channelsWritten
= 0x0;
600 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
601 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
602 /* check if we're reading a channel that's been written */
603 uint swizzle
= tgsi_util_get_full_src_register_swizzle(&inst
->Src
[i
], chan
);
604 if (channelsWritten
& (1 << swizzle
)) {
608 channelsWritten
|= (1 << chan
);
618 * Initialize machine state by expanding tokens to full instructions,
619 * allocating temporary storage, setting up constants, etc.
620 * After this, we can call tgsi_exec_machine_run() many times.
623 tgsi_exec_machine_bind_shader(
624 struct tgsi_exec_machine
*mach
,
625 const struct tgsi_token
*tokens
,
627 struct tgsi_sampler
**samplers
)
630 struct tgsi_parse_context parse
;
631 struct tgsi_full_instruction
*instructions
;
632 struct tgsi_full_declaration
*declarations
;
633 uint maxInstructions
= 10, numInstructions
= 0;
634 uint maxDeclarations
= 10, numDeclarations
= 0;
637 tgsi_dump(tokens
, 0);
646 mach
->Tokens
= tokens
;
647 mach
->Samplers
= samplers
;
650 /* unbind and free all */
651 if (mach
->Declarations
) {
652 FREE( mach
->Declarations
);
654 mach
->Declarations
= NULL
;
655 mach
->NumDeclarations
= 0;
657 if (mach
->Instructions
) {
658 FREE( mach
->Instructions
);
660 mach
->Instructions
= NULL
;
661 mach
->NumInstructions
= 0;
666 k
= tgsi_parse_init (&parse
, mach
->Tokens
);
667 if (k
!= TGSI_PARSE_OK
) {
668 debug_printf( "Problem parsing!\n" );
672 mach
->Processor
= parse
.FullHeader
.Processor
.Processor
;
675 if (mach
->Processor
== TGSI_PROCESSOR_GEOMETRY
&&
676 !mach
->UsedGeometryShader
) {
677 struct tgsi_exec_vector
*inputs
=
678 align_malloc(sizeof(struct tgsi_exec_vector
) *
679 TGSI_MAX_PRIM_VERTICES
* PIPE_MAX_ATTRIBS
,
681 struct tgsi_exec_vector
*outputs
=
682 align_malloc(sizeof(struct tgsi_exec_vector
) *
683 TGSI_MAX_TOTAL_VERTICES
, 16);
692 align_free(mach
->Inputs
);
693 align_free(mach
->Outputs
);
695 mach
->Inputs
= inputs
;
696 mach
->Outputs
= outputs
;
697 mach
->UsedGeometryShader
= TRUE
;
700 declarations
= (struct tgsi_full_declaration
*)
701 MALLOC( maxDeclarations
* sizeof(struct tgsi_full_declaration
) );
707 instructions
= (struct tgsi_full_instruction
*)
708 MALLOC( maxInstructions
* sizeof(struct tgsi_full_instruction
) );
711 FREE( declarations
);
715 while( !tgsi_parse_end_of_tokens( &parse
) ) {
718 tgsi_parse_token( &parse
);
719 switch( parse
.FullToken
.Token
.Type
) {
720 case TGSI_TOKEN_TYPE_DECLARATION
:
721 /* save expanded declaration */
722 if (numDeclarations
== maxDeclarations
) {
723 declarations
= REALLOC(declarations
,
725 * sizeof(struct tgsi_full_declaration
),
726 (maxDeclarations
+ 10)
727 * sizeof(struct tgsi_full_declaration
));
728 maxDeclarations
+= 10;
730 if (parse
.FullToken
.FullDeclaration
.Declaration
.File
== TGSI_FILE_OUTPUT
) {
732 for (reg
= parse
.FullToken
.FullDeclaration
.Range
.First
;
733 reg
<= parse
.FullToken
.FullDeclaration
.Range
.Last
;
738 if (parse
.FullToken
.FullDeclaration
.Declaration
.File
==
739 TGSI_FILE_IMMEDIATE_ARRAY
) {
741 struct tgsi_full_declaration
*decl
=
742 &parse
.FullToken
.FullDeclaration
;
743 debug_assert(decl
->Range
.Last
< TGSI_EXEC_NUM_IMMEDIATES
);
744 for (reg
= decl
->Range
.First
; reg
<= decl
->Range
.Last
; ++reg
) {
745 for( i
= 0; i
< 4; i
++ ) {
746 int idx
= reg
* 4 + i
;
747 mach
->ImmArray
[reg
][i
] = decl
->ImmediateData
.u
[idx
].Float
;
751 memcpy(declarations
+ numDeclarations
,
752 &parse
.FullToken
.FullDeclaration
,
753 sizeof(declarations
[0]));
757 case TGSI_TOKEN_TYPE_IMMEDIATE
:
759 uint size
= parse
.FullToken
.FullImmediate
.Immediate
.NrTokens
- 1;
761 assert( mach
->ImmLimit
+ 1 <= TGSI_EXEC_NUM_IMMEDIATES
);
763 for( i
= 0; i
< size
; i
++ ) {
764 mach
->Imms
[mach
->ImmLimit
][i
] =
765 parse
.FullToken
.FullImmediate
.u
[i
].Float
;
771 case TGSI_TOKEN_TYPE_INSTRUCTION
:
773 /* save expanded instruction */
774 if (numInstructions
== maxInstructions
) {
775 instructions
= REALLOC(instructions
,
777 * sizeof(struct tgsi_full_instruction
),
778 (maxInstructions
+ 10)
779 * sizeof(struct tgsi_full_instruction
));
780 maxInstructions
+= 10;
783 memcpy(instructions
+ numInstructions
,
784 &parse
.FullToken
.FullInstruction
,
785 sizeof(instructions
[0]));
790 case TGSI_TOKEN_TYPE_PROPERTY
:
797 tgsi_parse_free (&parse
);
799 if (mach
->Declarations
) {
800 FREE( mach
->Declarations
);
802 mach
->Declarations
= declarations
;
803 mach
->NumDeclarations
= numDeclarations
;
805 if (mach
->Instructions
) {
806 FREE( mach
->Instructions
);
808 mach
->Instructions
= instructions
;
809 mach
->NumInstructions
= numInstructions
;
813 struct tgsi_exec_machine
*
814 tgsi_exec_machine_create( void )
816 struct tgsi_exec_machine
*mach
;
819 mach
= align_malloc( sizeof *mach
, 16 );
823 memset(mach
, 0, sizeof(*mach
));
825 mach
->Addrs
= &mach
->Temps
[TGSI_EXEC_TEMP_ADDR
];
826 mach
->MaxGeometryShaderOutputs
= TGSI_MAX_TOTAL_VERTICES
;
827 mach
->Predicates
= &mach
->Temps
[TGSI_EXEC_TEMP_P0
];
829 mach
->Inputs
= align_malloc(sizeof(struct tgsi_exec_vector
) * PIPE_MAX_ATTRIBS
, 16);
830 mach
->Outputs
= align_malloc(sizeof(struct tgsi_exec_vector
) * PIPE_MAX_ATTRIBS
, 16);
831 if (!mach
->Inputs
|| !mach
->Outputs
)
834 /* Setup constants needed by the SSE2 executor. */
835 for( i
= 0; i
< 4; i
++ ) {
836 mach
->Temps
[TGSI_EXEC_TEMP_00000000_I
].xyzw
[TGSI_EXEC_TEMP_00000000_C
].u
[i
] = 0x00000000;
837 mach
->Temps
[TGSI_EXEC_TEMP_7FFFFFFF_I
].xyzw
[TGSI_EXEC_TEMP_7FFFFFFF_C
].u
[i
] = 0x7FFFFFFF;
838 mach
->Temps
[TGSI_EXEC_TEMP_80000000_I
].xyzw
[TGSI_EXEC_TEMP_80000000_C
].u
[i
] = 0x80000000;
839 mach
->Temps
[TGSI_EXEC_TEMP_FFFFFFFF_I
].xyzw
[TGSI_EXEC_TEMP_FFFFFFFF_C
].u
[i
] = 0xFFFFFFFF; /* not used */
840 mach
->Temps
[TGSI_EXEC_TEMP_ONE_I
].xyzw
[TGSI_EXEC_TEMP_ONE_C
].f
[i
] = 1.0f
;
841 mach
->Temps
[TGSI_EXEC_TEMP_TWO_I
].xyzw
[TGSI_EXEC_TEMP_TWO_C
].f
[i
] = 2.0f
; /* not used */
842 mach
->Temps
[TGSI_EXEC_TEMP_128_I
].xyzw
[TGSI_EXEC_TEMP_128_C
].f
[i
] = 128.0f
;
843 mach
->Temps
[TGSI_EXEC_TEMP_MINUS_128_I
].xyzw
[TGSI_EXEC_TEMP_MINUS_128_C
].f
[i
] = -128.0f
;
844 mach
->Temps
[TGSI_EXEC_TEMP_THREE_I
].xyzw
[TGSI_EXEC_TEMP_THREE_C
].f
[i
] = 3.0f
;
845 mach
->Temps
[TGSI_EXEC_TEMP_HALF_I
].xyzw
[TGSI_EXEC_TEMP_HALF_C
].f
[i
] = 0.5f
;
849 /* silence warnings */
858 align_free(mach
->Inputs
);
859 align_free(mach
->Outputs
);
867 tgsi_exec_machine_destroy(struct tgsi_exec_machine
*mach
)
870 if (mach
->Instructions
)
871 FREE(mach
->Instructions
);
872 if (mach
->Declarations
)
873 FREE(mach
->Declarations
);
875 align_free(mach
->Inputs
);
876 align_free(mach
->Outputs
);
883 micro_add(union tgsi_exec_channel
*dst
,
884 const union tgsi_exec_channel
*src0
,
885 const union tgsi_exec_channel
*src1
)
887 dst
->f
[0] = src0
->f
[0] + src1
->f
[0];
888 dst
->f
[1] = src0
->f
[1] + src1
->f
[1];
889 dst
->f
[2] = src0
->f
[2] + src1
->f
[2];
890 dst
->f
[3] = src0
->f
[3] + src1
->f
[3];
895 union tgsi_exec_channel
*dst
,
896 const union tgsi_exec_channel
*src0
,
897 const union tgsi_exec_channel
*src1
)
899 if (src1
->f
[0] != 0) {
900 dst
->f
[0] = src0
->f
[0] / src1
->f
[0];
902 if (src1
->f
[1] != 0) {
903 dst
->f
[1] = src0
->f
[1] / src1
->f
[1];
905 if (src1
->f
[2] != 0) {
906 dst
->f
[2] = src0
->f
[2] / src1
->f
[2];
908 if (src1
->f
[3] != 0) {
909 dst
->f
[3] = src0
->f
[3] / src1
->f
[3];
914 micro_rcc(union tgsi_exec_channel
*dst
,
915 const union tgsi_exec_channel
*src
)
919 for (i
= 0; i
< 4; i
++) {
920 float recip
= 1.0f
/ src
->f
[i
];
923 if (recip
> 1.884467e+019f
) {
924 dst
->f
[i
] = 1.884467e+019f
;
926 else if (recip
< 5.42101e-020f
) {
927 dst
->f
[i
] = 5.42101e-020f
;
934 if (recip
< -1.884467e+019f
) {
935 dst
->f
[i
] = -1.884467e+019f
;
937 else if (recip
> -5.42101e-020f
) {
938 dst
->f
[i
] = -5.42101e-020f
;
949 union tgsi_exec_channel
*dst
,
950 const union tgsi_exec_channel
*src0
,
951 const union tgsi_exec_channel
*src1
,
952 const union tgsi_exec_channel
*src2
,
953 const union tgsi_exec_channel
*src3
)
955 dst
->f
[0] = src0
->f
[0] < src1
->f
[0] ? src2
->f
[0] : src3
->f
[0];
956 dst
->f
[1] = src0
->f
[1] < src1
->f
[1] ? src2
->f
[1] : src3
->f
[1];
957 dst
->f
[2] = src0
->f
[2] < src1
->f
[2] ? src2
->f
[2] : src3
->f
[2];
958 dst
->f
[3] = src0
->f
[3] < src1
->f
[3] ? src2
->f
[3] : src3
->f
[3];
962 micro_max(union tgsi_exec_channel
*dst
,
963 const union tgsi_exec_channel
*src0
,
964 const union tgsi_exec_channel
*src1
)
966 dst
->f
[0] = src0
->f
[0] > src1
->f
[0] ? src0
->f
[0] : src1
->f
[0];
967 dst
->f
[1] = src0
->f
[1] > src1
->f
[1] ? src0
->f
[1] : src1
->f
[1];
968 dst
->f
[2] = src0
->f
[2] > src1
->f
[2] ? src0
->f
[2] : src1
->f
[2];
969 dst
->f
[3] = src0
->f
[3] > src1
->f
[3] ? src0
->f
[3] : src1
->f
[3];
973 micro_min(union tgsi_exec_channel
*dst
,
974 const union tgsi_exec_channel
*src0
,
975 const union tgsi_exec_channel
*src1
)
977 dst
->f
[0] = src0
->f
[0] < src1
->f
[0] ? src0
->f
[0] : src1
->f
[0];
978 dst
->f
[1] = src0
->f
[1] < src1
->f
[1] ? src0
->f
[1] : src1
->f
[1];
979 dst
->f
[2] = src0
->f
[2] < src1
->f
[2] ? src0
->f
[2] : src1
->f
[2];
980 dst
->f
[3] = src0
->f
[3] < src1
->f
[3] ? src0
->f
[3] : src1
->f
[3];
984 micro_mul(union tgsi_exec_channel
*dst
,
985 const union tgsi_exec_channel
*src0
,
986 const union tgsi_exec_channel
*src1
)
988 dst
->f
[0] = src0
->f
[0] * src1
->f
[0];
989 dst
->f
[1] = src0
->f
[1] * src1
->f
[1];
990 dst
->f
[2] = src0
->f
[2] * src1
->f
[2];
991 dst
->f
[3] = src0
->f
[3] * src1
->f
[3];
996 union tgsi_exec_channel
*dst
,
997 const union tgsi_exec_channel
*src
)
999 dst
->f
[0] = -src
->f
[0];
1000 dst
->f
[1] = -src
->f
[1];
1001 dst
->f
[2] = -src
->f
[2];
1002 dst
->f
[3] = -src
->f
[3];
1007 union tgsi_exec_channel
*dst
,
1008 const union tgsi_exec_channel
*src0
,
1009 const union tgsi_exec_channel
*src1
)
1012 dst
->f
[0] = util_fast_pow( src0
->f
[0], src1
->f
[0] );
1013 dst
->f
[1] = util_fast_pow( src0
->f
[1], src1
->f
[1] );
1014 dst
->f
[2] = util_fast_pow( src0
->f
[2], src1
->f
[2] );
1015 dst
->f
[3] = util_fast_pow( src0
->f
[3], src1
->f
[3] );
1017 dst
->f
[0] = powf( src0
->f
[0], src1
->f
[0] );
1018 dst
->f
[1] = powf( src0
->f
[1], src1
->f
[1] );
1019 dst
->f
[2] = powf( src0
->f
[2], src1
->f
[2] );
1020 dst
->f
[3] = powf( src0
->f
[3], src1
->f
[3] );
1025 micro_sub(union tgsi_exec_channel
*dst
,
1026 const union tgsi_exec_channel
*src0
,
1027 const union tgsi_exec_channel
*src1
)
1029 dst
->f
[0] = src0
->f
[0] - src1
->f
[0];
1030 dst
->f
[1] = src0
->f
[1] - src1
->f
[1];
1031 dst
->f
[2] = src0
->f
[2] - src1
->f
[2];
1032 dst
->f
[3] = src0
->f
[3] - src1
->f
[3];
1036 fetch_src_file_channel(const struct tgsi_exec_machine
*mach
,
1039 const union tgsi_exec_channel
*index
,
1040 const union tgsi_exec_channel
*index2D
,
1041 union tgsi_exec_channel
*chan
)
1045 assert(swizzle
< 4);
1048 case TGSI_FILE_CONSTANT
:
1049 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1050 assert(index2D
->i
[i
] >= 0 && index2D
->i
[i
] < PIPE_MAX_CONSTANT_BUFFERS
);
1051 assert(mach
->Consts
[index2D
->i
[i
]]);
1053 if (index
->i
[i
] < 0) {
1056 /* NOTE: copying the const value as a uint instead of float */
1057 const uint constbuf
= index2D
->i
[i
];
1058 const uint
*buf
= (const uint
*)mach
->Consts
[constbuf
];
1059 const int pos
= index
->i
[i
] * 4 + swizzle
;
1060 /* const buffer bounds check */
1061 if (pos
< 0 || pos
>= mach
->ConstsSize
[constbuf
]) {
1063 /* Debug: print warning */
1064 static int count
= 0;
1066 debug_printf("TGSI Exec: const buffer index %d"
1067 " out of bounds\n", pos
);
1072 chan
->u
[i
] = buf
[pos
];
1077 case TGSI_FILE_INPUT
:
1078 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1080 if (TGSI_PROCESSOR_GEOMETRY == mach->Processor) {
1081 debug_printf("Fetching Input[%d] (2d=%d, 1d=%d)\n",
1082 index2D->i[i] * TGSI_EXEC_MAX_INPUT_ATTRIBS + index->i[i],
1083 index2D->i[i], index->i[i]);
1085 int pos
= index2D
->i
[i
] * TGSI_EXEC_MAX_INPUT_ATTRIBS
+ index
->i
[i
];
1087 assert(pos
< TGSI_MAX_PRIM_VERTICES
* PIPE_MAX_ATTRIBS
);
1088 chan
->u
[i
] = mach
->Inputs
[pos
].xyzw
[swizzle
].u
[i
];
1092 case TGSI_FILE_SYSTEM_VALUE
:
1093 /* XXX no swizzling at this point. Will be needed if we put
1094 * gl_FragCoord, for example, in a sys value register.
1096 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1097 chan
->f
[i
] = mach
->SystemValue
[index
->i
[i
]][0];
1101 case TGSI_FILE_TEMPORARY
:
1102 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1103 assert(index
->i
[i
] < TGSI_EXEC_NUM_TEMPS
);
1104 assert(index2D
->i
[i
] == 0);
1106 chan
->u
[i
] = mach
->Temps
[index
->i
[i
]].xyzw
[swizzle
].u
[i
];
1110 case TGSI_FILE_TEMPORARY_ARRAY
:
1111 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1112 assert(index
->i
[i
] < TGSI_EXEC_NUM_TEMPS
);
1113 assert(index2D
->i
[i
] < TGSI_EXEC_NUM_TEMP_ARRAYS
);
1116 mach
->TempArray
[index2D
->i
[i
]][index
->i
[i
]].xyzw
[swizzle
].u
[i
];
1120 case TGSI_FILE_IMMEDIATE
:
1121 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1122 assert(index
->i
[i
] >= 0 && index
->i
[i
] < (int)mach
->ImmLimit
);
1123 assert(index2D
->i
[i
] == 0);
1125 chan
->f
[i
] = mach
->Imms
[index
->i
[i
]][swizzle
];
1129 case TGSI_FILE_IMMEDIATE_ARRAY
:
1130 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1131 assert(index2D
->i
[i
] == 0);
1133 chan
->f
[i
] = mach
->ImmArray
[index
->i
[i
]][swizzle
];
1137 case TGSI_FILE_ADDRESS
:
1138 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1139 assert(index
->i
[i
] >= 0);
1140 assert(index2D
->i
[i
] == 0);
1142 chan
->u
[i
] = mach
->Addrs
[index
->i
[i
]].xyzw
[swizzle
].u
[i
];
1146 case TGSI_FILE_PREDICATE
:
1147 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1148 assert(index
->i
[i
] >= 0 && index
->i
[i
] < TGSI_EXEC_NUM_PREDS
);
1149 assert(index2D
->i
[i
] == 0);
1151 chan
->u
[i
] = mach
->Predicates
[0].xyzw
[swizzle
].u
[i
];
1155 case TGSI_FILE_OUTPUT
:
1156 /* vertex/fragment output vars can be read too */
1157 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1158 assert(index
->i
[i
] >= 0);
1159 assert(index2D
->i
[i
] == 0);
1161 chan
->u
[i
] = mach
->Outputs
[index
->i
[i
]].xyzw
[swizzle
].u
[i
];
1167 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1174 fetch_source(const struct tgsi_exec_machine
*mach
,
1175 union tgsi_exec_channel
*chan
,
1176 const struct tgsi_full_src_register
*reg
,
1177 const uint chan_index
,
1178 enum tgsi_exec_datatype src_datatype
)
1180 union tgsi_exec_channel index
;
1181 union tgsi_exec_channel index2D
;
1184 /* We start with a direct index into a register file.
1188 * file = Register.File
1189 * [1] = Register.Index
1194 index
.i
[3] = reg
->Register
.Index
;
1196 /* There is an extra source register that indirectly subscripts
1197 * a register file. The direct index now becomes an offset
1198 * that is being added to the indirect register.
1202 * ind = Indirect.File
1203 * [2] = Indirect.Index
1204 * .x = Indirect.SwizzleX
1206 if (reg
->Register
.Indirect
) {
1207 union tgsi_exec_channel index2
;
1208 union tgsi_exec_channel indir_index
;
1209 const uint execmask
= mach
->ExecMask
;
1212 /* which address register (always zero now) */
1216 index2
.i
[3] = reg
->Indirect
.Index
;
1217 assert(reg
->Indirect
.File
== TGSI_FILE_ADDRESS
);
1218 /* get current value of address register[swizzle] */
1219 swizzle
= tgsi_util_get_src_register_swizzle( ®
->Indirect
, CHAN_X
);
1220 fetch_src_file_channel(mach
,
1227 /* add value of address register to the offset */
1228 index
.i
[0] += indir_index
.i
[0];
1229 index
.i
[1] += indir_index
.i
[1];
1230 index
.i
[2] += indir_index
.i
[2];
1231 index
.i
[3] += indir_index
.i
[3];
1233 /* for disabled execution channels, zero-out the index to
1234 * avoid using a potential garbage value.
1236 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1237 if ((execmask
& (1 << i
)) == 0)
1242 /* There is an extra source register that is a second
1243 * subscript to a register file. Effectively it means that
1244 * the register file is actually a 2D array of registers.
1248 * [3] = Dimension.Index
1250 if (reg
->Register
.Dimension
) {
1254 index2D
.i
[3] = reg
->Dimension
.Index
;
1256 /* Again, the second subscript index can be addressed indirectly
1257 * identically to the first one.
1258 * Nothing stops us from indirectly addressing the indirect register,
1259 * but there is no need for that, so we won't exercise it.
1261 * file[ind[4].y+3][1],
1263 * ind = DimIndirect.File
1264 * [4] = DimIndirect.Index
1265 * .y = DimIndirect.SwizzleX
1267 if (reg
->Dimension
.Indirect
) {
1268 union tgsi_exec_channel index2
;
1269 union tgsi_exec_channel indir_index
;
1270 const uint execmask
= mach
->ExecMask
;
1276 index2
.i
[3] = reg
->DimIndirect
.Index
;
1278 swizzle
= tgsi_util_get_src_register_swizzle( ®
->DimIndirect
, CHAN_X
);
1279 fetch_src_file_channel(mach
,
1280 reg
->DimIndirect
.File
,
1286 index2D
.i
[0] += indir_index
.i
[0];
1287 index2D
.i
[1] += indir_index
.i
[1];
1288 index2D
.i
[2] += indir_index
.i
[2];
1289 index2D
.i
[3] += indir_index
.i
[3];
1291 /* for disabled execution channels, zero-out the index to
1292 * avoid using a potential garbage value.
1294 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1295 if ((execmask
& (1 << i
)) == 0) {
1301 /* If by any chance there was a need for a 3D array of register
1302 * files, we would have to check whether Dimension is followed
1303 * by a dimension register and continue the saga.
1312 swizzle
= tgsi_util_get_full_src_register_swizzle( reg
, chan_index
);
1313 fetch_src_file_channel(mach
,
1320 if (reg
->Register
.Absolute
) {
1321 if (src_datatype
== TGSI_EXEC_DATA_FLOAT
) {
1322 micro_abs(chan
, chan
);
1324 micro_iabs(chan
, chan
);
1328 if (reg
->Register
.Negate
) {
1329 if (src_datatype
== TGSI_EXEC_DATA_FLOAT
) {
1330 micro_neg(chan
, chan
);
1332 micro_ineg(chan
, chan
);
1338 store_dest(struct tgsi_exec_machine
*mach
,
1339 const union tgsi_exec_channel
*chan
,
1340 const struct tgsi_full_dst_register
*reg
,
1341 const struct tgsi_full_instruction
*inst
,
1343 enum tgsi_exec_datatype dst_datatype
)
1346 union tgsi_exec_channel null
;
1347 union tgsi_exec_channel
*dst
;
1348 union tgsi_exec_channel index2D
;
1349 uint execmask
= mach
->ExecMask
;
1350 int offset
= 0; /* indirection offset */
1354 if (0 && dst_datatype
== TGSI_EXEC_DATA_FLOAT
) {
1355 check_inf_or_nan(chan
);
1358 /* There is an extra source register that indirectly subscripts
1359 * a register file. The direct index now becomes an offset
1360 * that is being added to the indirect register.
1364 * ind = Indirect.File
1365 * [2] = Indirect.Index
1366 * .x = Indirect.SwizzleX
1368 if (reg
->Register
.Indirect
) {
1369 union tgsi_exec_channel index
;
1370 union tgsi_exec_channel indir_index
;
1373 /* which address register (always zero for now) */
1377 index
.i
[3] = reg
->Indirect
.Index
;
1379 /* get current value of address register[swizzle] */
1380 swizzle
= tgsi_util_get_src_register_swizzle( ®
->Indirect
, CHAN_X
);
1382 /* fetch values from the address/indirection register */
1383 fetch_src_file_channel(mach
,
1390 /* save indirection offset */
1391 offset
= indir_index
.i
[0];
1394 /* There is an extra source register that is a second
1395 * subscript to a register file. Effectively it means that
1396 * the register file is actually a 2D array of registers.
1400 * [3] = Dimension.Index
1402 if (reg
->Register
.Dimension
) {
1406 index2D
.i
[3] = reg
->Dimension
.Index
;
1408 /* Again, the second subscript index can be addressed indirectly
1409 * identically to the first one.
1410 * Nothing stops us from indirectly addressing the indirect register,
1411 * but there is no need for that, so we won't exercise it.
1413 * file[ind[4].y+3][1],
1415 * ind = DimIndirect.File
1416 * [4] = DimIndirect.Index
1417 * .y = DimIndirect.SwizzleX
1419 if (reg
->Dimension
.Indirect
) {
1420 union tgsi_exec_channel index2
;
1421 union tgsi_exec_channel indir_index
;
1422 const uint execmask
= mach
->ExecMask
;
1429 index2
.i
[3] = reg
->DimIndirect
.Index
;
1431 swizzle
= tgsi_util_get_src_register_swizzle( ®
->DimIndirect
, CHAN_X
);
1432 fetch_src_file_channel(mach
,
1433 reg
->DimIndirect
.File
,
1439 index2D
.i
[0] += indir_index
.i
[0];
1440 index2D
.i
[1] += indir_index
.i
[1];
1441 index2D
.i
[2] += indir_index
.i
[2];
1442 index2D
.i
[3] += indir_index
.i
[3];
1444 /* for disabled execution channels, zero-out the index to
1445 * avoid using a potential garbage value.
1447 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1448 if ((execmask
& (1 << i
)) == 0) {
1454 /* If by any chance there was a need for a 3D array of register
1455 * files, we would have to check whether Dimension is followed
1456 * by a dimension register and continue the saga.
1465 switch (reg
->Register
.File
) {
1466 case TGSI_FILE_NULL
:
1470 case TGSI_FILE_OUTPUT
:
1471 index
= mach
->Temps
[TEMP_OUTPUT_I
].xyzw
[TEMP_OUTPUT_C
].u
[0]
1472 + reg
->Register
.Index
;
1473 dst
= &mach
->Outputs
[offset
+ index
].xyzw
[chan_index
];
1475 if (TGSI_PROCESSOR_GEOMETRY
== mach
->Processor
) {
1476 fprintf(stderr
, "STORING OUT[%d] mask(%d), = (", offset
+ index
, execmask
);
1477 for (i
= 0; i
< QUAD_SIZE
; i
++)
1478 if (execmask
& (1 << i
))
1479 fprintf(stderr
, "%f, ", chan
->f
[i
]);
1480 fprintf(stderr
, ")\n");
1485 case TGSI_FILE_TEMPORARY
:
1486 index
= reg
->Register
.Index
;
1487 assert( index
< TGSI_EXEC_NUM_TEMPS
);
1488 dst
= &mach
->Temps
[offset
+ index
].xyzw
[chan_index
];
1491 case TGSI_FILE_TEMPORARY_ARRAY
:
1492 index
= reg
->Register
.Index
;
1493 assert( index
< TGSI_EXEC_NUM_TEMPS
);
1494 assert( index2D
.i
[0] < TGSI_EXEC_NUM_TEMP_ARRAYS
);
1495 /* XXX we use index2D.i[0] here but somehow we might
1496 * end up with someone trying to store indirectly in
1497 * different buffers */
1498 dst
= &mach
->TempArray
[index2D
.i
[0]][offset
+ index
].xyzw
[chan_index
];
1501 case TGSI_FILE_ADDRESS
:
1502 index
= reg
->Register
.Index
;
1503 dst
= &mach
->Addrs
[index
].xyzw
[chan_index
];
1506 case TGSI_FILE_PREDICATE
:
1507 index
= reg
->Register
.Index
;
1508 assert(index
< TGSI_EXEC_NUM_PREDS
);
1509 dst
= &mach
->Predicates
[index
].xyzw
[chan_index
];
1517 if (inst
->Instruction
.Predicate
) {
1519 union tgsi_exec_channel
*pred
;
1521 switch (chan_index
) {
1523 swizzle
= inst
->Predicate
.SwizzleX
;
1526 swizzle
= inst
->Predicate
.SwizzleY
;
1529 swizzle
= inst
->Predicate
.SwizzleZ
;
1532 swizzle
= inst
->Predicate
.SwizzleW
;
1539 assert(inst
->Predicate
.Index
== 0);
1541 pred
= &mach
->Predicates
[inst
->Predicate
.Index
].xyzw
[swizzle
];
1543 if (inst
->Predicate
.Negate
) {
1544 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1546 execmask
&= ~(1 << i
);
1550 for (i
= 0; i
< QUAD_SIZE
; i
++) {
1552 execmask
&= ~(1 << i
);
1558 switch (inst
->Instruction
.Saturate
) {
1560 for (i
= 0; i
< QUAD_SIZE
; i
++)
1561 if (execmask
& (1 << i
))
1562 dst
->i
[i
] = chan
->i
[i
];
1565 case TGSI_SAT_ZERO_ONE
:
1566 for (i
= 0; i
< QUAD_SIZE
; i
++)
1567 if (execmask
& (1 << i
)) {
1568 if (chan
->f
[i
] < 0.0f
)
1570 else if (chan
->f
[i
] > 1.0f
)
1573 dst
->i
[i
] = chan
->i
[i
];
1577 case TGSI_SAT_MINUS_PLUS_ONE
:
1578 for (i
= 0; i
< QUAD_SIZE
; i
++)
1579 if (execmask
& (1 << i
)) {
1580 if (chan
->f
[i
] < -1.0f
)
1582 else if (chan
->f
[i
] > 1.0f
)
1585 dst
->i
[i
] = chan
->i
[i
];
1594 #define FETCH(VAL,INDEX,CHAN)\
1595 fetch_source(mach, VAL, &inst->Src[INDEX], CHAN, TGSI_EXEC_DATA_FLOAT)
1599 * Execute ARB-style KIL which is predicated by a src register.
1600 * Kill fragment if any of the four values is less than zero.
1603 exec_kil(struct tgsi_exec_machine
*mach
,
1604 const struct tgsi_full_instruction
*inst
)
1608 uint kilmask
= 0; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1609 union tgsi_exec_channel r
[1];
1611 /* This mask stores component bits that were already tested. */
1614 for (chan_index
= 0; chan_index
< 4; chan_index
++)
1619 /* unswizzle channel */
1620 swizzle
= tgsi_util_get_full_src_register_swizzle (
1624 /* check if the component has not been already tested */
1625 if (uniquemask
& (1 << swizzle
))
1627 uniquemask
|= 1 << swizzle
;
1629 FETCH(&r
[0], 0, chan_index
);
1630 for (i
= 0; i
< 4; i
++)
1631 if (r
[0].f
[i
] < 0.0f
)
1635 mach
->Temps
[TEMP_KILMASK_I
].xyzw
[TEMP_KILMASK_C
].u
[0] |= kilmask
;
1639 * Execute NVIDIA-style KIL which is predicated by a condition code.
1640 * Kill fragment if the condition code is TRUE.
1643 exec_kilp(struct tgsi_exec_machine
*mach
,
1644 const struct tgsi_full_instruction
*inst
)
1646 uint kilmask
; /* bit 0 = pixel 0, bit 1 = pixel 1, etc */
1648 /* "unconditional" kil */
1649 kilmask
= mach
->ExecMask
;
1650 mach
->Temps
[TEMP_KILMASK_I
].xyzw
[TEMP_KILMASK_C
].u
[0] |= kilmask
;
1654 emit_vertex(struct tgsi_exec_machine
*mach
)
1656 /* FIXME: check for exec mask correctly
1658 for (i = 0; i < QUAD_SIZE; ++i) {
1659 if ((mach->ExecMask & (1 << i)))
1661 if (mach
->ExecMask
) {
1662 mach
->Temps
[TEMP_OUTPUT_I
].xyzw
[TEMP_OUTPUT_C
].u
[0] += mach
->NumOutputs
;
1663 mach
->Primitives
[mach
->Temps
[TEMP_PRIMITIVE_I
].xyzw
[TEMP_PRIMITIVE_C
].u
[0]]++;
1668 emit_primitive(struct tgsi_exec_machine
*mach
)
1670 unsigned *prim_count
= &mach
->Temps
[TEMP_PRIMITIVE_I
].xyzw
[TEMP_PRIMITIVE_C
].u
[0];
1671 /* FIXME: check for exec mask correctly
1673 for (i = 0; i < QUAD_SIZE; ++i) {
1674 if ((mach->ExecMask & (1 << i)))
1676 if (mach
->ExecMask
) {
1678 debug_assert((*prim_count
* mach
->NumOutputs
) < mach
->MaxGeometryShaderOutputs
);
1679 mach
->Primitives
[*prim_count
] = 0;
1684 conditional_emit_primitive(struct tgsi_exec_machine
*mach
)
1686 if (TGSI_PROCESSOR_GEOMETRY
== mach
->Processor
) {
1688 mach
->Primitives
[mach
->Temps
[TEMP_PRIMITIVE_I
].xyzw
[TEMP_PRIMITIVE_C
].u
[0]];
1689 if (emitted_verts
) {
1690 emit_primitive(mach
);
1697 * Fetch four texture samples using STR texture coordinates.
1700 fetch_texel( struct tgsi_sampler
*sampler
,
1701 const union tgsi_exec_channel
*s
,
1702 const union tgsi_exec_channel
*t
,
1703 const union tgsi_exec_channel
*p
,
1704 const union tgsi_exec_channel
*c0
,
1705 enum tgsi_sampler_control control
,
1706 union tgsi_exec_channel
*r
,
1707 union tgsi_exec_channel
*g
,
1708 union tgsi_exec_channel
*b
,
1709 union tgsi_exec_channel
*a
)
1712 float rgba
[NUM_CHANNELS
][QUAD_SIZE
];
1714 sampler
->get_samples(sampler
, s
->f
, t
->f
, p
->f
, c0
->f
, control
, rgba
);
1716 for (j
= 0; j
< 4; j
++) {
1717 r
->f
[j
] = rgba
[0][j
];
1718 g
->f
[j
] = rgba
[1][j
];
1719 b
->f
[j
] = rgba
[2][j
];
1720 a
->f
[j
] = rgba
[3][j
];
1725 #define TEX_MODIFIER_NONE 0
1726 #define TEX_MODIFIER_PROJECTED 1
1727 #define TEX_MODIFIER_LOD_BIAS 2
1728 #define TEX_MODIFIER_EXPLICIT_LOD 3
1732 exec_tex(struct tgsi_exec_machine
*mach
,
1733 const struct tgsi_full_instruction
*inst
,
1736 const uint unit
= inst
->Src
[1].Register
.Index
;
1737 union tgsi_exec_channel r
[4];
1738 const union tgsi_exec_channel
*lod
= &ZeroVec
;
1739 enum tgsi_sampler_control control
;
1742 if (modifier
!= TEX_MODIFIER_NONE
) {
1743 FETCH(&r
[3], 0, CHAN_W
);
1744 if (modifier
!= TEX_MODIFIER_PROJECTED
) {
1749 if (modifier
== TEX_MODIFIER_EXPLICIT_LOD
) {
1750 control
= tgsi_sampler_lod_explicit
;
1752 control
= tgsi_sampler_lod_bias
;
1755 switch (inst
->Texture
.Texture
) {
1756 case TGSI_TEXTURE_1D
:
1757 case TGSI_TEXTURE_SHADOW1D
:
1758 FETCH(&r
[0], 0, CHAN_X
);
1760 if (modifier
== TEX_MODIFIER_PROJECTED
) {
1761 micro_div(&r
[0], &r
[0], &r
[3]);
1764 fetch_texel(mach
->Samplers
[unit
],
1765 &r
[0], &ZeroVec
, &ZeroVec
, lod
, /* S, T, P, LOD */
1767 &r
[0], &r
[1], &r
[2], &r
[3]); /* R, G, B, A */
1770 case TGSI_TEXTURE_2D
:
1771 case TGSI_TEXTURE_RECT
:
1772 case TGSI_TEXTURE_SHADOW2D
:
1773 case TGSI_TEXTURE_SHADOWRECT
:
1774 FETCH(&r
[0], 0, CHAN_X
);
1775 FETCH(&r
[1], 0, CHAN_Y
);
1776 FETCH(&r
[2], 0, CHAN_Z
);
1778 if (modifier
== TEX_MODIFIER_PROJECTED
) {
1779 micro_div(&r
[0], &r
[0], &r
[3]);
1780 micro_div(&r
[1], &r
[1], &r
[3]);
1781 micro_div(&r
[2], &r
[2], &r
[3]);
1784 fetch_texel(mach
->Samplers
[unit
],
1785 &r
[0], &r
[1], &r
[2], lod
, /* S, T, P, LOD */
1787 &r
[0], &r
[1], &r
[2], &r
[3]); /* outputs */
1790 case TGSI_TEXTURE_1D_ARRAY
:
1791 FETCH(&r
[0], 0, CHAN_X
);
1792 FETCH(&r
[1], 0, CHAN_Y
);
1794 if (modifier
== TEX_MODIFIER_PROJECTED
) {
1795 micro_div(&r
[0], &r
[0], &r
[3]);
1798 fetch_texel(mach
->Samplers
[unit
],
1799 &r
[0], &r
[1], &r
[2], lod
, /* S, T, P, LOD */
1801 &r
[0], &r
[1], &r
[2], &r
[3]); /* outputs */
1804 case TGSI_TEXTURE_2D_ARRAY
:
1805 FETCH(&r
[0], 0, CHAN_X
);
1806 FETCH(&r
[1], 0, CHAN_Y
);
1807 FETCH(&r
[2], 0, CHAN_Z
);
1809 if (modifier
== TEX_MODIFIER_PROJECTED
) {
1810 micro_div(&r
[0], &r
[0], &r
[3]);
1811 micro_div(&r
[1], &r
[1], &r
[3]);
1814 fetch_texel(mach
->Samplers
[unit
],
1815 &r
[0], &r
[1], &r
[2], lod
, /* S, T, P, LOD */
1817 &r
[0], &r
[1], &r
[2], &r
[3]); /* outputs */
1820 case TGSI_TEXTURE_3D
:
1821 case TGSI_TEXTURE_CUBE
:
1822 FETCH(&r
[0], 0, CHAN_X
);
1823 FETCH(&r
[1], 0, CHAN_Y
);
1824 FETCH(&r
[2], 0, CHAN_Z
);
1826 if (modifier
== TEX_MODIFIER_PROJECTED
) {
1827 micro_div(&r
[0], &r
[0], &r
[3]);
1828 micro_div(&r
[1], &r
[1], &r
[3]);
1829 micro_div(&r
[2], &r
[2], &r
[3]);
1832 fetch_texel(mach
->Samplers
[unit
],
1833 &r
[0], &r
[1], &r
[2], lod
,
1835 &r
[0], &r
[1], &r
[2], &r
[3]);
1842 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
1843 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
1844 store_dest(mach
, &r
[chan
], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
1850 exec_txd(struct tgsi_exec_machine
*mach
,
1851 const struct tgsi_full_instruction
*inst
)
1853 const uint unit
= inst
->Src
[3].Register
.Index
;
1854 union tgsi_exec_channel r
[4];
1858 * XXX: This is fake TXD -- the derivatives are not taken into account, yet.
1861 switch (inst
->Texture
.Texture
) {
1862 case TGSI_TEXTURE_1D
:
1863 case TGSI_TEXTURE_SHADOW1D
:
1865 FETCH(&r
[0], 0, CHAN_X
);
1867 fetch_texel(mach
->Samplers
[unit
],
1868 &r
[0], &ZeroVec
, &ZeroVec
, &ZeroVec
, /* S, T, P, BIAS */
1869 tgsi_sampler_lod_bias
,
1870 &r
[0], &r
[1], &r
[2], &r
[3]); /* R, G, B, A */
1873 case TGSI_TEXTURE_2D
:
1874 case TGSI_TEXTURE_RECT
:
1875 case TGSI_TEXTURE_SHADOW2D
:
1876 case TGSI_TEXTURE_SHADOWRECT
:
1878 FETCH(&r
[0], 0, CHAN_X
);
1879 FETCH(&r
[1], 0, CHAN_Y
);
1880 FETCH(&r
[2], 0, CHAN_Z
);
1882 fetch_texel(mach
->Samplers
[unit
],
1883 &r
[0], &r
[1], &r
[2], &ZeroVec
, /* inputs */
1884 tgsi_sampler_lod_bias
,
1885 &r
[0], &r
[1], &r
[2], &r
[3]); /* outputs */
1888 case TGSI_TEXTURE_3D
:
1889 case TGSI_TEXTURE_CUBE
:
1891 FETCH(&r
[0], 0, CHAN_X
);
1892 FETCH(&r
[1], 0, CHAN_Y
);
1893 FETCH(&r
[2], 0, CHAN_Z
);
1895 fetch_texel(mach
->Samplers
[unit
],
1896 &r
[0], &r
[1], &r
[2], &ZeroVec
,
1897 tgsi_sampler_lod_bias
,
1898 &r
[0], &r
[1], &r
[2], &r
[3]);
1905 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
1906 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
1907 store_dest(mach
, &r
[chan
], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
1915 exec_sample(struct tgsi_exec_machine
*mach
,
1916 const struct tgsi_full_instruction
*inst
,
1919 const uint resource_unit
= inst
->Src
[1].Register
.Index
;
1920 const uint sampler_unit
= inst
->Src
[2].Register
.Index
;
1921 union tgsi_exec_channel r
[4];
1922 const union tgsi_exec_channel
*lod
= &ZeroVec
;
1923 enum tgsi_sampler_control control
;
1926 if (modifier
!= TEX_MODIFIER_NONE
) {
1927 if (modifier
== TEX_MODIFIER_LOD_BIAS
)
1928 FETCH(&r
[3], 3, CHAN_X
);
1929 else /*TEX_MODIFIER_LOD*/
1930 FETCH(&r
[3], 0, CHAN_W
);
1932 if (modifier
!= TEX_MODIFIER_PROJECTED
) {
1937 if (modifier
== TEX_MODIFIER_EXPLICIT_LOD
) {
1938 control
= tgsi_sampler_lod_explicit
;
1940 control
= tgsi_sampler_lod_bias
;
1943 switch (mach
->Resources
[resource_unit
].Resource
) {
1944 case TGSI_TEXTURE_1D
:
1945 case TGSI_TEXTURE_SHADOW1D
:
1946 FETCH(&r
[0], 0, CHAN_X
);
1948 if (modifier
== TEX_MODIFIER_PROJECTED
) {
1949 micro_div(&r
[0], &r
[0], &r
[3]);
1952 fetch_texel(mach
->Samplers
[sampler_unit
],
1953 &r
[0], &ZeroVec
, &ZeroVec
, lod
, /* S, T, P, LOD */
1955 &r
[0], &r
[1], &r
[2], &r
[3]); /* R, G, B, A */
1958 case TGSI_TEXTURE_2D
:
1959 case TGSI_TEXTURE_RECT
:
1960 case TGSI_TEXTURE_SHADOW2D
:
1961 case TGSI_TEXTURE_SHADOWRECT
:
1962 FETCH(&r
[0], 0, CHAN_X
);
1963 FETCH(&r
[1], 0, CHAN_Y
);
1964 FETCH(&r
[2], 0, CHAN_Z
);
1966 if (modifier
== TEX_MODIFIER_PROJECTED
) {
1967 micro_div(&r
[0], &r
[0], &r
[3]);
1968 micro_div(&r
[1], &r
[1], &r
[3]);
1969 micro_div(&r
[2], &r
[2], &r
[3]);
1972 fetch_texel(mach
->Samplers
[sampler_unit
],
1973 &r
[0], &r
[1], &r
[2], lod
, /* S, T, P, LOD */
1975 &r
[0], &r
[1], &r
[2], &r
[3]); /* outputs */
1978 case TGSI_TEXTURE_3D
:
1979 case TGSI_TEXTURE_CUBE
:
1980 FETCH(&r
[0], 0, CHAN_X
);
1981 FETCH(&r
[1], 0, CHAN_Y
);
1982 FETCH(&r
[2], 0, CHAN_Z
);
1984 if (modifier
== TEX_MODIFIER_PROJECTED
) {
1985 micro_div(&r
[0], &r
[0], &r
[3]);
1986 micro_div(&r
[1], &r
[1], &r
[3]);
1987 micro_div(&r
[2], &r
[2], &r
[3]);
1990 fetch_texel(mach
->Samplers
[sampler_unit
],
1991 &r
[0], &r
[1], &r
[2], lod
,
1993 &r
[0], &r
[1], &r
[2], &r
[3]);
2000 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2001 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2002 store_dest(mach
, &r
[chan
], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2008 exec_sample_d(struct tgsi_exec_machine
*mach
,
2009 const struct tgsi_full_instruction
*inst
)
2011 const uint resource_unit
= inst
->Src
[1].Register
.Index
;
2012 const uint sampler_unit
= inst
->Src
[2].Register
.Index
;
2013 union tgsi_exec_channel r
[4];
2016 * XXX: This is fake SAMPLE_D -- the derivatives are not taken into account, yet.
2019 switch (mach
->Resources
[resource_unit
].Resource
) {
2020 case TGSI_TEXTURE_1D
:
2021 case TGSI_TEXTURE_SHADOW1D
:
2023 FETCH(&r
[0], 0, CHAN_X
);
2025 fetch_texel(mach
->Samplers
[sampler_unit
],
2026 &r
[0], &ZeroVec
, &ZeroVec
, &ZeroVec
, /* S, T, P, BIAS */
2027 tgsi_sampler_lod_bias
,
2028 &r
[0], &r
[1], &r
[2], &r
[3]); /* R, G, B, A */
2031 case TGSI_TEXTURE_2D
:
2032 case TGSI_TEXTURE_RECT
:
2033 case TGSI_TEXTURE_SHADOW2D
:
2034 case TGSI_TEXTURE_SHADOWRECT
:
2036 FETCH(&r
[0], 0, CHAN_X
);
2037 FETCH(&r
[1], 0, CHAN_Y
);
2038 FETCH(&r
[2], 0, CHAN_Z
);
2040 fetch_texel(mach
->Samplers
[sampler_unit
],
2041 &r
[0], &r
[1], &r
[2], &ZeroVec
, /* inputs */
2042 tgsi_sampler_lod_bias
,
2043 &r
[0], &r
[1], &r
[2], &r
[3]); /* outputs */
2046 case TGSI_TEXTURE_3D
:
2047 case TGSI_TEXTURE_CUBE
:
2049 FETCH(&r
[0], 0, CHAN_X
);
2050 FETCH(&r
[1], 0, CHAN_Y
);
2051 FETCH(&r
[2], 0, CHAN_Z
);
2053 fetch_texel(mach
->Samplers
[sampler_unit
],
2054 &r
[0], &r
[1], &r
[2], &ZeroVec
,
2055 tgsi_sampler_lod_bias
,
2056 &r
[0], &r
[1], &r
[2], &r
[3]);
2063 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2064 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2065 store_dest(mach
, &r
[chan
], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2072 * Evaluate a constant-valued coefficient at the position of the
2077 struct tgsi_exec_machine
*mach
,
2083 for( i
= 0; i
< QUAD_SIZE
; i
++ ) {
2084 mach
->Inputs
[attrib
].xyzw
[chan
].f
[i
] = mach
->InterpCoefs
[attrib
].a0
[chan
];
2089 * Evaluate a linear-valued coefficient at the position of the
2094 struct tgsi_exec_machine
*mach
,
2098 const float x
= mach
->QuadPos
.xyzw
[0].f
[0];
2099 const float y
= mach
->QuadPos
.xyzw
[1].f
[0];
2100 const float dadx
= mach
->InterpCoefs
[attrib
].dadx
[chan
];
2101 const float dady
= mach
->InterpCoefs
[attrib
].dady
[chan
];
2102 const float a0
= mach
->InterpCoefs
[attrib
].a0
[chan
] + dadx
* x
+ dady
* y
;
2103 mach
->Inputs
[attrib
].xyzw
[chan
].f
[0] = a0
;
2104 mach
->Inputs
[attrib
].xyzw
[chan
].f
[1] = a0
+ dadx
;
2105 mach
->Inputs
[attrib
].xyzw
[chan
].f
[2] = a0
+ dady
;
2106 mach
->Inputs
[attrib
].xyzw
[chan
].f
[3] = a0
+ dadx
+ dady
;
2110 * Evaluate a perspective-valued coefficient at the position of the
2114 eval_perspective_coef(
2115 struct tgsi_exec_machine
*mach
,
2119 const float x
= mach
->QuadPos
.xyzw
[0].f
[0];
2120 const float y
= mach
->QuadPos
.xyzw
[1].f
[0];
2121 const float dadx
= mach
->InterpCoefs
[attrib
].dadx
[chan
];
2122 const float dady
= mach
->InterpCoefs
[attrib
].dady
[chan
];
2123 const float a0
= mach
->InterpCoefs
[attrib
].a0
[chan
] + dadx
* x
+ dady
* y
;
2124 const float *w
= mach
->QuadPos
.xyzw
[3].f
;
2125 /* divide by W here */
2126 mach
->Inputs
[attrib
].xyzw
[chan
].f
[0] = a0
/ w
[0];
2127 mach
->Inputs
[attrib
].xyzw
[chan
].f
[1] = (a0
+ dadx
) / w
[1];
2128 mach
->Inputs
[attrib
].xyzw
[chan
].f
[2] = (a0
+ dady
) / w
[2];
2129 mach
->Inputs
[attrib
].xyzw
[chan
].f
[3] = (a0
+ dadx
+ dady
) / w
[3];
2133 typedef void (* eval_coef_func
)(
2134 struct tgsi_exec_machine
*mach
,
2139 exec_declaration(struct tgsi_exec_machine
*mach
,
2140 const struct tgsi_full_declaration
*decl
)
2142 if (decl
->Declaration
.File
== TGSI_FILE_RESOURCE
) {
2143 mach
->Resources
[decl
->Range
.First
] = decl
->Resource
;
2147 if (mach
->Processor
== TGSI_PROCESSOR_FRAGMENT
) {
2148 if (decl
->Declaration
.File
== TGSI_FILE_INPUT
) {
2149 uint first
, last
, mask
;
2151 first
= decl
->Range
.First
;
2152 last
= decl
->Range
.Last
;
2153 mask
= decl
->Declaration
.UsageMask
;
2155 /* XXX we could remove this special-case code since
2156 * mach->InterpCoefs[first].a0 should already have the
2157 * front/back-face value. But we should first update the
2158 * ureg code to emit the right UsageMask value (WRITEMASK_X).
2159 * Then, we could remove the tgsi_exec_machine::Face field.
2161 /* XXX make FACE a system value */
2162 if (decl
->Semantic
.Name
== TGSI_SEMANTIC_FACE
) {
2165 assert(decl
->Semantic
.Index
== 0);
2166 assert(first
== last
);
2168 for (i
= 0; i
< QUAD_SIZE
; i
++) {
2169 mach
->Inputs
[first
].xyzw
[0].f
[i
] = mach
->Face
;
2172 eval_coef_func eval
;
2175 switch (decl
->Declaration
.Interpolate
) {
2176 case TGSI_INTERPOLATE_CONSTANT
:
2177 eval
= eval_constant_coef
;
2180 case TGSI_INTERPOLATE_LINEAR
:
2181 eval
= eval_linear_coef
;
2184 case TGSI_INTERPOLATE_PERSPECTIVE
:
2185 eval
= eval_perspective_coef
;
2193 for (j
= 0; j
< NUM_CHANNELS
; j
++) {
2194 if (mask
& (1 << j
)) {
2195 for (i
= first
; i
<= last
; i
++) {
2204 if (decl
->Declaration
.File
== TGSI_FILE_SYSTEM_VALUE
) {
2205 mach
->SysSemanticToIndex
[decl
->Declaration
.Semantic
] = decl
->Range
.First
;
2210 typedef void (* micro_op
)(union tgsi_exec_channel
*dst
);
2213 exec_vector(struct tgsi_exec_machine
*mach
,
2214 const struct tgsi_full_instruction
*inst
,
2216 enum tgsi_exec_datatype dst_datatype
)
2220 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2221 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2222 union tgsi_exec_channel dst
;
2225 store_dest(mach
, &dst
, &inst
->Dst
[0], inst
, chan
, dst_datatype
);
2230 typedef void (* micro_unary_op
)(union tgsi_exec_channel
*dst
,
2231 const union tgsi_exec_channel
*src
);
2234 exec_scalar_unary(struct tgsi_exec_machine
*mach
,
2235 const struct tgsi_full_instruction
*inst
,
2237 enum tgsi_exec_datatype dst_datatype
,
2238 enum tgsi_exec_datatype src_datatype
)
2241 union tgsi_exec_channel src
;
2242 union tgsi_exec_channel dst
;
2244 fetch_source(mach
, &src
, &inst
->Src
[0], CHAN_X
, src_datatype
);
2246 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2247 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2248 store_dest(mach
, &dst
, &inst
->Dst
[0], inst
, chan
, dst_datatype
);
2254 exec_vector_unary(struct tgsi_exec_machine
*mach
,
2255 const struct tgsi_full_instruction
*inst
,
2257 enum tgsi_exec_datatype dst_datatype
,
2258 enum tgsi_exec_datatype src_datatype
)
2261 struct tgsi_exec_vector dst
;
2263 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2264 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2265 union tgsi_exec_channel src
;
2267 fetch_source(mach
, &src
, &inst
->Src
[0], chan
, src_datatype
);
2268 op(&dst
.xyzw
[chan
], &src
);
2271 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2272 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2273 store_dest(mach
, &dst
.xyzw
[chan
], &inst
->Dst
[0], inst
, chan
, dst_datatype
);
2278 typedef void (* micro_binary_op
)(union tgsi_exec_channel
*dst
,
2279 const union tgsi_exec_channel
*src0
,
2280 const union tgsi_exec_channel
*src1
);
2283 exec_scalar_binary(struct tgsi_exec_machine
*mach
,
2284 const struct tgsi_full_instruction
*inst
,
2286 enum tgsi_exec_datatype dst_datatype
,
2287 enum tgsi_exec_datatype src_datatype
)
2290 union tgsi_exec_channel src
[2];
2291 union tgsi_exec_channel dst
;
2293 fetch_source(mach
, &src
[0], &inst
->Src
[0], CHAN_X
, src_datatype
);
2294 fetch_source(mach
, &src
[1], &inst
->Src
[1], CHAN_Y
, src_datatype
);
2295 op(&dst
, &src
[0], &src
[1]);
2296 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2297 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2298 store_dest(mach
, &dst
, &inst
->Dst
[0], inst
, chan
, dst_datatype
);
2304 exec_vector_binary(struct tgsi_exec_machine
*mach
,
2305 const struct tgsi_full_instruction
*inst
,
2307 enum tgsi_exec_datatype dst_datatype
,
2308 enum tgsi_exec_datatype src_datatype
)
2311 struct tgsi_exec_vector dst
;
2313 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2314 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2315 union tgsi_exec_channel src
[2];
2317 fetch_source(mach
, &src
[0], &inst
->Src
[0], chan
, src_datatype
);
2318 fetch_source(mach
, &src
[1], &inst
->Src
[1], chan
, src_datatype
);
2319 op(&dst
.xyzw
[chan
], &src
[0], &src
[1]);
2322 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2323 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2324 store_dest(mach
, &dst
.xyzw
[chan
], &inst
->Dst
[0], inst
, chan
, dst_datatype
);
2329 typedef void (* micro_trinary_op
)(union tgsi_exec_channel
*dst
,
2330 const union tgsi_exec_channel
*src0
,
2331 const union tgsi_exec_channel
*src1
,
2332 const union tgsi_exec_channel
*src2
);
2335 exec_vector_trinary(struct tgsi_exec_machine
*mach
,
2336 const struct tgsi_full_instruction
*inst
,
2337 micro_trinary_op op
,
2338 enum tgsi_exec_datatype dst_datatype
,
2339 enum tgsi_exec_datatype src_datatype
)
2342 struct tgsi_exec_vector dst
;
2344 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2345 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2346 union tgsi_exec_channel src
[3];
2348 fetch_source(mach
, &src
[0], &inst
->Src
[0], chan
, src_datatype
);
2349 fetch_source(mach
, &src
[1], &inst
->Src
[1], chan
, src_datatype
);
2350 fetch_source(mach
, &src
[2], &inst
->Src
[2], chan
, src_datatype
);
2351 op(&dst
.xyzw
[chan
], &src
[0], &src
[1], &src
[2]);
2354 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2355 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2356 store_dest(mach
, &dst
.xyzw
[chan
], &inst
->Dst
[0], inst
, chan
, dst_datatype
);
2362 exec_dp3(struct tgsi_exec_machine
*mach
,
2363 const struct tgsi_full_instruction
*inst
)
2366 union tgsi_exec_channel arg
[3];
2368 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2369 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2370 micro_mul(&arg
[2], &arg
[0], &arg
[1]);
2372 for (chan
= CHAN_Y
; chan
<= CHAN_Z
; chan
++) {
2373 fetch_source(mach
, &arg
[0], &inst
->Src
[0], chan
, TGSI_EXEC_DATA_FLOAT
);
2374 fetch_source(mach
, &arg
[1], &inst
->Src
[1], chan
, TGSI_EXEC_DATA_FLOAT
);
2375 micro_mad(&arg
[2], &arg
[0], &arg
[1], &arg
[2]);
2378 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2379 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2380 store_dest(mach
, &arg
[2], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2386 exec_dp4(struct tgsi_exec_machine
*mach
,
2387 const struct tgsi_full_instruction
*inst
)
2390 union tgsi_exec_channel arg
[3];
2392 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2393 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2394 micro_mul(&arg
[2], &arg
[0], &arg
[1]);
2396 for (chan
= CHAN_Y
; chan
<= CHAN_W
; chan
++) {
2397 fetch_source(mach
, &arg
[0], &inst
->Src
[0], chan
, TGSI_EXEC_DATA_FLOAT
);
2398 fetch_source(mach
, &arg
[1], &inst
->Src
[1], chan
, TGSI_EXEC_DATA_FLOAT
);
2399 micro_mad(&arg
[2], &arg
[0], &arg
[1], &arg
[2]);
2402 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2403 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2404 store_dest(mach
, &arg
[2], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2410 exec_dp2a(struct tgsi_exec_machine
*mach
,
2411 const struct tgsi_full_instruction
*inst
)
2414 union tgsi_exec_channel arg
[3];
2416 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2417 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2418 micro_mul(&arg
[2], &arg
[0], &arg
[1]);
2420 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2421 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2422 micro_mad(&arg
[0], &arg
[0], &arg
[1], &arg
[2]);
2424 fetch_source(mach
, &arg
[1], &inst
->Src
[2], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2425 micro_add(&arg
[0], &arg
[0], &arg
[1]);
2427 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2428 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2429 store_dest(mach
, &arg
[0], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2435 exec_dph(struct tgsi_exec_machine
*mach
,
2436 const struct tgsi_full_instruction
*inst
)
2439 union tgsi_exec_channel arg
[3];
2441 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2442 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2443 micro_mul(&arg
[2], &arg
[0], &arg
[1]);
2445 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2446 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2447 micro_mad(&arg
[2], &arg
[0], &arg
[1], &arg
[2]);
2449 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2450 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2451 micro_mad(&arg
[0], &arg
[0], &arg
[1], &arg
[2]);
2453 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2454 micro_add(&arg
[0], &arg
[0], &arg
[1]);
2456 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2457 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2458 store_dest(mach
, &arg
[0], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2464 exec_dp2(struct tgsi_exec_machine
*mach
,
2465 const struct tgsi_full_instruction
*inst
)
2468 union tgsi_exec_channel arg
[3];
2470 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2471 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2472 micro_mul(&arg
[2], &arg
[0], &arg
[1]);
2474 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2475 fetch_source(mach
, &arg
[1], &inst
->Src
[1], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2476 micro_mad(&arg
[2], &arg
[0], &arg
[1], &arg
[2]);
2478 for (chan
= 0; chan
< NUM_CHANNELS
; chan
++) {
2479 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2480 store_dest(mach
, &arg
[2], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2486 exec_nrm4(struct tgsi_exec_machine
*mach
,
2487 const struct tgsi_full_instruction
*inst
)
2490 union tgsi_exec_channel arg
[4];
2491 union tgsi_exec_channel scale
;
2493 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2494 micro_mul(&scale
, &arg
[0], &arg
[0]);
2496 for (chan
= CHAN_Y
; chan
<= CHAN_W
; chan
++) {
2497 union tgsi_exec_channel product
;
2499 fetch_source(mach
, &arg
[chan
], &inst
->Src
[0], chan
, TGSI_EXEC_DATA_FLOAT
);
2500 micro_mul(&product
, &arg
[chan
], &arg
[chan
]);
2501 micro_add(&scale
, &scale
, &product
);
2504 micro_rsq(&scale
, &scale
);
2506 for (chan
= CHAN_X
; chan
<= CHAN_W
; chan
++) {
2507 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2508 micro_mul(&arg
[chan
], &arg
[chan
], &scale
);
2509 store_dest(mach
, &arg
[chan
], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2515 exec_nrm3(struct tgsi_exec_machine
*mach
,
2516 const struct tgsi_full_instruction
*inst
)
2518 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_XYZ
) {
2520 union tgsi_exec_channel arg
[3];
2521 union tgsi_exec_channel scale
;
2523 fetch_source(mach
, &arg
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2524 micro_mul(&scale
, &arg
[0], &arg
[0]);
2526 for (chan
= CHAN_Y
; chan
<= CHAN_Z
; chan
++) {
2527 union tgsi_exec_channel product
;
2529 fetch_source(mach
, &arg
[chan
], &inst
->Src
[0], chan
, TGSI_EXEC_DATA_FLOAT
);
2530 micro_mul(&product
, &arg
[chan
], &arg
[chan
]);
2531 micro_add(&scale
, &scale
, &product
);
2534 micro_rsq(&scale
, &scale
);
2536 for (chan
= CHAN_X
; chan
<= CHAN_Z
; chan
++) {
2537 if (inst
->Dst
[0].Register
.WriteMask
& (1 << chan
)) {
2538 micro_mul(&arg
[chan
], &arg
[chan
], &scale
);
2539 store_dest(mach
, &arg
[chan
], &inst
->Dst
[0], inst
, chan
, TGSI_EXEC_DATA_FLOAT
);
2544 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2545 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2550 exec_scs(struct tgsi_exec_machine
*mach
,
2551 const struct tgsi_full_instruction
*inst
)
2553 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_XY
) {
2554 union tgsi_exec_channel arg
;
2555 union tgsi_exec_channel result
;
2557 fetch_source(mach
, &arg
, &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2559 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_X
) {
2560 micro_cos(&result
, &arg
);
2561 store_dest(mach
, &result
, &inst
->Dst
[0], inst
, CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2563 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2564 micro_sin(&result
, &arg
);
2565 store_dest(mach
, &result
, &inst
->Dst
[0], inst
, CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2568 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2569 store_dest(mach
, &ZeroVec
, &inst
->Dst
[0], inst
, CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2571 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2572 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2577 exec_x2d(struct tgsi_exec_machine
*mach
,
2578 const struct tgsi_full_instruction
*inst
)
2580 union tgsi_exec_channel r
[4];
2581 union tgsi_exec_channel d
[2];
2583 fetch_source(mach
, &r
[0], &inst
->Src
[1], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2584 fetch_source(mach
, &r
[1], &inst
->Src
[1], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2585 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_XZ
) {
2586 fetch_source(mach
, &r
[2], &inst
->Src
[2], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2587 micro_mul(&r
[2], &r
[2], &r
[0]);
2588 fetch_source(mach
, &r
[3], &inst
->Src
[2], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2589 micro_mul(&r
[3], &r
[3], &r
[1]);
2590 micro_add(&r
[2], &r
[2], &r
[3]);
2591 fetch_source(mach
, &r
[3], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2592 micro_add(&d
[0], &r
[2], &r
[3]);
2594 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_YW
) {
2595 fetch_source(mach
, &r
[2], &inst
->Src
[2], CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2596 micro_mul(&r
[2], &r
[2], &r
[0]);
2597 fetch_source(mach
, &r
[3], &inst
->Src
[2], CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2598 micro_mul(&r
[3], &r
[3], &r
[1]);
2599 micro_add(&r
[2], &r
[2], &r
[3]);
2600 fetch_source(mach
, &r
[3], &inst
->Src
[0], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2601 micro_add(&d
[1], &r
[2], &r
[3]);
2603 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_X
) {
2604 store_dest(mach
, &d
[0], &inst
->Dst
[0], inst
, CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2606 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2607 store_dest(mach
, &d
[1], &inst
->Dst
[0], inst
, CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2609 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2610 store_dest(mach
, &d
[0], &inst
->Dst
[0], inst
, CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2612 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2613 store_dest(mach
, &d
[1], &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2618 exec_rfl(struct tgsi_exec_machine
*mach
,
2619 const struct tgsi_full_instruction
*inst
)
2621 union tgsi_exec_channel r
[9];
2623 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_XYZ
) {
2624 /* r0 = dp3(src0, src0) */
2625 fetch_source(mach
, &r
[2], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2626 micro_mul(&r
[0], &r
[2], &r
[2]);
2627 fetch_source(mach
, &r
[4], &inst
->Src
[0], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2628 micro_mul(&r
[8], &r
[4], &r
[4]);
2629 micro_add(&r
[0], &r
[0], &r
[8]);
2630 fetch_source(mach
, &r
[6], &inst
->Src
[0], CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2631 micro_mul(&r
[8], &r
[6], &r
[6]);
2632 micro_add(&r
[0], &r
[0], &r
[8]);
2634 /* r1 = dp3(src0, src1) */
2635 fetch_source(mach
, &r
[3], &inst
->Src
[1], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2636 micro_mul(&r
[1], &r
[2], &r
[3]);
2637 fetch_source(mach
, &r
[5], &inst
->Src
[1], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2638 micro_mul(&r
[8], &r
[4], &r
[5]);
2639 micro_add(&r
[1], &r
[1], &r
[8]);
2640 fetch_source(mach
, &r
[7], &inst
->Src
[1], CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2641 micro_mul(&r
[8], &r
[6], &r
[7]);
2642 micro_add(&r
[1], &r
[1], &r
[8]);
2644 /* r1 = 2 * r1 / r0 */
2645 micro_add(&r
[1], &r
[1], &r
[1]);
2646 micro_div(&r
[1], &r
[1], &r
[0]);
2648 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_X
) {
2649 micro_mul(&r
[2], &r
[2], &r
[1]);
2650 micro_sub(&r
[2], &r
[2], &r
[3]);
2651 store_dest(mach
, &r
[2], &inst
->Dst
[0], inst
, CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2653 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2654 micro_mul(&r
[4], &r
[4], &r
[1]);
2655 micro_sub(&r
[4], &r
[4], &r
[5]);
2656 store_dest(mach
, &r
[4], &inst
->Dst
[0], inst
, CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2658 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2659 micro_mul(&r
[6], &r
[6], &r
[1]);
2660 micro_sub(&r
[6], &r
[6], &r
[7]);
2661 store_dest(mach
, &r
[6], &inst
->Dst
[0], inst
, CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2664 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2665 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2670 exec_xpd(struct tgsi_exec_machine
*mach
,
2671 const struct tgsi_full_instruction
*inst
)
2673 union tgsi_exec_channel r
[6];
2674 union tgsi_exec_channel d
[3];
2676 fetch_source(mach
, &r
[0], &inst
->Src
[0], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2677 fetch_source(mach
, &r
[1], &inst
->Src
[1], CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2679 micro_mul(&r
[2], &r
[0], &r
[1]);
2681 fetch_source(mach
, &r
[3], &inst
->Src
[0], CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2682 fetch_source(mach
, &r
[4], &inst
->Src
[1], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2684 micro_mul(&r
[5], &r
[3], &r
[4] );
2685 micro_sub(&d
[CHAN_X
], &r
[2], &r
[5]);
2687 fetch_source(mach
, &r
[2], &inst
->Src
[1], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2689 micro_mul(&r
[3], &r
[3], &r
[2]);
2691 fetch_source(mach
, &r
[5], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2693 micro_mul(&r
[1], &r
[1], &r
[5]);
2694 micro_sub(&d
[CHAN_Y
], &r
[3], &r
[1]);
2696 micro_mul(&r
[5], &r
[5], &r
[4]);
2697 micro_mul(&r
[0], &r
[0], &r
[2]);
2698 micro_sub(&d
[CHAN_Z
], &r
[5], &r
[0]);
2700 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_X
) {
2701 store_dest(mach
, &d
[CHAN_X
], &inst
->Dst
[0], inst
, CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2703 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2704 store_dest(mach
, &d
[CHAN_Y
], &inst
->Dst
[0], inst
, CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2706 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2707 store_dest(mach
, &d
[CHAN_Z
], &inst
->Dst
[0], inst
, CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2709 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2710 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2715 exec_dst(struct tgsi_exec_machine
*mach
,
2716 const struct tgsi_full_instruction
*inst
)
2718 union tgsi_exec_channel r
[2];
2719 union tgsi_exec_channel d
[4];
2721 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2722 fetch_source(mach
, &r
[0], &inst
->Src
[0], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2723 fetch_source(mach
, &r
[1], &inst
->Src
[1], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2724 micro_mul(&d
[CHAN_Y
], &r
[0], &r
[1]);
2726 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2727 fetch_source(mach
, &d
[CHAN_Z
], &inst
->Src
[0], CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2729 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2730 fetch_source(mach
, &d
[CHAN_W
], &inst
->Src
[1], CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2733 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_X
) {
2734 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2736 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2737 store_dest(mach
, &d
[CHAN_Y
], &inst
->Dst
[0], inst
, CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2739 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2740 store_dest(mach
, &d
[CHAN_Z
], &inst
->Dst
[0], inst
, CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2742 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2743 store_dest(mach
, &d
[CHAN_W
], &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2748 exec_log(struct tgsi_exec_machine
*mach
,
2749 const struct tgsi_full_instruction
*inst
)
2751 union tgsi_exec_channel r
[3];
2753 fetch_source(mach
, &r
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2754 micro_abs(&r
[2], &r
[0]); /* r2 = abs(r0) */
2755 micro_lg2(&r
[1], &r
[2]); /* r1 = lg2(r2) */
2756 micro_flr(&r
[0], &r
[1]); /* r0 = floor(r1) */
2757 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_X
) {
2758 store_dest(mach
, &r
[0], &inst
->Dst
[0], inst
, CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2760 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2761 micro_exp2(&r
[0], &r
[0]); /* r0 = 2 ^ r0 */
2762 micro_div(&r
[0], &r
[2], &r
[0]); /* r0 = r2 / r0 */
2763 store_dest(mach
, &r
[0], &inst
->Dst
[0], inst
, CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2765 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2766 store_dest(mach
, &r
[1], &inst
->Dst
[0], inst
, CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2768 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2769 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2774 exec_exp(struct tgsi_exec_machine
*mach
,
2775 const struct tgsi_full_instruction
*inst
)
2777 union tgsi_exec_channel r
[3];
2779 fetch_source(mach
, &r
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2780 micro_flr(&r
[1], &r
[0]); /* r1 = floor(r0) */
2781 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_X
) {
2782 micro_exp2(&r
[2], &r
[1]); /* r2 = 2 ^ r1 */
2783 store_dest(mach
, &r
[2], &inst
->Dst
[0], inst
, CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2785 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2786 micro_sub(&r
[2], &r
[0], &r
[1]); /* r2 = r0 - r1 */
2787 store_dest(mach
, &r
[2], &inst
->Dst
[0], inst
, CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2789 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2790 micro_exp2(&r
[2], &r
[0]); /* r2 = 2 ^ r0 */
2791 store_dest(mach
, &r
[2], &inst
->Dst
[0], inst
, CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2793 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2794 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2799 exec_lit(struct tgsi_exec_machine
*mach
,
2800 const struct tgsi_full_instruction
*inst
)
2802 union tgsi_exec_channel r
[3];
2803 union tgsi_exec_channel d
[3];
2805 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_X
) {
2806 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2808 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_YZ
) {
2809 fetch_source(mach
, &r
[0], &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_FLOAT
);
2810 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Y
) {
2811 micro_max(&d
[CHAN_Y
], &r
[0], &ZeroVec
);
2812 store_dest(mach
, &d
[CHAN_Y
], &inst
->Dst
[0], inst
, CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2815 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_Z
) {
2816 fetch_source(mach
, &r
[1], &inst
->Src
[0], CHAN_Y
, TGSI_EXEC_DATA_FLOAT
);
2817 micro_max(&r
[1], &r
[1], &ZeroVec
);
2819 fetch_source(mach
, &r
[2], &inst
->Src
[0], CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2820 micro_min(&r
[2], &r
[2], &P128Vec
);
2821 micro_max(&r
[2], &r
[2], &M128Vec
);
2822 micro_pow(&r
[1], &r
[1], &r
[2]);
2823 micro_lt(&d
[CHAN_Z
], &ZeroVec
, &r
[0], &r
[1], &ZeroVec
);
2824 store_dest(mach
, &d
[CHAN_Z
], &inst
->Dst
[0], inst
, CHAN_Z
, TGSI_EXEC_DATA_FLOAT
);
2827 if (inst
->Dst
[0].Register
.WriteMask
& TGSI_WRITEMASK_W
) {
2828 store_dest(mach
, &OneVec
, &inst
->Dst
[0], inst
, CHAN_W
, TGSI_EXEC_DATA_FLOAT
);
2833 exec_break(struct tgsi_exec_machine
*mach
)
2835 if (mach
->BreakType
== TGSI_EXEC_BREAK_INSIDE_LOOP
) {
2836 /* turn off loop channels for each enabled exec channel */
2837 mach
->LoopMask
&= ~mach
->ExecMask
;
2838 /* Todo: if mach->LoopMask == 0, jump to end of loop */
2839 UPDATE_EXEC_MASK(mach
);
2841 assert(mach
->BreakType
== TGSI_EXEC_BREAK_INSIDE_SWITCH
);
2843 mach
->Switch
.mask
= 0x0;
2845 UPDATE_EXEC_MASK(mach
);
2850 exec_switch(struct tgsi_exec_machine
*mach
,
2851 const struct tgsi_full_instruction
*inst
)
2853 assert(mach
->SwitchStackTop
< TGSI_EXEC_MAX_SWITCH_NESTING
);
2854 assert(mach
->BreakStackTop
< TGSI_EXEC_MAX_BREAK_STACK
);
2856 mach
->SwitchStack
[mach
->SwitchStackTop
++] = mach
->Switch
;
2857 fetch_source(mach
, &mach
->Switch
.selector
, &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_UINT
);
2858 mach
->Switch
.mask
= 0x0;
2859 mach
->Switch
.defaultMask
= 0x0;
2861 mach
->BreakStack
[mach
->BreakStackTop
++] = mach
->BreakType
;
2862 mach
->BreakType
= TGSI_EXEC_BREAK_INSIDE_SWITCH
;
2864 UPDATE_EXEC_MASK(mach
);
2868 exec_case(struct tgsi_exec_machine
*mach
,
2869 const struct tgsi_full_instruction
*inst
)
2871 uint prevMask
= mach
->SwitchStack
[mach
->SwitchStackTop
- 1].mask
;
2872 union tgsi_exec_channel src
;
2875 fetch_source(mach
, &src
, &inst
->Src
[0], CHAN_X
, TGSI_EXEC_DATA_UINT
);
2877 if (mach
->Switch
.selector
.u
[0] == src
.u
[0]) {
2880 if (mach
->Switch
.selector
.u
[1] == src
.u
[1]) {
2883 if (mach
->Switch
.selector
.u
[2] == src
.u
[2]) {
2886 if (mach
->Switch
.selector
.u
[3] == src
.u
[3]) {
2890 mach
->Switch
.defaultMask
|= mask
;
2892 mach
->Switch
.mask
|= mask
& prevMask
;
2894 UPDATE_EXEC_MASK(mach
);
2898 exec_default(struct tgsi_exec_machine
*mach
)
2900 uint prevMask
= mach
->SwitchStack
[mach
->SwitchStackTop
- 1].mask
;
2902 mach
->Switch
.mask
|= ~mach
->Switch
.defaultMask
& prevMask
;
2904 UPDATE_EXEC_MASK(mach
);
2908 exec_endswitch(struct tgsi_exec_machine
*mach
)
2910 mach
->Switch
= mach
->SwitchStack
[--mach
->SwitchStackTop
];
2911 mach
->BreakType
= mach
->BreakStack
[--mach
->BreakStackTop
];
2913 UPDATE_EXEC_MASK(mach
);
2917 micro_i2f(union tgsi_exec_channel
*dst
,
2918 const union tgsi_exec_channel
*src
)
2920 dst
->f
[0] = (float)src
->i
[0];
2921 dst
->f
[1] = (float)src
->i
[1];
2922 dst
->f
[2] = (float)src
->i
[2];
2923 dst
->f
[3] = (float)src
->i
[3];
2927 micro_not(union tgsi_exec_channel
*dst
,
2928 const union tgsi_exec_channel
*src
)
2930 dst
->u
[0] = ~src
->u
[0];
2931 dst
->u
[1] = ~src
->u
[1];
2932 dst
->u
[2] = ~src
->u
[2];
2933 dst
->u
[3] = ~src
->u
[3];
2937 micro_shl(union tgsi_exec_channel
*dst
,
2938 const union tgsi_exec_channel
*src0
,
2939 const union tgsi_exec_channel
*src1
)
2941 dst
->u
[0] = src0
->u
[0] << src1
->u
[0];
2942 dst
->u
[1] = src0
->u
[1] << src1
->u
[1];
2943 dst
->u
[2] = src0
->u
[2] << src1
->u
[2];
2944 dst
->u
[3] = src0
->u
[3] << src1
->u
[3];
2948 micro_and(union tgsi_exec_channel
*dst
,
2949 const union tgsi_exec_channel
*src0
,
2950 const union tgsi_exec_channel
*src1
)
2952 dst
->u
[0] = src0
->u
[0] & src1
->u
[0];
2953 dst
->u
[1] = src0
->u
[1] & src1
->u
[1];
2954 dst
->u
[2] = src0
->u
[2] & src1
->u
[2];
2955 dst
->u
[3] = src0
->u
[3] & src1
->u
[3];
2959 micro_or(union tgsi_exec_channel
*dst
,
2960 const union tgsi_exec_channel
*src0
,
2961 const union tgsi_exec_channel
*src1
)
2963 dst
->u
[0] = src0
->u
[0] | src1
->u
[0];
2964 dst
->u
[1] = src0
->u
[1] | src1
->u
[1];
2965 dst
->u
[2] = src0
->u
[2] | src1
->u
[2];
2966 dst
->u
[3] = src0
->u
[3] | src1
->u
[3];
2970 micro_xor(union tgsi_exec_channel
*dst
,
2971 const union tgsi_exec_channel
*src0
,
2972 const union tgsi_exec_channel
*src1
)
2974 dst
->u
[0] = src0
->u
[0] ^ src1
->u
[0];
2975 dst
->u
[1] = src0
->u
[1] ^ src1
->u
[1];
2976 dst
->u
[2] = src0
->u
[2] ^ src1
->u
[2];
2977 dst
->u
[3] = src0
->u
[3] ^ src1
->u
[3];
2981 micro_f2i(union tgsi_exec_channel
*dst
,
2982 const union tgsi_exec_channel
*src
)
2984 dst
->i
[0] = (int)src
->f
[0];
2985 dst
->i
[1] = (int)src
->f
[1];
2986 dst
->i
[2] = (int)src
->f
[2];
2987 dst
->i
[3] = (int)src
->f
[3];
2991 micro_idiv(union tgsi_exec_channel
*dst
,
2992 const union tgsi_exec_channel
*src0
,
2993 const union tgsi_exec_channel
*src1
)
2995 dst
->i
[0] = src0
->i
[0] / src1
->i
[0];
2996 dst
->i
[1] = src0
->i
[1] / src1
->i
[1];
2997 dst
->i
[2] = src0
->i
[2] / src1
->i
[2];
2998 dst
->i
[3] = src0
->i
[3] / src1
->i
[3];
3002 micro_imax(union tgsi_exec_channel
*dst
,
3003 const union tgsi_exec_channel
*src0
,
3004 const union tgsi_exec_channel
*src1
)
3006 dst
->i
[0] = src0
->i
[0] > src1
->i
[0] ? src0
->i
[0] : src1
->i
[0];
3007 dst
->i
[1] = src0
->i
[1] > src1
->i
[1] ? src0
->i
[1] : src1
->i
[1];
3008 dst
->i
[2] = src0
->i
[2] > src1
->i
[2] ? src0
->i
[2] : src1
->i
[2];
3009 dst
->i
[3] = src0
->i
[3] > src1
->i
[3] ? src0
->i
[3] : src1
->i
[3];
3013 micro_imin(union tgsi_exec_channel
*dst
,
3014 const union tgsi_exec_channel
*src0
,
3015 const union tgsi_exec_channel
*src1
)
3017 dst
->i
[0] = src0
->i
[0] < src1
->i
[0] ? src0
->i
[0] : src1
->i
[0];
3018 dst
->i
[1] = src0
->i
[1] < src1
->i
[1] ? src0
->i
[1] : src1
->i
[1];
3019 dst
->i
[2] = src0
->i
[2] < src1
->i
[2] ? src0
->i
[2] : src1
->i
[2];
3020 dst
->i
[3] = src0
->i
[3] < src1
->i
[3] ? src0
->i
[3] : src1
->i
[3];
3024 micro_isge(union tgsi_exec_channel
*dst
,
3025 const union tgsi_exec_channel
*src0
,
3026 const union tgsi_exec_channel
*src1
)
3028 dst
->i
[0] = src0
->i
[0] >= src1
->i
[0] ? -1 : 0;
3029 dst
->i
[1] = src0
->i
[1] >= src1
->i
[1] ? -1 : 0;
3030 dst
->i
[2] = src0
->i
[2] >= src1
->i
[2] ? -1 : 0;
3031 dst
->i
[3] = src0
->i
[3] >= src1
->i
[3] ? -1 : 0;
3035 micro_ishr(union tgsi_exec_channel
*dst
,
3036 const union tgsi_exec_channel
*src0
,
3037 const union tgsi_exec_channel
*src1
)
3039 dst
->i
[0] = src0
->i
[0] >> src1
->i
[0];
3040 dst
->i
[1] = src0
->i
[1] >> src1
->i
[1];
3041 dst
->i
[2] = src0
->i
[2] >> src1
->i
[2];
3042 dst
->i
[3] = src0
->i
[3] >> src1
->i
[3];
3046 micro_islt(union tgsi_exec_channel
*dst
,
3047 const union tgsi_exec_channel
*src0
,
3048 const union tgsi_exec_channel
*src1
)
3050 dst
->i
[0] = src0
->i
[0] < src1
->i
[0] ? -1 : 0;
3051 dst
->i
[1] = src0
->i
[1] < src1
->i
[1] ? -1 : 0;
3052 dst
->i
[2] = src0
->i
[2] < src1
->i
[2] ? -1 : 0;
3053 dst
->i
[3] = src0
->i
[3] < src1
->i
[3] ? -1 : 0;
3057 micro_f2u(union tgsi_exec_channel
*dst
,
3058 const union tgsi_exec_channel
*src
)
3060 dst
->u
[0] = (uint
)src
->f
[0];
3061 dst
->u
[1] = (uint
)src
->f
[1];
3062 dst
->u
[2] = (uint
)src
->f
[2];
3063 dst
->u
[3] = (uint
)src
->f
[3];
3067 micro_u2f(union tgsi_exec_channel
*dst
,
3068 const union tgsi_exec_channel
*src
)
3070 dst
->f
[0] = (float)src
->u
[0];
3071 dst
->f
[1] = (float)src
->u
[1];
3072 dst
->f
[2] = (float)src
->u
[2];
3073 dst
->f
[3] = (float)src
->u
[3];
3077 micro_uadd(union tgsi_exec_channel
*dst
,
3078 const union tgsi_exec_channel
*src0
,
3079 const union tgsi_exec_channel
*src1
)
3081 dst
->u
[0] = src0
->u
[0] + src1
->u
[0];
3082 dst
->u
[1] = src0
->u
[1] + src1
->u
[1];
3083 dst
->u
[2] = src0
->u
[2] + src1
->u
[2];
3084 dst
->u
[3] = src0
->u
[3] + src1
->u
[3];
3088 micro_udiv(union tgsi_exec_channel
*dst
,
3089 const union tgsi_exec_channel
*src0
,
3090 const union tgsi_exec_channel
*src1
)
3092 dst
->u
[0] = src0
->u
[0] / src1
->u
[0];
3093 dst
->u
[1] = src0
->u
[1] / src1
->u
[1];
3094 dst
->u
[2] = src0
->u
[2] / src1
->u
[2];
3095 dst
->u
[3] = src0
->u
[3] / src1
->u
[3];
3099 micro_umad(union tgsi_exec_channel
*dst
,
3100 const union tgsi_exec_channel
*src0
,
3101 const union tgsi_exec_channel
*src1
,
3102 const union tgsi_exec_channel
*src2
)
3104 dst
->u
[0] = src0
->u
[0] * src1
->u
[0] + src2
->u
[0];
3105 dst
->u
[1] = src0
->u
[1] * src1
->u
[1] + src2
->u
[1];
3106 dst
->u
[2] = src0
->u
[2] * src1
->u
[2] + src2
->u
[2];
3107 dst
->u
[3] = src0
->u
[3] * src1
->u
[3] + src2
->u
[3];
3111 micro_umax(union tgsi_exec_channel
*dst
,
3112 const union tgsi_exec_channel
*src0
,
3113 const union tgsi_exec_channel
*src1
)
3115 dst
->u
[0] = src0
->u
[0] > src1
->u
[0] ? src0
->u
[0] : src1
->u
[0];
3116 dst
->u
[1] = src0
->u
[1] > src1
->u
[1] ? src0
->u
[1] : src1
->u
[1];
3117 dst
->u
[2] = src0
->u
[2] > src1
->u
[2] ? src0
->u
[2] : src1
->u
[2];
3118 dst
->u
[3] = src0
->u
[3] > src1
->u
[3] ? src0
->u
[3] : src1
->u
[3];
3122 micro_umin(union tgsi_exec_channel
*dst
,
3123 const union tgsi_exec_channel
*src0
,
3124 const union tgsi_exec_channel
*src1
)
3126 dst
->u
[0] = src0
->u
[0] < src1
->u
[0] ? src0
->u
[0] : src1
->u
[0];
3127 dst
->u
[1] = src0
->u
[1] < src1
->u
[1] ? src0
->u
[1] : src1
->u
[1];
3128 dst
->u
[2] = src0
->u
[2] < src1
->u
[2] ? src0
->u
[2] : src1
->u
[2];
3129 dst
->u
[3] = src0
->u
[3] < src1
->u
[3] ? src0
->u
[3] : src1
->u
[3];
3133 micro_umod(union tgsi_exec_channel
*dst
,
3134 const union tgsi_exec_channel
*src0
,
3135 const union tgsi_exec_channel
*src1
)
3137 dst
->u
[0] = src0
->u
[0] % src1
->u
[0];
3138 dst
->u
[1] = src0
->u
[1] % src1
->u
[1];
3139 dst
->u
[2] = src0
->u
[2] % src1
->u
[2];
3140 dst
->u
[3] = src0
->u
[3] % src1
->u
[3];
3144 micro_umul(union tgsi_exec_channel
*dst
,
3145 const union tgsi_exec_channel
*src0
,
3146 const union tgsi_exec_channel
*src1
)
3148 dst
->u
[0] = src0
->u
[0] * src1
->u
[0];
3149 dst
->u
[1] = src0
->u
[1] * src1
->u
[1];
3150 dst
->u
[2] = src0
->u
[2] * src1
->u
[2];
3151 dst
->u
[3] = src0
->u
[3] * src1
->u
[3];
3155 micro_useq(union tgsi_exec_channel
*dst
,
3156 const union tgsi_exec_channel
*src0
,
3157 const union tgsi_exec_channel
*src1
)
3159 dst
->u
[0] = src0
->u
[0] == src1
->u
[0] ? ~0 : 0;
3160 dst
->u
[1] = src0
->u
[1] == src1
->u
[1] ? ~0 : 0;
3161 dst
->u
[2] = src0
->u
[2] == src1
->u
[2] ? ~0 : 0;
3162 dst
->u
[3] = src0
->u
[3] == src1
->u
[3] ? ~0 : 0;
3166 micro_usge(union tgsi_exec_channel
*dst
,
3167 const union tgsi_exec_channel
*src0
,
3168 const union tgsi_exec_channel
*src1
)
3170 dst
->u
[0] = src0
->u
[0] >= src1
->u
[0] ? ~0 : 0;
3171 dst
->u
[1] = src0
->u
[1] >= src1
->u
[1] ? ~0 : 0;
3172 dst
->u
[2] = src0
->u
[2] >= src1
->u
[2] ? ~0 : 0;
3173 dst
->u
[3] = src0
->u
[3] >= src1
->u
[3] ? ~0 : 0;
3177 micro_ushr(union tgsi_exec_channel
*dst
,
3178 const union tgsi_exec_channel
*src0
,
3179 const union tgsi_exec_channel
*src1
)
3181 dst
->u
[0] = src0
->u
[0] >> src1
->u
[0];
3182 dst
->u
[1] = src0
->u
[1] >> src1
->u
[1];
3183 dst
->u
[2] = src0
->u
[2] >> src1
->u
[2];
3184 dst
->u
[3] = src0
->u
[3] >> src1
->u
[3];
3188 micro_uslt(union tgsi_exec_channel
*dst
,
3189 const union tgsi_exec_channel
*src0
,
3190 const union tgsi_exec_channel
*src1
)
3192 dst
->u
[0] = src0
->u
[0] < src1
->u
[0] ? ~0 : 0;
3193 dst
->u
[1] = src0
->u
[1] < src1
->u
[1] ? ~0 : 0;
3194 dst
->u
[2] = src0
->u
[2] < src1
->u
[2] ? ~0 : 0;
3195 dst
->u
[3] = src0
->u
[3] < src1
->u
[3] ? ~0 : 0;
3199 micro_usne(union tgsi_exec_channel
*dst
,
3200 const union tgsi_exec_channel
*src0
,
3201 const union tgsi_exec_channel
*src1
)
3203 dst
->u
[0] = src0
->u
[0] != src1
->u
[0] ? ~0 : 0;
3204 dst
->u
[1] = src0
->u
[1] != src1
->u
[1] ? ~0 : 0;
3205 dst
->u
[2] = src0
->u
[2] != src1
->u
[2] ? ~0 : 0;
3206 dst
->u
[3] = src0
->u
[3] != src1
->u
[3] ? ~0 : 0;
3211 struct tgsi_exec_machine
*mach
,
3212 const struct tgsi_full_instruction
*inst
,
3215 union tgsi_exec_channel r
[10];
3219 switch (inst
->Instruction
.Opcode
) {
3220 case TGSI_OPCODE_ARL
:
3221 exec_vector_unary(mach
, inst
, micro_arl
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_FLOAT
);
3224 case TGSI_OPCODE_MOV
:
3225 exec_vector_unary(mach
, inst
, micro_mov
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_FLOAT
);
3228 case TGSI_OPCODE_LIT
:
3229 exec_lit(mach
, inst
);
3232 case TGSI_OPCODE_RCP
:
3233 exec_scalar_unary(mach
, inst
, micro_rcp
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3236 case TGSI_OPCODE_RSQ
:
3237 exec_scalar_unary(mach
, inst
, micro_rsq
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3240 case TGSI_OPCODE_EXP
:
3241 exec_exp(mach
, inst
);
3244 case TGSI_OPCODE_LOG
:
3245 exec_log(mach
, inst
);
3248 case TGSI_OPCODE_MUL
:
3249 exec_vector_binary(mach
, inst
, micro_mul
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3252 case TGSI_OPCODE_ADD
:
3253 exec_vector_binary(mach
, inst
, micro_add
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3256 case TGSI_OPCODE_DP3
:
3257 exec_dp3(mach
, inst
);
3260 case TGSI_OPCODE_DP4
:
3261 exec_dp4(mach
, inst
);
3264 case TGSI_OPCODE_DST
:
3265 exec_dst(mach
, inst
);
3268 case TGSI_OPCODE_MIN
:
3269 exec_vector_binary(mach
, inst
, micro_min
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3272 case TGSI_OPCODE_MAX
:
3273 exec_vector_binary(mach
, inst
, micro_max
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3276 case TGSI_OPCODE_SLT
:
3277 exec_vector_binary(mach
, inst
, micro_slt
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3280 case TGSI_OPCODE_SGE
:
3281 exec_vector_binary(mach
, inst
, micro_sge
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3284 case TGSI_OPCODE_MAD
:
3285 exec_vector_trinary(mach
, inst
, micro_mad
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3288 case TGSI_OPCODE_SUB
:
3289 exec_vector_binary(mach
, inst
, micro_sub
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3292 case TGSI_OPCODE_LRP
:
3293 exec_vector_trinary(mach
, inst
, micro_lrp
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3296 case TGSI_OPCODE_CND
:
3297 exec_vector_trinary(mach
, inst
, micro_cnd
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3300 case TGSI_OPCODE_DP2A
:
3301 exec_dp2a(mach
, inst
);
3304 case TGSI_OPCODE_FRC
:
3305 exec_vector_unary(mach
, inst
, micro_frc
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3308 case TGSI_OPCODE_CLAMP
:
3309 exec_vector_trinary(mach
, inst
, micro_clamp
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3312 case TGSI_OPCODE_FLR
:
3313 exec_vector_unary(mach
, inst
, micro_flr
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3316 case TGSI_OPCODE_ROUND
:
3317 exec_vector_unary(mach
, inst
, micro_rnd
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3320 case TGSI_OPCODE_EX2
:
3321 exec_scalar_unary(mach
, inst
, micro_exp2
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3324 case TGSI_OPCODE_LG2
:
3325 exec_scalar_unary(mach
, inst
, micro_lg2
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3328 case TGSI_OPCODE_POW
:
3329 exec_scalar_binary(mach
, inst
, micro_pow
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3332 case TGSI_OPCODE_XPD
:
3333 exec_xpd(mach
, inst
);
3336 case TGSI_OPCODE_ABS
:
3337 exec_vector_unary(mach
, inst
, micro_abs
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3340 case TGSI_OPCODE_RCC
:
3341 exec_scalar_unary(mach
, inst
, micro_rcc
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3344 case TGSI_OPCODE_DPH
:
3345 exec_dph(mach
, inst
);
3348 case TGSI_OPCODE_COS
:
3349 exec_scalar_unary(mach
, inst
, micro_cos
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3352 case TGSI_OPCODE_DDX
:
3353 exec_vector_unary(mach
, inst
, micro_ddx
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3356 case TGSI_OPCODE_DDY
:
3357 exec_vector_unary(mach
, inst
, micro_ddy
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3360 case TGSI_OPCODE_KILP
:
3361 exec_kilp (mach
, inst
);
3364 case TGSI_OPCODE_KIL
:
3365 exec_kil (mach
, inst
);
3368 case TGSI_OPCODE_PK2H
:
3372 case TGSI_OPCODE_PK2US
:
3376 case TGSI_OPCODE_PK4B
:
3380 case TGSI_OPCODE_PK4UB
:
3384 case TGSI_OPCODE_RFL
:
3385 exec_rfl(mach
, inst
);
3388 case TGSI_OPCODE_SEQ
:
3389 exec_vector_binary(mach
, inst
, micro_seq
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3392 case TGSI_OPCODE_SFL
:
3393 exec_vector(mach
, inst
, micro_sfl
, TGSI_EXEC_DATA_FLOAT
);
3396 case TGSI_OPCODE_SGT
:
3397 exec_vector_binary(mach
, inst
, micro_sgt
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3400 case TGSI_OPCODE_SIN
:
3401 exec_scalar_unary(mach
, inst
, micro_sin
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3404 case TGSI_OPCODE_SLE
:
3405 exec_vector_binary(mach
, inst
, micro_sle
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3408 case TGSI_OPCODE_SNE
:
3409 exec_vector_binary(mach
, inst
, micro_sne
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3412 case TGSI_OPCODE_STR
:
3413 exec_vector(mach
, inst
, micro_str
, TGSI_EXEC_DATA_FLOAT
);
3416 case TGSI_OPCODE_TEX
:
3417 /* simple texture lookup */
3418 /* src[0] = texcoord */
3419 /* src[1] = sampler unit */
3420 exec_tex(mach
, inst
, TEX_MODIFIER_NONE
);
3423 case TGSI_OPCODE_TXB
:
3424 /* Texture lookup with lod bias */
3425 /* src[0] = texcoord (src[0].w = LOD bias) */
3426 /* src[1] = sampler unit */
3427 exec_tex(mach
, inst
, TEX_MODIFIER_LOD_BIAS
);
3430 case TGSI_OPCODE_TXD
:
3431 /* Texture lookup with explict partial derivatives */
3432 /* src[0] = texcoord */
3433 /* src[1] = d[strq]/dx */
3434 /* src[2] = d[strq]/dy */
3435 /* src[3] = sampler unit */
3436 exec_txd(mach
, inst
);
3439 case TGSI_OPCODE_TXL
:
3440 /* Texture lookup with explit LOD */
3441 /* src[0] = texcoord (src[0].w = LOD) */
3442 /* src[1] = sampler unit */
3443 exec_tex(mach
, inst
, TEX_MODIFIER_EXPLICIT_LOD
);
3446 case TGSI_OPCODE_TXP
:
3447 /* Texture lookup with projection */
3448 /* src[0] = texcoord (src[0].w = projection) */
3449 /* src[1] = sampler unit */
3450 exec_tex(mach
, inst
, TEX_MODIFIER_PROJECTED
);
3453 case TGSI_OPCODE_UP2H
:
3457 case TGSI_OPCODE_UP2US
:
3461 case TGSI_OPCODE_UP4B
:
3465 case TGSI_OPCODE_UP4UB
:
3469 case TGSI_OPCODE_X2D
:
3470 exec_x2d(mach
, inst
);
3473 case TGSI_OPCODE_ARA
:
3477 case TGSI_OPCODE_ARR
:
3478 exec_vector_unary(mach
, inst
, micro_arr
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_FLOAT
);
3481 case TGSI_OPCODE_BRA
:
3485 case TGSI_OPCODE_CAL
:
3486 /* skip the call if no execution channels are enabled */
3487 if (mach
->ExecMask
) {
3490 /* First, record the depths of the execution stacks.
3491 * This is important for deeply nested/looped return statements.
3492 * We have to unwind the stacks by the correct amount. For a
3493 * real code generator, we could determine the number of entries
3494 * to pop off each stack with simple static analysis and avoid
3495 * implementing this data structure at run time.
3497 mach
->CallStack
[mach
->CallStackTop
].CondStackTop
= mach
->CondStackTop
;
3498 mach
->CallStack
[mach
->CallStackTop
].LoopStackTop
= mach
->LoopStackTop
;
3499 mach
->CallStack
[mach
->CallStackTop
].ContStackTop
= mach
->ContStackTop
;
3500 mach
->CallStack
[mach
->CallStackTop
].SwitchStackTop
= mach
->SwitchStackTop
;
3501 mach
->CallStack
[mach
->CallStackTop
].BreakStackTop
= mach
->BreakStackTop
;
3502 /* note that PC was already incremented above */
3503 mach
->CallStack
[mach
->CallStackTop
].ReturnAddr
= *pc
;
3505 mach
->CallStackTop
++;
3507 /* Second, push the Cond, Loop, Cont, Func stacks */
3508 assert(mach
->CondStackTop
< TGSI_EXEC_MAX_COND_NESTING
);
3509 assert(mach
->LoopStackTop
< TGSI_EXEC_MAX_LOOP_NESTING
);
3510 assert(mach
->ContStackTop
< TGSI_EXEC_MAX_LOOP_NESTING
);
3511 assert(mach
->SwitchStackTop
< TGSI_EXEC_MAX_SWITCH_NESTING
);
3512 assert(mach
->BreakStackTop
< TGSI_EXEC_MAX_BREAK_STACK
);
3513 assert(mach
->FuncStackTop
< TGSI_EXEC_MAX_CALL_NESTING
);
3515 mach
->CondStack
[mach
->CondStackTop
++] = mach
->CondMask
;
3516 mach
->LoopStack
[mach
->LoopStackTop
++] = mach
->LoopMask
;
3517 mach
->ContStack
[mach
->ContStackTop
++] = mach
->ContMask
;
3518 mach
->SwitchStack
[mach
->SwitchStackTop
++] = mach
->Switch
;
3519 mach
->BreakStack
[mach
->BreakStackTop
++] = mach
->BreakType
;
3520 mach
->FuncStack
[mach
->FuncStackTop
++] = mach
->FuncMask
;
3522 /* Finally, jump to the subroutine */
3523 *pc
= inst
->Label
.Label
;
3527 case TGSI_OPCODE_RET
:
3528 mach
->FuncMask
&= ~mach
->ExecMask
;
3529 UPDATE_EXEC_MASK(mach
);
3531 if (mach
->FuncMask
== 0x0) {
3532 /* really return now (otherwise, keep executing */
3534 if (mach
->CallStackTop
== 0) {
3535 /* returning from main() */
3536 mach
->CondStackTop
= 0;
3537 mach
->LoopStackTop
= 0;
3542 assert(mach
->CallStackTop
> 0);
3543 mach
->CallStackTop
--;
3545 mach
->CondStackTop
= mach
->CallStack
[mach
->CallStackTop
].CondStackTop
;
3546 mach
->CondMask
= mach
->CondStack
[mach
->CondStackTop
];
3548 mach
->LoopStackTop
= mach
->CallStack
[mach
->CallStackTop
].LoopStackTop
;
3549 mach
->LoopMask
= mach
->LoopStack
[mach
->LoopStackTop
];
3551 mach
->ContStackTop
= mach
->CallStack
[mach
->CallStackTop
].ContStackTop
;
3552 mach
->ContMask
= mach
->ContStack
[mach
->ContStackTop
];
3554 mach
->SwitchStackTop
= mach
->CallStack
[mach
->CallStackTop
].SwitchStackTop
;
3555 mach
->Switch
= mach
->SwitchStack
[mach
->SwitchStackTop
];
3557 mach
->BreakStackTop
= mach
->CallStack
[mach
->CallStackTop
].BreakStackTop
;
3558 mach
->BreakType
= mach
->BreakStack
[mach
->BreakStackTop
];
3560 assert(mach
->FuncStackTop
> 0);
3561 mach
->FuncMask
= mach
->FuncStack
[--mach
->FuncStackTop
];
3563 *pc
= mach
->CallStack
[mach
->CallStackTop
].ReturnAddr
;
3565 UPDATE_EXEC_MASK(mach
);
3569 case TGSI_OPCODE_SSG
:
3570 exec_vector_unary(mach
, inst
, micro_sgn
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3573 case TGSI_OPCODE_CMP
:
3574 exec_vector_trinary(mach
, inst
, micro_cmp
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3577 case TGSI_OPCODE_SCS
:
3578 exec_scs(mach
, inst
);
3581 case TGSI_OPCODE_NRM
:
3582 exec_nrm3(mach
, inst
);
3585 case TGSI_OPCODE_NRM4
:
3586 exec_nrm4(mach
, inst
);
3589 case TGSI_OPCODE_DIV
:
3590 exec_vector_binary(mach
, inst
, micro_div
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3593 case TGSI_OPCODE_DP2
:
3594 exec_dp2(mach
, inst
);
3597 case TGSI_OPCODE_IF
:
3599 assert(mach
->CondStackTop
< TGSI_EXEC_MAX_COND_NESTING
);
3600 mach
->CondStack
[mach
->CondStackTop
++] = mach
->CondMask
;
3601 FETCH( &r
[0], 0, CHAN_X
);
3602 /* update CondMask */
3604 mach
->CondMask
&= ~0x1;
3607 mach
->CondMask
&= ~0x2;
3610 mach
->CondMask
&= ~0x4;
3613 mach
->CondMask
&= ~0x8;
3615 UPDATE_EXEC_MASK(mach
);
3616 /* Todo: If CondMask==0, jump to ELSE */
3619 case TGSI_OPCODE_ELSE
:
3620 /* invert CondMask wrt previous mask */
3623 assert(mach
->CondStackTop
> 0);
3624 prevMask
= mach
->CondStack
[mach
->CondStackTop
- 1];
3625 mach
->CondMask
= ~mach
->CondMask
& prevMask
;
3626 UPDATE_EXEC_MASK(mach
);
3627 /* Todo: If CondMask==0, jump to ENDIF */
3631 case TGSI_OPCODE_ENDIF
:
3633 assert(mach
->CondStackTop
> 0);
3634 mach
->CondMask
= mach
->CondStack
[--mach
->CondStackTop
];
3635 UPDATE_EXEC_MASK(mach
);
3638 case TGSI_OPCODE_END
:
3639 /* make sure we end primitives which haven't
3640 * been explicitly emitted */
3641 conditional_emit_primitive(mach
);
3642 /* halt execution */
3646 case TGSI_OPCODE_PUSHA
:
3650 case TGSI_OPCODE_POPA
:
3654 case TGSI_OPCODE_CEIL
:
3655 exec_vector_unary(mach
, inst
, micro_ceil
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3658 case TGSI_OPCODE_I2F
:
3659 exec_vector_unary(mach
, inst
, micro_i2f
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_INT
);
3662 case TGSI_OPCODE_NOT
:
3663 exec_vector_unary(mach
, inst
, micro_not
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3666 case TGSI_OPCODE_TRUNC
:
3667 exec_vector_unary(mach
, inst
, micro_trunc
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_FLOAT
);
3670 case TGSI_OPCODE_SHL
:
3671 exec_vector_binary(mach
, inst
, micro_shl
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3674 case TGSI_OPCODE_AND
:
3675 exec_vector_binary(mach
, inst
, micro_and
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3678 case TGSI_OPCODE_OR
:
3679 exec_vector_binary(mach
, inst
, micro_or
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3682 case TGSI_OPCODE_MOD
:
3686 case TGSI_OPCODE_XOR
:
3687 exec_vector_binary(mach
, inst
, micro_xor
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3690 case TGSI_OPCODE_SAD
:
3694 case TGSI_OPCODE_TXF
:
3698 case TGSI_OPCODE_TXQ
:
3702 case TGSI_OPCODE_EMIT
:
3706 case TGSI_OPCODE_ENDPRIM
:
3707 emit_primitive(mach
);
3710 case TGSI_OPCODE_BGNLOOP
:
3711 /* push LoopMask and ContMasks */
3712 assert(mach
->LoopStackTop
< TGSI_EXEC_MAX_LOOP_NESTING
);
3713 assert(mach
->ContStackTop
< TGSI_EXEC_MAX_LOOP_NESTING
);
3714 assert(mach
->LoopLabelStackTop
< TGSI_EXEC_MAX_LOOP_NESTING
);
3715 assert(mach
->BreakStackTop
< TGSI_EXEC_MAX_BREAK_STACK
);
3717 mach
->LoopStack
[mach
->LoopStackTop
++] = mach
->LoopMask
;
3718 mach
->ContStack
[mach
->ContStackTop
++] = mach
->ContMask
;
3719 mach
->LoopLabelStack
[mach
->LoopLabelStackTop
++] = *pc
- 1;
3720 mach
->BreakStack
[mach
->BreakStackTop
++] = mach
->BreakType
;
3721 mach
->BreakType
= TGSI_EXEC_BREAK_INSIDE_LOOP
;
3724 case TGSI_OPCODE_ENDLOOP
:
3725 /* Restore ContMask, but don't pop */
3726 assert(mach
->ContStackTop
> 0);
3727 mach
->ContMask
= mach
->ContStack
[mach
->ContStackTop
- 1];
3728 UPDATE_EXEC_MASK(mach
);
3729 if (mach
->ExecMask
) {
3730 /* repeat loop: jump to instruction just past BGNLOOP */
3731 assert(mach
->LoopLabelStackTop
> 0);
3732 *pc
= mach
->LoopLabelStack
[mach
->LoopLabelStackTop
- 1] + 1;
3735 /* exit loop: pop LoopMask */
3736 assert(mach
->LoopStackTop
> 0);
3737 mach
->LoopMask
= mach
->LoopStack
[--mach
->LoopStackTop
];
3739 assert(mach
->ContStackTop
> 0);
3740 mach
->ContMask
= mach
->ContStack
[--mach
->ContStackTop
];
3741 assert(mach
->LoopLabelStackTop
> 0);
3742 --mach
->LoopLabelStackTop
;
3744 mach
->BreakType
= mach
->BreakStack
[--mach
->BreakStackTop
];
3746 UPDATE_EXEC_MASK(mach
);
3749 case TGSI_OPCODE_BRK
:
3753 case TGSI_OPCODE_CONT
:
3754 /* turn off cont channels for each enabled exec channel */
3755 mach
->ContMask
&= ~mach
->ExecMask
;
3756 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3757 UPDATE_EXEC_MASK(mach
);
3760 case TGSI_OPCODE_BGNSUB
:
3764 case TGSI_OPCODE_ENDSUB
:
3766 * XXX: This really should be a no-op. We should never reach this opcode.
3769 assert(mach
->CallStackTop
> 0);
3770 mach
->CallStackTop
--;
3772 mach
->CondStackTop
= mach
->CallStack
[mach
->CallStackTop
].CondStackTop
;
3773 mach
->CondMask
= mach
->CondStack
[mach
->CondStackTop
];
3775 mach
->LoopStackTop
= mach
->CallStack
[mach
->CallStackTop
].LoopStackTop
;
3776 mach
->LoopMask
= mach
->LoopStack
[mach
->LoopStackTop
];
3778 mach
->ContStackTop
= mach
->CallStack
[mach
->CallStackTop
].ContStackTop
;
3779 mach
->ContMask
= mach
->ContStack
[mach
->ContStackTop
];
3781 mach
->SwitchStackTop
= mach
->CallStack
[mach
->CallStackTop
].SwitchStackTop
;
3782 mach
->Switch
= mach
->SwitchStack
[mach
->SwitchStackTop
];
3784 mach
->BreakStackTop
= mach
->CallStack
[mach
->CallStackTop
].BreakStackTop
;
3785 mach
->BreakType
= mach
->BreakStack
[mach
->BreakStackTop
];
3787 assert(mach
->FuncStackTop
> 0);
3788 mach
->FuncMask
= mach
->FuncStack
[--mach
->FuncStackTop
];
3790 *pc
= mach
->CallStack
[mach
->CallStackTop
].ReturnAddr
;
3792 UPDATE_EXEC_MASK(mach
);
3795 case TGSI_OPCODE_NOP
:
3798 case TGSI_OPCODE_BREAKC
:
3799 FETCH(&r
[0], 0, CHAN_X
);
3800 /* update CondMask */
3801 if (r
[0].u
[0] && (mach
->ExecMask
& 0x1)) {
3802 mach
->LoopMask
&= ~0x1;
3804 if (r
[0].u
[1] && (mach
->ExecMask
& 0x2)) {
3805 mach
->LoopMask
&= ~0x2;
3807 if (r
[0].u
[2] && (mach
->ExecMask
& 0x4)) {
3808 mach
->LoopMask
&= ~0x4;
3810 if (r
[0].u
[3] && (mach
->ExecMask
& 0x8)) {
3811 mach
->LoopMask
&= ~0x8;
3813 /* Todo: if mach->LoopMask == 0, jump to end of loop */
3814 UPDATE_EXEC_MASK(mach
);
3817 case TGSI_OPCODE_F2I
:
3818 exec_vector_unary(mach
, inst
, micro_f2i
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_FLOAT
);
3821 case TGSI_OPCODE_IDIV
:
3822 exec_vector_binary(mach
, inst
, micro_idiv
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_INT
);
3825 case TGSI_OPCODE_IMAX
:
3826 exec_vector_binary(mach
, inst
, micro_imax
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_INT
);
3829 case TGSI_OPCODE_IMIN
:
3830 exec_vector_binary(mach
, inst
, micro_imin
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_INT
);
3833 case TGSI_OPCODE_INEG
:
3834 exec_vector_unary(mach
, inst
, micro_ineg
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_INT
);
3837 case TGSI_OPCODE_ISGE
:
3838 exec_vector_binary(mach
, inst
, micro_isge
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_INT
);
3841 case TGSI_OPCODE_ISHR
:
3842 exec_vector_binary(mach
, inst
, micro_ishr
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_INT
);
3845 case TGSI_OPCODE_ISLT
:
3846 exec_vector_binary(mach
, inst
, micro_islt
, TGSI_EXEC_DATA_INT
, TGSI_EXEC_DATA_INT
);
3849 case TGSI_OPCODE_F2U
:
3850 exec_vector_unary(mach
, inst
, micro_f2u
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_FLOAT
);
3853 case TGSI_OPCODE_U2F
:
3854 exec_vector_unary(mach
, inst
, micro_u2f
, TGSI_EXEC_DATA_FLOAT
, TGSI_EXEC_DATA_UINT
);
3857 case TGSI_OPCODE_UADD
:
3858 exec_vector_binary(mach
, inst
, micro_uadd
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3861 case TGSI_OPCODE_UDIV
:
3862 exec_vector_binary(mach
, inst
, micro_udiv
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3865 case TGSI_OPCODE_UMAD
:
3866 exec_vector_trinary(mach
, inst
, micro_umad
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3869 case TGSI_OPCODE_UMAX
:
3870 exec_vector_binary(mach
, inst
, micro_umax
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3873 case TGSI_OPCODE_UMIN
:
3874 exec_vector_binary(mach
, inst
, micro_umin
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3877 case TGSI_OPCODE_UMOD
:
3878 exec_vector_binary(mach
, inst
, micro_umod
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3881 case TGSI_OPCODE_UMUL
:
3882 exec_vector_binary(mach
, inst
, micro_umul
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3885 case TGSI_OPCODE_USEQ
:
3886 exec_vector_binary(mach
, inst
, micro_useq
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3889 case TGSI_OPCODE_USGE
:
3890 exec_vector_binary(mach
, inst
, micro_usge
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3893 case TGSI_OPCODE_USHR
:
3894 exec_vector_binary(mach
, inst
, micro_ushr
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3897 case TGSI_OPCODE_USLT
:
3898 exec_vector_binary(mach
, inst
, micro_uslt
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3901 case TGSI_OPCODE_USNE
:
3902 exec_vector_binary(mach
, inst
, micro_usne
, TGSI_EXEC_DATA_UINT
, TGSI_EXEC_DATA_UINT
);
3905 case TGSI_OPCODE_SWITCH
:
3906 exec_switch(mach
, inst
);
3909 case TGSI_OPCODE_CASE
:
3910 exec_case(mach
, inst
);
3913 case TGSI_OPCODE_DEFAULT
:
3917 case TGSI_OPCODE_ENDSWITCH
:
3918 exec_endswitch(mach
);
3921 case TGSI_OPCODE_LOAD
:
3925 case TGSI_OPCODE_LOAD_MS
:
3929 case TGSI_OPCODE_SAMPLE
:
3930 exec_sample(mach
, inst
, TEX_MODIFIER_NONE
);
3933 case TGSI_OPCODE_SAMPLE_B
:
3934 exec_sample(mach
, inst
, TEX_MODIFIER_LOD_BIAS
);
3937 case TGSI_OPCODE_SAMPLE_C
:
3938 exec_sample(mach
, inst
, TEX_MODIFIER_NONE
);
3941 case TGSI_OPCODE_SAMPLE_C_LZ
:
3942 exec_sample(mach
, inst
, TEX_MODIFIER_LOD_BIAS
);
3945 case TGSI_OPCODE_SAMPLE_D
:
3946 exec_sample_d(mach
, inst
);
3949 case TGSI_OPCODE_SAMPLE_L
:
3950 exec_sample(mach
, inst
, TEX_MODIFIER_EXPLICIT_LOD
);
3953 case TGSI_OPCODE_GATHER4
:
3957 case TGSI_OPCODE_RESINFO
:
3961 case TGSI_OPCODE_SAMPLE_POS
:
3965 case TGSI_OPCODE_SAMPLE_INFO
:
3975 #define DEBUG_EXECUTION 0
3979 * Run TGSI interpreter.
3980 * \return bitmask of "alive" quad components
3983 tgsi_exec_machine_run( struct tgsi_exec_machine
*mach
)
3988 mach
->CondMask
= 0xf;
3989 mach
->LoopMask
= 0xf;
3990 mach
->ContMask
= 0xf;
3991 mach
->FuncMask
= 0xf;
3992 mach
->ExecMask
= 0xf;
3994 mach
->Switch
.mask
= 0xf;
3996 assert(mach
->CondStackTop
== 0);
3997 assert(mach
->LoopStackTop
== 0);
3998 assert(mach
->ContStackTop
== 0);
3999 assert(mach
->SwitchStackTop
== 0);
4000 assert(mach
->BreakStackTop
== 0);
4001 assert(mach
->CallStackTop
== 0);
4003 mach
->Temps
[TEMP_KILMASK_I
].xyzw
[TEMP_KILMASK_C
].u
[0] = 0;
4004 mach
->Temps
[TEMP_OUTPUT_I
].xyzw
[TEMP_OUTPUT_C
].u
[0] = 0;
4006 if( mach
->Processor
== TGSI_PROCESSOR_GEOMETRY
) {
4007 mach
->Temps
[TEMP_PRIMITIVE_I
].xyzw
[TEMP_PRIMITIVE_C
].u
[0] = 0;
4008 mach
->Primitives
[0] = 0;
4011 /* execute declarations (interpolants) */
4012 for (i
= 0; i
< mach
->NumDeclarations
; i
++) {
4013 exec_declaration( mach
, mach
->Declarations
+i
);
4018 struct tgsi_exec_vector temps
[TGSI_EXEC_NUM_TEMPS
+ TGSI_EXEC_NUM_TEMP_EXTRAS
];
4019 struct tgsi_exec_vector outputs
[PIPE_MAX_ATTRIBS
];
4022 memcpy(temps
, mach
->Temps
, sizeof(temps
));
4023 memcpy(outputs
, mach
->Outputs
, sizeof(outputs
));
4026 /* execute instructions, until pc is set to -1 */
4032 tgsi_dump_instruction(&mach
->Instructions
[pc
], inst
++);
4035 assert(pc
< (int) mach
->NumInstructions
);
4036 exec_instruction(mach
, mach
->Instructions
+ pc
, &pc
);
4039 for (i
= 0; i
< TGSI_EXEC_NUM_TEMPS
+ TGSI_EXEC_NUM_TEMP_EXTRAS
; i
++) {
4040 if (memcmp(&temps
[i
], &mach
->Temps
[i
], sizeof(temps
[i
]))) {
4043 memcpy(&temps
[i
], &mach
->Temps
[i
], sizeof(temps
[i
]));
4044 debug_printf("TEMP[%2u] = ", i
);
4045 for (j
= 0; j
< 4; j
++) {
4049 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4050 temps
[i
].xyzw
[0].f
[j
], temps
[i
].xyzw
[0].u
[j
],
4051 temps
[i
].xyzw
[1].f
[j
], temps
[i
].xyzw
[1].u
[j
],
4052 temps
[i
].xyzw
[2].f
[j
], temps
[i
].xyzw
[2].u
[j
],
4053 temps
[i
].xyzw
[3].f
[j
], temps
[i
].xyzw
[3].u
[j
]);
4057 for (i
= 0; i
< PIPE_MAX_ATTRIBS
; i
++) {
4058 if (memcmp(&outputs
[i
], &mach
->Outputs
[i
], sizeof(outputs
[i
]))) {
4061 memcpy(&outputs
[i
], &mach
->Outputs
[i
], sizeof(outputs
[i
]));
4062 debug_printf("OUT[%2u] = ", i
);
4063 for (j
= 0; j
< 4; j
++) {
4067 debug_printf("(%6f %u, %6f %u, %6f %u, %6f %u)\n",
4068 outputs
[i
].xyzw
[0].f
[j
], outputs
[i
].xyzw
[0].u
[j
],
4069 outputs
[i
].xyzw
[1].f
[j
], outputs
[i
].xyzw
[1].u
[j
],
4070 outputs
[i
].xyzw
[2].f
[j
], outputs
[i
].xyzw
[2].u
[j
],
4071 outputs
[i
].xyzw
[3].f
[j
], outputs
[i
].xyzw
[3].u
[j
]);
4080 /* we scale from floats in [0,1] to Zbuffer ints in sp_quad_depth_test.c */
4081 if (mach
->Processor
== TGSI_PROCESSOR_FRAGMENT
) {
4083 * Scale back depth component.
4085 for (i
= 0; i
< 4; i
++)
4086 mach
->Outputs
[0].xyzw
[2].f
[i
] *= ctx
->DrawBuffer
->_DepthMaxF
;
4090 /* Strictly speaking, these assertions aren't really needed but they
4091 * can potentially catch some bugs in the control flow code.
4093 assert(mach
->CondStackTop
== 0);
4094 assert(mach
->LoopStackTop
== 0);
4095 assert(mach
->ContStackTop
== 0);
4096 assert(mach
->SwitchStackTop
== 0);
4097 assert(mach
->BreakStackTop
== 0);
4098 assert(mach
->CallStackTop
== 0);
4100 return ~mach
->Temps
[TEMP_KILMASK_I
].xyzw
[TEMP_KILMASK_C
].u
[0];