1 /**************************************************************************
3 * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * Copyright 2008 VMware, Inc. All rights reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 **************************************************************************/
31 * Mipmap generation utility
37 #include "pipe/p_context.h"
38 #include "util/u_debug.h"
39 #include "pipe/p_defines.h"
40 #include "util/u_inlines.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "pipe/p_state.h"
44 #include "util/u_format.h"
45 #include "util/u_memory.h"
46 #include "util/u_draw_quad.h"
47 #include "util/u_gen_mipmap.h"
48 #include "util/u_simple_shaders.h"
49 #include "util/u_math.h"
50 #include "util/u_texture.h"
51 #include "util/u_half.h"
52 #include "util/u_surface.h"
54 #include "cso_cache/cso_context.h"
57 struct gen_mipmap_state
59 struct pipe_context
*pipe
;
60 struct cso_context
*cso
;
62 struct pipe_blend_state blend
;
63 struct pipe_depth_stencil_alpha_state depthstencil
;
64 struct pipe_rasterizer_state rasterizer
;
65 struct pipe_sampler_state sampler
;
66 struct pipe_clip_state clip
;
67 struct pipe_vertex_element velem
[2];
70 void *fs
[TGSI_TEXTURE_COUNT
]; /**< Not all are used, but simplifies code */
72 struct pipe_resource
*vbuf
; /**< quad vertices */
75 float vertices
[4][2][4]; /**< vertex/texcoords for quad */
87 DTYPE_USHORT_1_5_5_5_REV
,
94 typedef uint16_t half_float
;
98 * \name Support macros for do_row and do_row_3d
100 * The macro madness is here for two reasons. First, it compacts the code
101 * slightly. Second, it makes it much easier to adjust the specifics of the
102 * filter to tune the rounding characteristics.
105 #define DECLARE_ROW_POINTERS(t, e) \
106 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
107 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
108 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
109 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
110 t(*dst)[e] = (t(*)[e]) dstRow
112 #define DECLARE_ROW_POINTERS0(t) \
113 const t *rowA = (const t *) srcRowA; \
114 const t *rowB = (const t *) srcRowB; \
115 const t *rowC = (const t *) srcRowC; \
116 const t *rowD = (const t *) srcRowD; \
117 t *dst = (t *) dstRow
119 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
120 ((unsigned) Aj + (unsigned) Ak \
121 + (unsigned) Bj + (unsigned) Bk \
122 + (unsigned) Cj + (unsigned) Ck \
123 + (unsigned) Dj + (unsigned) Dk \
126 #define FILTER_3D(e) \
128 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
129 rowB[j][e], rowB[k][e], \
130 rowC[j][e], rowC[k][e], \
131 rowD[j][e], rowD[k][e]); \
134 #define FILTER_F_3D(e) \
136 dst[i][e] = (rowA[j][e] + rowA[k][e] \
137 + rowB[j][e] + rowB[k][e] \
138 + rowC[j][e] + rowC[k][e] \
139 + rowD[j][e] + rowD[k][e]) * 0.125F; \
142 #define FILTER_HF_3D(e) \
144 const float aj = util_half_to_float(rowA[j][e]); \
145 const float ak = util_half_to_float(rowA[k][e]); \
146 const float bj = util_half_to_float(rowB[j][e]); \
147 const float bk = util_half_to_float(rowB[k][e]); \
148 const float cj = util_half_to_float(rowC[j][e]); \
149 const float ck = util_half_to_float(rowC[k][e]); \
150 const float dj = util_half_to_float(rowD[j][e]); \
151 const float dk = util_half_to_float(rowD[k][e]); \
152 dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
159 * Average together two rows of a source image to produce a single new
160 * row in the dest image. It's legal for the two source rows to point
161 * to the same data. The source width must be equal to either the
162 * dest width or two times the dest width.
163 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
164 * \param comps number of components per pixel (1..4)
167 do_row(enum dtype datatype
, uint comps
, int srcWidth
,
168 const void *srcRowA
, const void *srcRowB
,
169 int dstWidth
, void *dstRow
)
171 const uint k0
= (srcWidth
== dstWidth
) ? 0 : 1;
172 const uint colStride
= (srcWidth
== dstWidth
) ? 1 : 2;
177 /* This assertion is no longer valid with non-power-of-2 textures
178 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
181 if (datatype
== DTYPE_UBYTE
&& comps
== 4) {
183 const ubyte(*rowA
)[4] = (const ubyte(*)[4]) srcRowA
;
184 const ubyte(*rowB
)[4] = (const ubyte(*)[4]) srcRowB
;
185 ubyte(*dst
)[4] = (ubyte(*)[4]) dstRow
;
186 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
187 i
++, j
+= colStride
, k
+= colStride
) {
188 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] + rowB
[j
][0] + rowB
[k
][0]) / 4;
189 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] + rowB
[j
][1] + rowB
[k
][1]) / 4;
190 dst
[i
][2] = (rowA
[j
][2] + rowA
[k
][2] + rowB
[j
][2] + rowB
[k
][2]) / 4;
191 dst
[i
][3] = (rowA
[j
][3] + rowA
[k
][3] + rowB
[j
][3] + rowB
[k
][3]) / 4;
194 else if (datatype
== DTYPE_UBYTE
&& comps
== 3) {
196 const ubyte(*rowA
)[3] = (const ubyte(*)[3]) srcRowA
;
197 const ubyte(*rowB
)[3] = (const ubyte(*)[3]) srcRowB
;
198 ubyte(*dst
)[3] = (ubyte(*)[3]) dstRow
;
199 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
200 i
++, j
+= colStride
, k
+= colStride
) {
201 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] + rowB
[j
][0] + rowB
[k
][0]) / 4;
202 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] + rowB
[j
][1] + rowB
[k
][1]) / 4;
203 dst
[i
][2] = (rowA
[j
][2] + rowA
[k
][2] + rowB
[j
][2] + rowB
[k
][2]) / 4;
206 else if (datatype
== DTYPE_UBYTE
&& comps
== 2) {
208 const ubyte(*rowA
)[2] = (const ubyte(*)[2]) srcRowA
;
209 const ubyte(*rowB
)[2] = (const ubyte(*)[2]) srcRowB
;
210 ubyte(*dst
)[2] = (ubyte(*)[2]) dstRow
;
211 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
212 i
++, j
+= colStride
, k
+= colStride
) {
213 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] + rowB
[j
][0] + rowB
[k
][0]) >> 2;
214 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] + rowB
[j
][1] + rowB
[k
][1]) >> 2;
217 else if (datatype
== DTYPE_UBYTE
&& comps
== 1) {
219 const ubyte
*rowA
= (const ubyte
*) srcRowA
;
220 const ubyte
*rowB
= (const ubyte
*) srcRowB
;
221 ubyte
*dst
= (ubyte
*) dstRow
;
222 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
223 i
++, j
+= colStride
, k
+= colStride
) {
224 dst
[i
] = (rowA
[j
] + rowA
[k
] + rowB
[j
] + rowB
[k
]) >> 2;
228 else if (datatype
== DTYPE_USHORT
&& comps
== 4) {
230 const ushort(*rowA
)[4] = (const ushort(*)[4]) srcRowA
;
231 const ushort(*rowB
)[4] = (const ushort(*)[4]) srcRowB
;
232 ushort(*dst
)[4] = (ushort(*)[4]) dstRow
;
233 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
234 i
++, j
+= colStride
, k
+= colStride
) {
235 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] + rowB
[j
][0] + rowB
[k
][0]) / 4;
236 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] + rowB
[j
][1] + rowB
[k
][1]) / 4;
237 dst
[i
][2] = (rowA
[j
][2] + rowA
[k
][2] + rowB
[j
][2] + rowB
[k
][2]) / 4;
238 dst
[i
][3] = (rowA
[j
][3] + rowA
[k
][3] + rowB
[j
][3] + rowB
[k
][3]) / 4;
241 else if (datatype
== DTYPE_USHORT
&& comps
== 3) {
243 const ushort(*rowA
)[3] = (const ushort(*)[3]) srcRowA
;
244 const ushort(*rowB
)[3] = (const ushort(*)[3]) srcRowB
;
245 ushort(*dst
)[3] = (ushort(*)[3]) dstRow
;
246 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
247 i
++, j
+= colStride
, k
+= colStride
) {
248 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] + rowB
[j
][0] + rowB
[k
][0]) / 4;
249 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] + rowB
[j
][1] + rowB
[k
][1]) / 4;
250 dst
[i
][2] = (rowA
[j
][2] + rowA
[k
][2] + rowB
[j
][2] + rowB
[k
][2]) / 4;
253 else if (datatype
== DTYPE_USHORT
&& comps
== 2) {
255 const ushort(*rowA
)[2] = (const ushort(*)[2]) srcRowA
;
256 const ushort(*rowB
)[2] = (const ushort(*)[2]) srcRowB
;
257 ushort(*dst
)[2] = (ushort(*)[2]) dstRow
;
258 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
259 i
++, j
+= colStride
, k
+= colStride
) {
260 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] + rowB
[j
][0] + rowB
[k
][0]) / 4;
261 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] + rowB
[j
][1] + rowB
[k
][1]) / 4;
264 else if (datatype
== DTYPE_USHORT
&& comps
== 1) {
266 const ushort
*rowA
= (const ushort
*) srcRowA
;
267 const ushort
*rowB
= (const ushort
*) srcRowB
;
268 ushort
*dst
= (ushort
*) dstRow
;
269 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
270 i
++, j
+= colStride
, k
+= colStride
) {
271 dst
[i
] = (rowA
[j
] + rowA
[k
] + rowB
[j
] + rowB
[k
]) / 4;
275 else if (datatype
== DTYPE_FLOAT
&& comps
== 4) {
277 const float(*rowA
)[4] = (const float(*)[4]) srcRowA
;
278 const float(*rowB
)[4] = (const float(*)[4]) srcRowB
;
279 float(*dst
)[4] = (float(*)[4]) dstRow
;
280 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
281 i
++, j
+= colStride
, k
+= colStride
) {
282 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] +
283 rowB
[j
][0] + rowB
[k
][0]) * 0.25F
;
284 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] +
285 rowB
[j
][1] + rowB
[k
][1]) * 0.25F
;
286 dst
[i
][2] = (rowA
[j
][2] + rowA
[k
][2] +
287 rowB
[j
][2] + rowB
[k
][2]) * 0.25F
;
288 dst
[i
][3] = (rowA
[j
][3] + rowA
[k
][3] +
289 rowB
[j
][3] + rowB
[k
][3]) * 0.25F
;
292 else if (datatype
== DTYPE_FLOAT
&& comps
== 3) {
294 const float(*rowA
)[3] = (const float(*)[3]) srcRowA
;
295 const float(*rowB
)[3] = (const float(*)[3]) srcRowB
;
296 float(*dst
)[3] = (float(*)[3]) dstRow
;
297 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
298 i
++, j
+= colStride
, k
+= colStride
) {
299 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] +
300 rowB
[j
][0] + rowB
[k
][0]) * 0.25F
;
301 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] +
302 rowB
[j
][1] + rowB
[k
][1]) * 0.25F
;
303 dst
[i
][2] = (rowA
[j
][2] + rowA
[k
][2] +
304 rowB
[j
][2] + rowB
[k
][2]) * 0.25F
;
307 else if (datatype
== DTYPE_FLOAT
&& comps
== 2) {
309 const float(*rowA
)[2] = (const float(*)[2]) srcRowA
;
310 const float(*rowB
)[2] = (const float(*)[2]) srcRowB
;
311 float(*dst
)[2] = (float(*)[2]) dstRow
;
312 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
313 i
++, j
+= colStride
, k
+= colStride
) {
314 dst
[i
][0] = (rowA
[j
][0] + rowA
[k
][0] +
315 rowB
[j
][0] + rowB
[k
][0]) * 0.25F
;
316 dst
[i
][1] = (rowA
[j
][1] + rowA
[k
][1] +
317 rowB
[j
][1] + rowB
[k
][1]) * 0.25F
;
320 else if (datatype
== DTYPE_FLOAT
&& comps
== 1) {
322 const float *rowA
= (const float *) srcRowA
;
323 const float *rowB
= (const float *) srcRowB
;
324 float *dst
= (float *) dstRow
;
325 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
326 i
++, j
+= colStride
, k
+= colStride
) {
327 dst
[i
] = (rowA
[j
] + rowA
[k
] + rowB
[j
] + rowB
[k
]) * 0.25F
;
331 else if (datatype
== DTYPE_HALF_FLOAT
&& comps
== 4) {
333 const half_float(*rowA
)[4] = (const half_float(*)[4]) srcRowA
;
334 const half_float(*rowB
)[4] = (const half_float(*)[4]) srcRowB
;
335 half_float(*dst
)[4] = (half_float(*)[4]) dstRow
;
336 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
337 i
++, j
+= colStride
, k
+= colStride
) {
338 for (comp
= 0; comp
< 4; comp
++) {
339 float aj
, ak
, bj
, bk
;
340 aj
= util_half_to_float(rowA
[j
][comp
]);
341 ak
= util_half_to_float(rowA
[k
][comp
]);
342 bj
= util_half_to_float(rowB
[j
][comp
]);
343 bk
= util_half_to_float(rowB
[k
][comp
]);
344 dst
[i
][comp
] = util_float_to_half((aj
+ ak
+ bj
+ bk
) * 0.25F
);
348 else if (datatype
== DTYPE_HALF_FLOAT
&& comps
== 3) {
350 const half_float(*rowA
)[3] = (const half_float(*)[3]) srcRowA
;
351 const half_float(*rowB
)[3] = (const half_float(*)[3]) srcRowB
;
352 half_float(*dst
)[3] = (half_float(*)[3]) dstRow
;
353 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
354 i
++, j
+= colStride
, k
+= colStride
) {
355 for (comp
= 0; comp
< 3; comp
++) {
356 float aj
, ak
, bj
, bk
;
357 aj
= util_half_to_float(rowA
[j
][comp
]);
358 ak
= util_half_to_float(rowA
[k
][comp
]);
359 bj
= util_half_to_float(rowB
[j
][comp
]);
360 bk
= util_half_to_float(rowB
[k
][comp
]);
361 dst
[i
][comp
] = util_float_to_half((aj
+ ak
+ bj
+ bk
) * 0.25F
);
365 else if (datatype
== DTYPE_HALF_FLOAT
&& comps
== 2) {
367 const half_float(*rowA
)[2] = (const half_float(*)[2]) srcRowA
;
368 const half_float(*rowB
)[2] = (const half_float(*)[2]) srcRowB
;
369 half_float(*dst
)[2] = (half_float(*)[2]) dstRow
;
370 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
371 i
++, j
+= colStride
, k
+= colStride
) {
372 for (comp
= 0; comp
< 2; comp
++) {
373 float aj
, ak
, bj
, bk
;
374 aj
= util_half_to_float(rowA
[j
][comp
]);
375 ak
= util_half_to_float(rowA
[k
][comp
]);
376 bj
= util_half_to_float(rowB
[j
][comp
]);
377 bk
= util_half_to_float(rowB
[k
][comp
]);
378 dst
[i
][comp
] = util_float_to_half((aj
+ ak
+ bj
+ bk
) * 0.25F
);
382 else if (datatype
== DTYPE_HALF_FLOAT
&& comps
== 1) {
384 const half_float
*rowA
= (const half_float
*) srcRowA
;
385 const half_float
*rowB
= (const half_float
*) srcRowB
;
386 half_float
*dst
= (half_float
*) dstRow
;
387 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
388 i
++, j
+= colStride
, k
+= colStride
) {
389 float aj
, ak
, bj
, bk
;
390 aj
= util_half_to_float(rowA
[j
]);
391 ak
= util_half_to_float(rowA
[k
]);
392 bj
= util_half_to_float(rowB
[j
]);
393 bk
= util_half_to_float(rowB
[k
]);
394 dst
[i
] = util_float_to_half((aj
+ ak
+ bj
+ bk
) * 0.25F
);
398 else if (datatype
== DTYPE_UINT
&& comps
== 1) {
400 const uint
*rowA
= (const uint
*) srcRowA
;
401 const uint
*rowB
= (const uint
*) srcRowB
;
402 uint
*dst
= (uint
*) dstRow
;
403 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
404 i
++, j
+= colStride
, k
+= colStride
) {
405 dst
[i
] = rowA
[j
] / 4 + rowA
[k
] / 4 + rowB
[j
] / 4 + rowB
[k
] / 4;
409 else if (datatype
== DTYPE_USHORT_5_6_5
&& comps
== 3) {
411 const ushort
*rowA
= (const ushort
*) srcRowA
;
412 const ushort
*rowB
= (const ushort
*) srcRowB
;
413 ushort
*dst
= (ushort
*) dstRow
;
414 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
415 i
++, j
+= colStride
, k
+= colStride
) {
416 const int rowAr0
= rowA
[j
] & 0x1f;
417 const int rowAr1
= rowA
[k
] & 0x1f;
418 const int rowBr0
= rowB
[j
] & 0x1f;
419 const int rowBr1
= rowB
[k
] & 0x1f;
420 const int rowAg0
= (rowA
[j
] >> 5) & 0x3f;
421 const int rowAg1
= (rowA
[k
] >> 5) & 0x3f;
422 const int rowBg0
= (rowB
[j
] >> 5) & 0x3f;
423 const int rowBg1
= (rowB
[k
] >> 5) & 0x3f;
424 const int rowAb0
= (rowA
[j
] >> 11) & 0x1f;
425 const int rowAb1
= (rowA
[k
] >> 11) & 0x1f;
426 const int rowBb0
= (rowB
[j
] >> 11) & 0x1f;
427 const int rowBb1
= (rowB
[k
] >> 11) & 0x1f;
428 const int red
= (rowAr0
+ rowAr1
+ rowBr0
+ rowBr1
) >> 2;
429 const int green
= (rowAg0
+ rowAg1
+ rowBg0
+ rowBg1
) >> 2;
430 const int blue
= (rowAb0
+ rowAb1
+ rowBb0
+ rowBb1
) >> 2;
431 dst
[i
] = (blue
<< 11) | (green
<< 5) | red
;
434 else if (datatype
== DTYPE_USHORT_4_4_4_4
&& comps
== 4) {
436 const ushort
*rowA
= (const ushort
*) srcRowA
;
437 const ushort
*rowB
= (const ushort
*) srcRowB
;
438 ushort
*dst
= (ushort
*) dstRow
;
439 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
440 i
++, j
+= colStride
, k
+= colStride
) {
441 const int rowAr0
= rowA
[j
] & 0xf;
442 const int rowAr1
= rowA
[k
] & 0xf;
443 const int rowBr0
= rowB
[j
] & 0xf;
444 const int rowBr1
= rowB
[k
] & 0xf;
445 const int rowAg0
= (rowA
[j
] >> 4) & 0xf;
446 const int rowAg1
= (rowA
[k
] >> 4) & 0xf;
447 const int rowBg0
= (rowB
[j
] >> 4) & 0xf;
448 const int rowBg1
= (rowB
[k
] >> 4) & 0xf;
449 const int rowAb0
= (rowA
[j
] >> 8) & 0xf;
450 const int rowAb1
= (rowA
[k
] >> 8) & 0xf;
451 const int rowBb0
= (rowB
[j
] >> 8) & 0xf;
452 const int rowBb1
= (rowB
[k
] >> 8) & 0xf;
453 const int rowAa0
= (rowA
[j
] >> 12) & 0xf;
454 const int rowAa1
= (rowA
[k
] >> 12) & 0xf;
455 const int rowBa0
= (rowB
[j
] >> 12) & 0xf;
456 const int rowBa1
= (rowB
[k
] >> 12) & 0xf;
457 const int red
= (rowAr0
+ rowAr1
+ rowBr0
+ rowBr1
) >> 2;
458 const int green
= (rowAg0
+ rowAg1
+ rowBg0
+ rowBg1
) >> 2;
459 const int blue
= (rowAb0
+ rowAb1
+ rowBb0
+ rowBb1
) >> 2;
460 const int alpha
= (rowAa0
+ rowAa1
+ rowBa0
+ rowBa1
) >> 2;
461 dst
[i
] = (alpha
<< 12) | (blue
<< 8) | (green
<< 4) | red
;
464 else if (datatype
== DTYPE_USHORT_1_5_5_5_REV
&& comps
== 4) {
466 const ushort
*rowA
= (const ushort
*) srcRowA
;
467 const ushort
*rowB
= (const ushort
*) srcRowB
;
468 ushort
*dst
= (ushort
*) dstRow
;
469 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
470 i
++, j
+= colStride
, k
+= colStride
) {
471 const int rowAr0
= rowA
[j
] & 0x1f;
472 const int rowAr1
= rowA
[k
] & 0x1f;
473 const int rowBr0
= rowB
[j
] & 0x1f;
474 const int rowBr1
= rowB
[k
] & 0x1f;
475 const int rowAg0
= (rowA
[j
] >> 5) & 0x1f;
476 const int rowAg1
= (rowA
[k
] >> 5) & 0x1f;
477 const int rowBg0
= (rowB
[j
] >> 5) & 0x1f;
478 const int rowBg1
= (rowB
[k
] >> 5) & 0x1f;
479 const int rowAb0
= (rowA
[j
] >> 10) & 0x1f;
480 const int rowAb1
= (rowA
[k
] >> 10) & 0x1f;
481 const int rowBb0
= (rowB
[j
] >> 10) & 0x1f;
482 const int rowBb1
= (rowB
[k
] >> 10) & 0x1f;
483 const int rowAa0
= (rowA
[j
] >> 15) & 0x1;
484 const int rowAa1
= (rowA
[k
] >> 15) & 0x1;
485 const int rowBa0
= (rowB
[j
] >> 15) & 0x1;
486 const int rowBa1
= (rowB
[k
] >> 15) & 0x1;
487 const int red
= (rowAr0
+ rowAr1
+ rowBr0
+ rowBr1
) >> 2;
488 const int green
= (rowAg0
+ rowAg1
+ rowBg0
+ rowBg1
) >> 2;
489 const int blue
= (rowAb0
+ rowAb1
+ rowBb0
+ rowBb1
) >> 2;
490 const int alpha
= (rowAa0
+ rowAa1
+ rowBa0
+ rowBa1
) >> 2;
491 dst
[i
] = (alpha
<< 15) | (blue
<< 10) | (green
<< 5) | red
;
494 else if (datatype
== DTYPE_UBYTE_3_3_2
&& comps
== 3) {
496 const ubyte
*rowA
= (const ubyte
*) srcRowA
;
497 const ubyte
*rowB
= (const ubyte
*) srcRowB
;
498 ubyte
*dst
= (ubyte
*) dstRow
;
499 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
500 i
++, j
+= colStride
, k
+= colStride
) {
501 const int rowAr0
= rowA
[j
] & 0x3;
502 const int rowAr1
= rowA
[k
] & 0x3;
503 const int rowBr0
= rowB
[j
] & 0x3;
504 const int rowBr1
= rowB
[k
] & 0x3;
505 const int rowAg0
= (rowA
[j
] >> 2) & 0x7;
506 const int rowAg1
= (rowA
[k
] >> 2) & 0x7;
507 const int rowBg0
= (rowB
[j
] >> 2) & 0x7;
508 const int rowBg1
= (rowB
[k
] >> 2) & 0x7;
509 const int rowAb0
= (rowA
[j
] >> 5) & 0x7;
510 const int rowAb1
= (rowA
[k
] >> 5) & 0x7;
511 const int rowBb0
= (rowB
[j
] >> 5) & 0x7;
512 const int rowBb1
= (rowB
[k
] >> 5) & 0x7;
513 const int red
= (rowAr0
+ rowAr1
+ rowBr0
+ rowBr1
) >> 2;
514 const int green
= (rowAg0
+ rowAg1
+ rowBg0
+ rowBg1
) >> 2;
515 const int blue
= (rowAb0
+ rowAb1
+ rowBb0
+ rowBb1
) >> 2;
516 dst
[i
] = (blue
<< 5) | (green
<< 2) | red
;
520 debug_printf("bad format in do_row()");
526 * Average together four rows of a source image to produce a single new
527 * row in the dest image. It's legal for the two source rows to point
528 * to the same data. The source width must be equal to either the
529 * dest width or two times the dest width.
531 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
533 * \param comps number of components per pixel (1..4)
534 * \param srcWidth Width of a row in the source data
535 * \param srcRowA Pointer to one of the rows of source data
536 * \param srcRowB Pointer to one of the rows of source data
537 * \param srcRowC Pointer to one of the rows of source data
538 * \param srcRowD Pointer to one of the rows of source data
539 * \param dstWidth Width of a row in the destination data
540 * \param srcRowA Pointer to the row of destination data
543 do_row_3D(enum dtype datatype
, uint comps
, int srcWidth
,
544 const void *srcRowA
, const void *srcRowB
,
545 const void *srcRowC
, const void *srcRowD
,
546 int dstWidth
, void *dstRow
)
548 const uint k0
= (srcWidth
== dstWidth
) ? 0 : 1;
549 const uint colStride
= (srcWidth
== dstWidth
) ? 1 : 2;
555 if ((datatype
== DTYPE_UBYTE
) && (comps
== 4)) {
556 DECLARE_ROW_POINTERS(ubyte
, 4);
558 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
559 i
++, j
+= colStride
, k
+= colStride
) {
566 else if ((datatype
== DTYPE_UBYTE
) && (comps
== 3)) {
567 DECLARE_ROW_POINTERS(ubyte
, 3);
569 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
570 i
++, j
+= colStride
, k
+= colStride
) {
576 else if ((datatype
== DTYPE_UBYTE
) && (comps
== 2)) {
577 DECLARE_ROW_POINTERS(ubyte
, 2);
579 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
580 i
++, j
+= colStride
, k
+= colStride
) {
585 else if ((datatype
== DTYPE_UBYTE
) && (comps
== 1)) {
586 DECLARE_ROW_POINTERS(ubyte
, 1);
588 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
589 i
++, j
+= colStride
, k
+= colStride
) {
593 else if ((datatype
== DTYPE_USHORT
) && (comps
== 4)) {
594 DECLARE_ROW_POINTERS(ushort
, 4);
596 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
597 i
++, j
+= colStride
, k
+= colStride
) {
604 else if ((datatype
== DTYPE_USHORT
) && (comps
== 3)) {
605 DECLARE_ROW_POINTERS(ushort
, 3);
607 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
608 i
++, j
+= colStride
, k
+= colStride
) {
614 else if ((datatype
== DTYPE_USHORT
) && (comps
== 2)) {
615 DECLARE_ROW_POINTERS(ushort
, 2);
617 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
618 i
++, j
+= colStride
, k
+= colStride
) {
623 else if ((datatype
== DTYPE_USHORT
) && (comps
== 1)) {
624 DECLARE_ROW_POINTERS(ushort
, 1);
626 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
627 i
++, j
+= colStride
, k
+= colStride
) {
631 else if ((datatype
== DTYPE_FLOAT
) && (comps
== 4)) {
632 DECLARE_ROW_POINTERS(float, 4);
634 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
635 i
++, j
+= colStride
, k
+= colStride
) {
642 else if ((datatype
== DTYPE_FLOAT
) && (comps
== 3)) {
643 DECLARE_ROW_POINTERS(float, 3);
645 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
646 i
++, j
+= colStride
, k
+= colStride
) {
652 else if ((datatype
== DTYPE_FLOAT
) && (comps
== 2)) {
653 DECLARE_ROW_POINTERS(float, 2);
655 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
656 i
++, j
+= colStride
, k
+= colStride
) {
661 else if ((datatype
== DTYPE_FLOAT
) && (comps
== 1)) {
662 DECLARE_ROW_POINTERS(float, 1);
664 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
665 i
++, j
+= colStride
, k
+= colStride
) {
669 else if ((datatype
== DTYPE_HALF_FLOAT
) && (comps
== 4)) {
670 DECLARE_ROW_POINTERS(half_float
, 4);
672 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
673 i
++, j
+= colStride
, k
+= colStride
) {
680 else if ((datatype
== DTYPE_HALF_FLOAT
) && (comps
== 3)) {
681 DECLARE_ROW_POINTERS(half_float
, 4);
683 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
684 i
++, j
+= colStride
, k
+= colStride
) {
690 else if ((datatype
== DTYPE_HALF_FLOAT
) && (comps
== 2)) {
691 DECLARE_ROW_POINTERS(half_float
, 4);
693 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
694 i
++, j
+= colStride
, k
+= colStride
) {
699 else if ((datatype
== DTYPE_HALF_FLOAT
) && (comps
== 1)) {
700 DECLARE_ROW_POINTERS(half_float
, 4);
702 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
703 i
++, j
+= colStride
, k
+= colStride
) {
707 else if ((datatype
== DTYPE_UINT
) && (comps
== 1)) {
708 const uint
*rowA
= (const uint
*) srcRowA
;
709 const uint
*rowB
= (const uint
*) srcRowB
;
710 const uint
*rowC
= (const uint
*) srcRowC
;
711 const uint
*rowD
= (const uint
*) srcRowD
;
712 float *dst
= (float *) dstRow
;
714 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
715 i
++, j
+= colStride
, k
+= colStride
) {
716 const uint64_t tmp
= (((uint64_t) rowA
[j
] + (uint64_t) rowA
[k
])
717 + ((uint64_t) rowB
[j
] + (uint64_t) rowB
[k
])
718 + ((uint64_t) rowC
[j
] + (uint64_t) rowC
[k
])
719 + ((uint64_t) rowD
[j
] + (uint64_t) rowD
[k
]));
720 dst
[i
] = (float)((double) tmp
* 0.125);
723 else if ((datatype
== DTYPE_USHORT_5_6_5
) && (comps
== 3)) {
724 DECLARE_ROW_POINTERS0(ushort
);
726 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
727 i
++, j
+= colStride
, k
+= colStride
) {
728 const int rowAr0
= rowA
[j
] & 0x1f;
729 const int rowAr1
= rowA
[k
] & 0x1f;
730 const int rowBr0
= rowB
[j
] & 0x1f;
731 const int rowBr1
= rowB
[k
] & 0x1f;
732 const int rowCr0
= rowC
[j
] & 0x1f;
733 const int rowCr1
= rowC
[k
] & 0x1f;
734 const int rowDr0
= rowD
[j
] & 0x1f;
735 const int rowDr1
= rowD
[k
] & 0x1f;
736 const int rowAg0
= (rowA
[j
] >> 5) & 0x3f;
737 const int rowAg1
= (rowA
[k
] >> 5) & 0x3f;
738 const int rowBg0
= (rowB
[j
] >> 5) & 0x3f;
739 const int rowBg1
= (rowB
[k
] >> 5) & 0x3f;
740 const int rowCg0
= (rowC
[j
] >> 5) & 0x3f;
741 const int rowCg1
= (rowC
[k
] >> 5) & 0x3f;
742 const int rowDg0
= (rowD
[j
] >> 5) & 0x3f;
743 const int rowDg1
= (rowD
[k
] >> 5) & 0x3f;
744 const int rowAb0
= (rowA
[j
] >> 11) & 0x1f;
745 const int rowAb1
= (rowA
[k
] >> 11) & 0x1f;
746 const int rowBb0
= (rowB
[j
] >> 11) & 0x1f;
747 const int rowBb1
= (rowB
[k
] >> 11) & 0x1f;
748 const int rowCb0
= (rowC
[j
] >> 11) & 0x1f;
749 const int rowCb1
= (rowC
[k
] >> 11) & 0x1f;
750 const int rowDb0
= (rowD
[j
] >> 11) & 0x1f;
751 const int rowDb1
= (rowD
[k
] >> 11) & 0x1f;
752 const int r
= FILTER_SUM_3D(rowAr0
, rowAr1
, rowBr0
, rowBr1
,
753 rowCr0
, rowCr1
, rowDr0
, rowDr1
);
754 const int g
= FILTER_SUM_3D(rowAg0
, rowAg1
, rowBg0
, rowBg1
,
755 rowCg0
, rowCg1
, rowDg0
, rowDg1
);
756 const int b
= FILTER_SUM_3D(rowAb0
, rowAb1
, rowBb0
, rowBb1
,
757 rowCb0
, rowCb1
, rowDb0
, rowDb1
);
758 dst
[i
] = (b
<< 11) | (g
<< 5) | r
;
761 else if ((datatype
== DTYPE_USHORT_4_4_4_4
) && (comps
== 4)) {
762 DECLARE_ROW_POINTERS0(ushort
);
764 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
765 i
++, j
+= colStride
, k
+= colStride
) {
766 const int rowAr0
= rowA
[j
] & 0xf;
767 const int rowAr1
= rowA
[k
] & 0xf;
768 const int rowBr0
= rowB
[j
] & 0xf;
769 const int rowBr1
= rowB
[k
] & 0xf;
770 const int rowCr0
= rowC
[j
] & 0xf;
771 const int rowCr1
= rowC
[k
] & 0xf;
772 const int rowDr0
= rowD
[j
] & 0xf;
773 const int rowDr1
= rowD
[k
] & 0xf;
774 const int rowAg0
= (rowA
[j
] >> 4) & 0xf;
775 const int rowAg1
= (rowA
[k
] >> 4) & 0xf;
776 const int rowBg0
= (rowB
[j
] >> 4) & 0xf;
777 const int rowBg1
= (rowB
[k
] >> 4) & 0xf;
778 const int rowCg0
= (rowC
[j
] >> 4) & 0xf;
779 const int rowCg1
= (rowC
[k
] >> 4) & 0xf;
780 const int rowDg0
= (rowD
[j
] >> 4) & 0xf;
781 const int rowDg1
= (rowD
[k
] >> 4) & 0xf;
782 const int rowAb0
= (rowA
[j
] >> 8) & 0xf;
783 const int rowAb1
= (rowA
[k
] >> 8) & 0xf;
784 const int rowBb0
= (rowB
[j
] >> 8) & 0xf;
785 const int rowBb1
= (rowB
[k
] >> 8) & 0xf;
786 const int rowCb0
= (rowC
[j
] >> 8) & 0xf;
787 const int rowCb1
= (rowC
[k
] >> 8) & 0xf;
788 const int rowDb0
= (rowD
[j
] >> 8) & 0xf;
789 const int rowDb1
= (rowD
[k
] >> 8) & 0xf;
790 const int rowAa0
= (rowA
[j
] >> 12) & 0xf;
791 const int rowAa1
= (rowA
[k
] >> 12) & 0xf;
792 const int rowBa0
= (rowB
[j
] >> 12) & 0xf;
793 const int rowBa1
= (rowB
[k
] >> 12) & 0xf;
794 const int rowCa0
= (rowC
[j
] >> 12) & 0xf;
795 const int rowCa1
= (rowC
[k
] >> 12) & 0xf;
796 const int rowDa0
= (rowD
[j
] >> 12) & 0xf;
797 const int rowDa1
= (rowD
[k
] >> 12) & 0xf;
798 const int r
= FILTER_SUM_3D(rowAr0
, rowAr1
, rowBr0
, rowBr1
,
799 rowCr0
, rowCr1
, rowDr0
, rowDr1
);
800 const int g
= FILTER_SUM_3D(rowAg0
, rowAg1
, rowBg0
, rowBg1
,
801 rowCg0
, rowCg1
, rowDg0
, rowDg1
);
802 const int b
= FILTER_SUM_3D(rowAb0
, rowAb1
, rowBb0
, rowBb1
,
803 rowCb0
, rowCb1
, rowDb0
, rowDb1
);
804 const int a
= FILTER_SUM_3D(rowAa0
, rowAa1
, rowBa0
, rowBa1
,
805 rowCa0
, rowCa1
, rowDa0
, rowDa1
);
807 dst
[i
] = (a
<< 12) | (b
<< 8) | (g
<< 4) | r
;
810 else if ((datatype
== DTYPE_USHORT_1_5_5_5_REV
) && (comps
== 4)) {
811 DECLARE_ROW_POINTERS0(ushort
);
813 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
814 i
++, j
+= colStride
, k
+= colStride
) {
815 const int rowAr0
= rowA
[j
] & 0x1f;
816 const int rowAr1
= rowA
[k
] & 0x1f;
817 const int rowBr0
= rowB
[j
] & 0x1f;
818 const int rowBr1
= rowB
[k
] & 0x1f;
819 const int rowCr0
= rowC
[j
] & 0x1f;
820 const int rowCr1
= rowC
[k
] & 0x1f;
821 const int rowDr0
= rowD
[j
] & 0x1f;
822 const int rowDr1
= rowD
[k
] & 0x1f;
823 const int rowAg0
= (rowA
[j
] >> 5) & 0x1f;
824 const int rowAg1
= (rowA
[k
] >> 5) & 0x1f;
825 const int rowBg0
= (rowB
[j
] >> 5) & 0x1f;
826 const int rowBg1
= (rowB
[k
] >> 5) & 0x1f;
827 const int rowCg0
= (rowC
[j
] >> 5) & 0x1f;
828 const int rowCg1
= (rowC
[k
] >> 5) & 0x1f;
829 const int rowDg0
= (rowD
[j
] >> 5) & 0x1f;
830 const int rowDg1
= (rowD
[k
] >> 5) & 0x1f;
831 const int rowAb0
= (rowA
[j
] >> 10) & 0x1f;
832 const int rowAb1
= (rowA
[k
] >> 10) & 0x1f;
833 const int rowBb0
= (rowB
[j
] >> 10) & 0x1f;
834 const int rowBb1
= (rowB
[k
] >> 10) & 0x1f;
835 const int rowCb0
= (rowC
[j
] >> 10) & 0x1f;
836 const int rowCb1
= (rowC
[k
] >> 10) & 0x1f;
837 const int rowDb0
= (rowD
[j
] >> 10) & 0x1f;
838 const int rowDb1
= (rowD
[k
] >> 10) & 0x1f;
839 const int rowAa0
= (rowA
[j
] >> 15) & 0x1;
840 const int rowAa1
= (rowA
[k
] >> 15) & 0x1;
841 const int rowBa0
= (rowB
[j
] >> 15) & 0x1;
842 const int rowBa1
= (rowB
[k
] >> 15) & 0x1;
843 const int rowCa0
= (rowC
[j
] >> 15) & 0x1;
844 const int rowCa1
= (rowC
[k
] >> 15) & 0x1;
845 const int rowDa0
= (rowD
[j
] >> 15) & 0x1;
846 const int rowDa1
= (rowD
[k
] >> 15) & 0x1;
847 const int r
= FILTER_SUM_3D(rowAr0
, rowAr1
, rowBr0
, rowBr1
,
848 rowCr0
, rowCr1
, rowDr0
, rowDr1
);
849 const int g
= FILTER_SUM_3D(rowAg0
, rowAg1
, rowBg0
, rowBg1
,
850 rowCg0
, rowCg1
, rowDg0
, rowDg1
);
851 const int b
= FILTER_SUM_3D(rowAb0
, rowAb1
, rowBb0
, rowBb1
,
852 rowCb0
, rowCb1
, rowDb0
, rowDb1
);
853 const int a
= FILTER_SUM_3D(rowAa0
, rowAa1
, rowBa0
, rowBa1
,
854 rowCa0
, rowCa1
, rowDa0
, rowDa1
);
856 dst
[i
] = (a
<< 15) | (b
<< 10) | (g
<< 5) | r
;
859 else if ((datatype
== DTYPE_UBYTE_3_3_2
) && (comps
== 3)) {
860 DECLARE_ROW_POINTERS0(ushort
);
862 for (i
= j
= 0, k
= k0
; i
< (uint
) dstWidth
;
863 i
++, j
+= colStride
, k
+= colStride
) {
864 const int rowAr0
= rowA
[j
] & 0x3;
865 const int rowAr1
= rowA
[k
] & 0x3;
866 const int rowBr0
= rowB
[j
] & 0x3;
867 const int rowBr1
= rowB
[k
] & 0x3;
868 const int rowCr0
= rowC
[j
] & 0x3;
869 const int rowCr1
= rowC
[k
] & 0x3;
870 const int rowDr0
= rowD
[j
] & 0x3;
871 const int rowDr1
= rowD
[k
] & 0x3;
872 const int rowAg0
= (rowA
[j
] >> 2) & 0x7;
873 const int rowAg1
= (rowA
[k
] >> 2) & 0x7;
874 const int rowBg0
= (rowB
[j
] >> 2) & 0x7;
875 const int rowBg1
= (rowB
[k
] >> 2) & 0x7;
876 const int rowCg0
= (rowC
[j
] >> 2) & 0x7;
877 const int rowCg1
= (rowC
[k
] >> 2) & 0x7;
878 const int rowDg0
= (rowD
[j
] >> 2) & 0x7;
879 const int rowDg1
= (rowD
[k
] >> 2) & 0x7;
880 const int rowAb0
= (rowA
[j
] >> 5) & 0x7;
881 const int rowAb1
= (rowA
[k
] >> 5) & 0x7;
882 const int rowBb0
= (rowB
[j
] >> 5) & 0x7;
883 const int rowBb1
= (rowB
[k
] >> 5) & 0x7;
884 const int rowCb0
= (rowC
[j
] >> 5) & 0x7;
885 const int rowCb1
= (rowC
[k
] >> 5) & 0x7;
886 const int rowDb0
= (rowD
[j
] >> 5) & 0x7;
887 const int rowDb1
= (rowD
[k
] >> 5) & 0x7;
888 const int r
= FILTER_SUM_3D(rowAr0
, rowAr1
, rowBr0
, rowBr1
,
889 rowCr0
, rowCr1
, rowDr0
, rowDr1
);
890 const int g
= FILTER_SUM_3D(rowAg0
, rowAg1
, rowBg0
, rowBg1
,
891 rowCg0
, rowCg1
, rowDg0
, rowDg1
);
892 const int b
= FILTER_SUM_3D(rowAb0
, rowAb1
, rowBb0
, rowBb1
,
893 rowCb0
, rowCb1
, rowDb0
, rowDb1
);
894 dst
[i
] = (b
<< 5) | (g
<< 2) | r
;
898 debug_printf("bad format in do_row_3D()");
905 format_to_type_comps(enum pipe_format pformat
,
906 enum dtype
*datatype
, uint
*comps
)
908 /* XXX I think this could be implemented in terms of the pf_*() functions */
910 case PIPE_FORMAT_B8G8R8A8_UNORM
:
911 case PIPE_FORMAT_B8G8R8X8_UNORM
:
912 case PIPE_FORMAT_A8R8G8B8_UNORM
:
913 case PIPE_FORMAT_X8R8G8B8_UNORM
:
914 case PIPE_FORMAT_A8B8G8R8_SRGB
:
915 case PIPE_FORMAT_X8B8G8R8_SRGB
:
916 case PIPE_FORMAT_B8G8R8A8_SRGB
:
917 case PIPE_FORMAT_B8G8R8X8_SRGB
:
918 case PIPE_FORMAT_A8R8G8B8_SRGB
:
919 case PIPE_FORMAT_X8R8G8B8_SRGB
:
920 case PIPE_FORMAT_R8G8B8_SRGB
:
921 *datatype
= DTYPE_UBYTE
;
924 case PIPE_FORMAT_B5G5R5X1_UNORM
:
925 case PIPE_FORMAT_B5G5R5A1_UNORM
:
926 *datatype
= DTYPE_USHORT_1_5_5_5_REV
;
929 case PIPE_FORMAT_B4G4R4A4_UNORM
:
930 *datatype
= DTYPE_USHORT_4_4_4_4
;
933 case PIPE_FORMAT_B5G6R5_UNORM
:
934 *datatype
= DTYPE_USHORT_5_6_5
;
937 case PIPE_FORMAT_L8_UNORM
:
938 case PIPE_FORMAT_L8_SRGB
:
939 case PIPE_FORMAT_A8_UNORM
:
940 case PIPE_FORMAT_I8_UNORM
:
941 *datatype
= DTYPE_UBYTE
;
944 case PIPE_FORMAT_L8A8_UNORM
:
945 case PIPE_FORMAT_L8A8_SRGB
:
946 *datatype
= DTYPE_UBYTE
;
951 *datatype
= DTYPE_UBYTE
;
959 reduce_1d(enum pipe_format pformat
,
960 int srcWidth
, const ubyte
*srcPtr
,
961 int dstWidth
, ubyte
*dstPtr
)
966 format_to_type_comps(pformat
, &datatype
, &comps
);
968 /* we just duplicate the input row, kind of hack, saves code */
969 do_row(datatype
, comps
,
970 srcWidth
, srcPtr
, srcPtr
,
976 * Strides are in bytes. If zero, it'll be computed as width * bpp.
979 reduce_2d(enum pipe_format pformat
,
980 int srcWidth
, int srcHeight
,
981 int srcRowStride
, const ubyte
*srcPtr
,
982 int dstWidth
, int dstHeight
,
983 int dstRowStride
, ubyte
*dstPtr
)
987 const int bpt
= util_format_get_blocksize(pformat
);
988 const ubyte
*srcA
, *srcB
;
992 format_to_type_comps(pformat
, &datatype
, &comps
);
995 srcRowStride
= bpt
* srcWidth
;
998 dstRowStride
= bpt
* dstWidth
;
1000 /* Compute src and dst pointers */
1003 srcB
= srcA
+ srcRowStride
;
1008 for (row
= 0; row
< dstHeight
; row
++) {
1009 do_row(datatype
, comps
,
1010 srcWidth
, srcA
, srcB
,
1012 srcA
+= 2 * srcRowStride
;
1013 srcB
+= 2 * srcRowStride
;
1014 dst
+= dstRowStride
;
1020 reduce_3d(enum pipe_format pformat
,
1021 int srcWidth
, int srcHeight
, int srcDepth
,
1022 int srcRowStride
, int srcImageStride
, const ubyte
*srcPtr
,
1023 int dstWidth
, int dstHeight
, int dstDepth
,
1024 int dstRowStride
, int dstImageStride
, ubyte
*dstPtr
)
1026 const int bpt
= util_format_get_blocksize(pformat
);
1028 int srcImageOffset
, srcRowOffset
;
1029 enum dtype datatype
;
1032 format_to_type_comps(pformat
, &datatype
, &comps
);
1034 /* XXX I think we should rather assert those strides */
1035 if (!srcImageStride
)
1036 srcImageStride
= srcWidth
* srcHeight
* bpt
;
1037 if (!dstImageStride
)
1038 dstImageStride
= dstWidth
* dstHeight
* bpt
;
1041 srcRowStride
= srcWidth
* bpt
;
1043 dstRowStride
= dstWidth
* bpt
;
1045 /* Offset between adjacent src images to be averaged together */
1046 srcImageOffset
= (srcDepth
== dstDepth
) ? 0 : srcImageStride
;
1048 /* Offset between adjacent src rows to be averaged together */
1049 srcRowOffset
= (srcHeight
== dstHeight
) ? 0 : srcRowStride
;
1052 * Need to average together up to 8 src pixels for each dest pixel.
1053 * Break that down into 3 operations:
1054 * 1. take two rows from source image and average them together.
1055 * 2. take two rows from next source image and average them together.
1056 * 3. take the two averaged rows and average them for the final dst row.
1060 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1061 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1064 for (img
= 0; img
< dstDepth
; img
++) {
1065 /* first source image pointer */
1066 const ubyte
*imgSrcA
= srcPtr
1067 + img
* (srcImageStride
+ srcImageOffset
);
1068 /* second source image pointer */
1069 const ubyte
*imgSrcB
= imgSrcA
+ srcImageOffset
;
1070 /* address of the dest image */
1071 ubyte
*imgDst
= dstPtr
+ img
* dstImageStride
;
1073 /* setup the four source row pointers and the dest row pointer */
1074 const ubyte
*srcImgARowA
= imgSrcA
;
1075 const ubyte
*srcImgARowB
= imgSrcA
+ srcRowOffset
;
1076 const ubyte
*srcImgBRowA
= imgSrcB
;
1077 const ubyte
*srcImgBRowB
= imgSrcB
+ srcRowOffset
;
1078 ubyte
*dstImgRow
= imgDst
;
1080 for (row
= 0; row
< dstHeight
; row
++) {
1081 do_row_3D(datatype
, comps
, srcWidth
,
1082 srcImgARowA
, srcImgARowB
,
1083 srcImgBRowA
, srcImgBRowB
,
1084 dstWidth
, dstImgRow
);
1086 /* advance to next rows */
1087 srcImgARowA
+= srcRowStride
+ srcRowOffset
;
1088 srcImgARowB
+= srcRowStride
+ srcRowOffset
;
1089 srcImgBRowA
+= srcRowStride
+ srcRowOffset
;
1090 srcImgBRowB
+= srcRowStride
+ srcRowOffset
;
1091 dstImgRow
+= dstImageStride
;
1100 make_1d_mipmap(struct gen_mipmap_state
*ctx
,
1101 struct pipe_resource
*pt
,
1102 uint layer
, uint baseLevel
, uint lastLevel
)
1104 struct pipe_context
*pipe
= ctx
->pipe
;
1107 for (dstLevel
= baseLevel
+ 1; dstLevel
<= lastLevel
; dstLevel
++) {
1108 const uint srcLevel
= dstLevel
- 1;
1109 struct pipe_transfer
*srcTrans
, *dstTrans
;
1110 void *srcMap
, *dstMap
;
1112 srcTrans
= pipe_get_transfer(pipe
, pt
, srcLevel
, layer
,
1113 PIPE_TRANSFER_READ
, 0, 0,
1114 u_minify(pt
->width0
, srcLevel
),
1115 u_minify(pt
->height0
, srcLevel
));
1116 dstTrans
= pipe_get_transfer(pipe
, pt
, dstLevel
, layer
,
1117 PIPE_TRANSFER_WRITE
, 0, 0,
1118 u_minify(pt
->width0
, dstLevel
),
1119 u_minify(pt
->height0
, dstLevel
));
1121 srcMap
= (ubyte
*) pipe
->transfer_map(pipe
, srcTrans
);
1122 dstMap
= (ubyte
*) pipe
->transfer_map(pipe
, dstTrans
);
1124 reduce_1d(pt
->format
,
1125 srcTrans
->box
.width
, srcMap
,
1126 dstTrans
->box
.width
, dstMap
);
1128 pipe
->transfer_unmap(pipe
, srcTrans
);
1129 pipe
->transfer_unmap(pipe
, dstTrans
);
1131 pipe
->transfer_destroy(pipe
, srcTrans
);
1132 pipe
->transfer_destroy(pipe
, dstTrans
);
1138 make_2d_mipmap(struct gen_mipmap_state
*ctx
,
1139 struct pipe_resource
*pt
,
1140 uint layer
, uint baseLevel
, uint lastLevel
)
1142 struct pipe_context
*pipe
= ctx
->pipe
;
1145 assert(util_format_get_blockwidth(pt
->format
) == 1);
1146 assert(util_format_get_blockheight(pt
->format
) == 1);
1148 for (dstLevel
= baseLevel
+ 1; dstLevel
<= lastLevel
; dstLevel
++) {
1149 const uint srcLevel
= dstLevel
- 1;
1150 struct pipe_transfer
*srcTrans
, *dstTrans
;
1151 ubyte
*srcMap
, *dstMap
;
1153 srcTrans
= pipe_get_transfer(pipe
, pt
, srcLevel
, layer
,
1154 PIPE_TRANSFER_READ
, 0, 0,
1155 u_minify(pt
->width0
, srcLevel
),
1156 u_minify(pt
->height0
, srcLevel
));
1157 dstTrans
= pipe_get_transfer(pipe
, pt
, dstLevel
, layer
,
1158 PIPE_TRANSFER_WRITE
, 0, 0,
1159 u_minify(pt
->width0
, dstLevel
),
1160 u_minify(pt
->height0
, dstLevel
));
1162 srcMap
= (ubyte
*) pipe
->transfer_map(pipe
, srcTrans
);
1163 dstMap
= (ubyte
*) pipe
->transfer_map(pipe
, dstTrans
);
1165 reduce_2d(pt
->format
,
1166 srcTrans
->box
.width
, srcTrans
->box
.height
,
1167 srcTrans
->stride
, srcMap
,
1168 dstTrans
->box
.width
, dstTrans
->box
.height
,
1169 dstTrans
->stride
, dstMap
);
1171 pipe
->transfer_unmap(pipe
, srcTrans
);
1172 pipe
->transfer_unmap(pipe
, dstTrans
);
1174 pipe
->transfer_destroy(pipe
, srcTrans
);
1175 pipe
->transfer_destroy(pipe
, dstTrans
);
1180 /* XXX looks a bit more like it could work now but need to test */
1182 make_3d_mipmap(struct gen_mipmap_state
*ctx
,
1183 struct pipe_resource
*pt
,
1184 uint face
, uint baseLevel
, uint lastLevel
)
1186 struct pipe_context
*pipe
= ctx
->pipe
;
1188 struct pipe_box src_box
, dst_box
;
1190 assert(util_format_get_blockwidth(pt
->format
) == 1);
1191 assert(util_format_get_blockheight(pt
->format
) == 1);
1193 src_box
.x
= src_box
.y
= src_box
.z
= 0;
1194 dst_box
.x
= dst_box
.y
= dst_box
.z
= 0;
1196 for (dstLevel
= baseLevel
+ 1; dstLevel
<= lastLevel
; dstLevel
++) {
1197 const uint srcLevel
= dstLevel
- 1;
1198 struct pipe_transfer
*srcTrans
, *dstTrans
;
1199 ubyte
*srcMap
, *dstMap
;
1200 struct pipe_box src_box
, dst_box
;
1201 src_box
.width
= u_minify(pt
->width0
, srcLevel
);
1202 src_box
.height
= u_minify(pt
->height0
, srcLevel
);
1203 src_box
.depth
= u_minify(pt
->depth0
, srcLevel
);
1204 dst_box
.width
= u_minify(pt
->width0
, dstLevel
);
1205 dst_box
.height
= u_minify(pt
->height0
, dstLevel
);
1206 dst_box
.depth
= u_minify(pt
->depth0
, dstLevel
);
1208 srcTrans
= pipe
->get_transfer(pipe
, pt
, srcLevel
,
1211 dstTrans
= pipe
->get_transfer(pipe
, pt
, dstLevel
,
1212 PIPE_TRANSFER_WRITE
,
1215 srcMap
= (ubyte
*) pipe
->transfer_map(pipe
, srcTrans
);
1216 dstMap
= (ubyte
*) pipe
->transfer_map(pipe
, dstTrans
);
1218 reduce_3d(pt
->format
,
1219 srcTrans
->box
.width
, srcTrans
->box
.height
, srcTrans
->box
.depth
,
1220 srcTrans
->stride
, srcTrans
->layer_stride
, srcMap
,
1221 dstTrans
->box
.width
, dstTrans
->box
.height
, dstTrans
->box
.depth
,
1222 dstTrans
->stride
, dstTrans
->layer_stride
, dstMap
);
1224 pipe
->transfer_unmap(pipe
, srcTrans
);
1225 pipe
->transfer_unmap(pipe
, dstTrans
);
1227 pipe
->transfer_destroy(pipe
, srcTrans
);
1228 pipe
->transfer_destroy(pipe
, dstTrans
);
1234 fallback_gen_mipmap(struct gen_mipmap_state
*ctx
,
1235 struct pipe_resource
*pt
,
1236 uint layer
, uint baseLevel
, uint lastLevel
)
1238 switch (pt
->target
) {
1239 case PIPE_TEXTURE_1D
:
1240 make_1d_mipmap(ctx
, pt
, layer
, baseLevel
, lastLevel
);
1242 case PIPE_TEXTURE_2D
:
1243 case PIPE_TEXTURE_RECT
:
1244 case PIPE_TEXTURE_CUBE
:
1245 make_2d_mipmap(ctx
, pt
, layer
, baseLevel
, lastLevel
);
1247 case PIPE_TEXTURE_3D
:
1248 make_3d_mipmap(ctx
, pt
, layer
, baseLevel
, lastLevel
);
1257 * Create a mipmap generation context.
1258 * The idea is to create one of these and re-use it each time we need to
1259 * generate a mipmap.
1261 struct gen_mipmap_state
*
1262 util_create_gen_mipmap(struct pipe_context
*pipe
,
1263 struct cso_context
*cso
)
1265 struct gen_mipmap_state
*ctx
;
1268 ctx
= CALLOC_STRUCT(gen_mipmap_state
);
1275 /* disabled blending/masking */
1276 memset(&ctx
->blend
, 0, sizeof(ctx
->blend
));
1277 ctx
->blend
.rt
[0].colormask
= PIPE_MASK_RGBA
;
1279 /* no-op depth/stencil/alpha */
1280 memset(&ctx
->depthstencil
, 0, sizeof(ctx
->depthstencil
));
1283 memset(&ctx
->rasterizer
, 0, sizeof(ctx
->rasterizer
));
1284 ctx
->rasterizer
.cull_face
= PIPE_FACE_NONE
;
1285 ctx
->rasterizer
.gl_rasterization_rules
= 1;
1288 memset(&ctx
->sampler
, 0, sizeof(ctx
->sampler
));
1289 ctx
->sampler
.wrap_s
= PIPE_TEX_WRAP_CLAMP_TO_EDGE
;
1290 ctx
->sampler
.wrap_t
= PIPE_TEX_WRAP_CLAMP_TO_EDGE
;
1291 ctx
->sampler
.wrap_r
= PIPE_TEX_WRAP_CLAMP_TO_EDGE
;
1292 ctx
->sampler
.min_mip_filter
= PIPE_TEX_MIPFILTER_NEAREST
;
1293 ctx
->sampler
.normalized_coords
= 1;
1295 /* vertex elements state */
1296 memset(&ctx
->velem
[0], 0, sizeof(ctx
->velem
[0]) * 2);
1297 for (i
= 0; i
< 2; i
++) {
1298 ctx
->velem
[i
].src_offset
= i
* 4 * sizeof(float);
1299 ctx
->velem
[i
].instance_divisor
= 0;
1300 ctx
->velem
[i
].vertex_buffer_index
= 0;
1301 ctx
->velem
[i
].src_format
= PIPE_FORMAT_R32G32B32A32_FLOAT
;
1304 /* vertex data that doesn't change */
1305 for (i
= 0; i
< 4; i
++) {
1306 ctx
->vertices
[i
][0][2] = 0.0f
; /* z */
1307 ctx
->vertices
[i
][0][3] = 1.0f
; /* w */
1308 ctx
->vertices
[i
][1][3] = 1.0f
; /* q */
1311 /* Note: the actual vertex buffer is allocated as needed below */
1318 * Helper function to set the fragment shaders.
1321 set_fragment_shader(struct gen_mipmap_state
*ctx
, uint type
)
1325 util_make_fragment_tex_shader(ctx
->pipe
, type
,
1326 TGSI_INTERPOLATE_LINEAR
);
1328 cso_set_fragment_shader_handle(ctx
->cso
, ctx
->fs
[type
]);
1333 * Helper function to set the vertex shader.
1336 set_vertex_shader(struct gen_mipmap_state
*ctx
)
1338 /* vertex shader - still required to provide the linkage between
1339 * fragment shader input semantics and vertex_element/buffers.
1343 const uint semantic_names
[] = { TGSI_SEMANTIC_POSITION
,
1344 TGSI_SEMANTIC_GENERIC
};
1345 const uint semantic_indexes
[] = { 0, 0 };
1346 ctx
->vs
= util_make_vertex_passthrough_shader(ctx
->pipe
, 2,
1351 cso_set_vertex_shader_handle(ctx
->cso
, ctx
->vs
);
1356 * Get next "slot" of vertex space in the vertex buffer.
1357 * We're allocating one large vertex buffer and using it piece by piece.
1360 get_next_slot(struct gen_mipmap_state
*ctx
)
1362 const unsigned max_slots
= 4096 / sizeof ctx
->vertices
;
1364 if (ctx
->vbuf_slot
>= max_slots
)
1365 util_gen_mipmap_flush( ctx
);
1368 ctx
->vbuf
= pipe_buffer_create(ctx
->pipe
->screen
,
1369 PIPE_BIND_VERTEX_BUFFER
,
1371 max_slots
* sizeof ctx
->vertices
);
1374 return ctx
->vbuf_slot
++ * sizeof ctx
->vertices
;
1379 set_vertex_data(struct gen_mipmap_state
*ctx
,
1380 enum pipe_texture_target tex_target
,
1381 uint layer
, float r
)
1385 /* vert[0].position */
1386 ctx
->vertices
[0][0][0] = -1.0f
; /*x*/
1387 ctx
->vertices
[0][0][1] = -1.0f
; /*y*/
1389 /* vert[1].position */
1390 ctx
->vertices
[1][0][0] = 1.0f
;
1391 ctx
->vertices
[1][0][1] = -1.0f
;
1393 /* vert[2].position */
1394 ctx
->vertices
[2][0][0] = 1.0f
;
1395 ctx
->vertices
[2][0][1] = 1.0f
;
1397 /* vert[3].position */
1398 ctx
->vertices
[3][0][0] = -1.0f
;
1399 ctx
->vertices
[3][0][1] = 1.0f
;
1401 /* Setup vertex texcoords. This is a little tricky for cube maps. */
1402 if (tex_target
== PIPE_TEXTURE_CUBE
) {
1403 static const float st
[4][2] = {
1404 {0.0f
, 0.0f
}, {1.0f
, 0.0f
}, {1.0f
, 1.0f
}, {0.0f
, 1.0f
}
1407 util_map_texcoords2d_onto_cubemap(layer
, &st
[0][0], 2,
1408 &ctx
->vertices
[0][1][0], 8);
1410 else if (tex_target
== PIPE_TEXTURE_1D_ARRAY
) {
1411 /* 1D texture array */
1412 ctx
->vertices
[0][1][0] = 0.0f
; /*s*/
1413 ctx
->vertices
[0][1][1] = r
; /*t*/
1414 ctx
->vertices
[0][1][2] = 0.0f
; /*r*/
1416 ctx
->vertices
[1][1][0] = 1.0f
;
1417 ctx
->vertices
[1][1][1] = r
;
1418 ctx
->vertices
[1][1][2] = 0.0f
;
1420 ctx
->vertices
[2][1][0] = 1.0f
;
1421 ctx
->vertices
[2][1][1] = r
;
1422 ctx
->vertices
[2][1][2] = 0.0f
;
1424 ctx
->vertices
[3][1][0] = 0.0f
;
1425 ctx
->vertices
[3][1][1] = r
;
1426 ctx
->vertices
[3][1][2] = 0.0f
;
1428 /* 1D/2D/3D/2D array */
1429 ctx
->vertices
[0][1][0] = 0.0f
; /*s*/
1430 ctx
->vertices
[0][1][1] = 0.0f
; /*t*/
1431 ctx
->vertices
[0][1][2] = r
; /*r*/
1433 ctx
->vertices
[1][1][0] = 1.0f
;
1434 ctx
->vertices
[1][1][1] = 0.0f
;
1435 ctx
->vertices
[1][1][2] = r
;
1437 ctx
->vertices
[2][1][0] = 1.0f
;
1438 ctx
->vertices
[2][1][1] = 1.0f
;
1439 ctx
->vertices
[2][1][2] = r
;
1441 ctx
->vertices
[3][1][0] = 0.0f
;
1442 ctx
->vertices
[3][1][1] = 1.0f
;
1443 ctx
->vertices
[3][1][2] = r
;
1446 offset
= get_next_slot( ctx
);
1448 pipe_buffer_write_nooverlap(ctx
->pipe
, ctx
->vbuf
,
1449 offset
, sizeof(ctx
->vertices
), ctx
->vertices
);
1457 * Destroy a mipmap generation context
1460 util_destroy_gen_mipmap(struct gen_mipmap_state
*ctx
)
1462 struct pipe_context
*pipe
= ctx
->pipe
;
1465 for (i
= 0; i
< Elements(ctx
->fs
); i
++)
1467 pipe
->delete_fs_state(pipe
, ctx
->fs
[i
]);
1470 pipe
->delete_vs_state(pipe
, ctx
->vs
);
1472 pipe_resource_reference(&ctx
->vbuf
, NULL
);
1479 /* Release vertex buffer at end of frame to avoid synchronous
1482 void util_gen_mipmap_flush( struct gen_mipmap_state
*ctx
)
1484 pipe_resource_reference(&ctx
->vbuf
, NULL
);
1490 * Generate mipmap images. It's assumed all needed texture memory is
1491 * already allocated.
1493 * \param psv the sampler view to the texture to generate mipmap levels for
1494 * \param face which cube face to generate mipmaps for (0 for non-cube maps)
1495 * \param baseLevel the first mipmap level to use as a src
1496 * \param lastLevel the last mipmap level to generate
1497 * \param filter the minification filter used to generate mipmap levels with
1498 * \param filter one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST
1501 util_gen_mipmap(struct gen_mipmap_state
*ctx
,
1502 struct pipe_sampler_view
*psv
,
1503 uint face
, uint baseLevel
, uint lastLevel
, uint filter
)
1505 struct pipe_context
*pipe
= ctx
->pipe
;
1506 struct pipe_screen
*screen
= pipe
->screen
;
1507 struct pipe_framebuffer_state fb
;
1508 struct pipe_resource
*pt
= psv
->texture
;
1513 /* The texture object should have room for the levels which we're
1514 * about to generate.
1516 assert(lastLevel
<= pt
->last_level
);
1518 /* If this fails, why are we here? */
1519 assert(lastLevel
> baseLevel
);
1521 assert(filter
== PIPE_TEX_FILTER_LINEAR
||
1522 filter
== PIPE_TEX_FILTER_NEAREST
);
1524 switch (pt
->target
) {
1525 case PIPE_TEXTURE_1D
:
1526 type
= TGSI_TEXTURE_1D
;
1528 case PIPE_TEXTURE_2D
:
1529 type
= TGSI_TEXTURE_2D
;
1531 case PIPE_TEXTURE_3D
:
1532 type
= TGSI_TEXTURE_3D
;
1534 case PIPE_TEXTURE_CUBE
:
1535 type
= TGSI_TEXTURE_CUBE
;
1537 case PIPE_TEXTURE_1D_ARRAY
:
1538 type
= TGSI_TEXTURE_1D_ARRAY
;
1540 case PIPE_TEXTURE_2D_ARRAY
:
1541 type
= TGSI_TEXTURE_2D_ARRAY
;
1545 type
= TGSI_TEXTURE_2D
;
1548 /* check if we can render in the texture's format */
1549 if (!screen
->is_format_supported(screen
, psv
->format
, pt
->target
,
1550 pt
->nr_samples
, PIPE_BIND_RENDER_TARGET
)) {
1551 fallback_gen_mipmap(ctx
, pt
, face
, baseLevel
, lastLevel
);
1555 /* save state (restored below) */
1556 cso_save_blend(ctx
->cso
);
1557 cso_save_depth_stencil_alpha(ctx
->cso
);
1558 cso_save_rasterizer(ctx
->cso
);
1559 cso_save_samplers(ctx
->cso
);
1560 cso_save_fragment_sampler_views(ctx
->cso
);
1561 cso_save_framebuffer(ctx
->cso
);
1562 cso_save_fragment_shader(ctx
->cso
);
1563 cso_save_vertex_shader(ctx
->cso
);
1564 cso_save_viewport(ctx
->cso
);
1565 cso_save_clip(ctx
->cso
);
1566 cso_save_vertex_elements(ctx
->cso
);
1568 /* bind our state */
1569 cso_set_blend(ctx
->cso
, &ctx
->blend
);
1570 cso_set_depth_stencil_alpha(ctx
->cso
, &ctx
->depthstencil
);
1571 cso_set_rasterizer(ctx
->cso
, &ctx
->rasterizer
);
1572 cso_set_clip(ctx
->cso
, &ctx
->clip
);
1573 cso_set_vertex_elements(ctx
->cso
, 2, ctx
->velem
);
1575 set_fragment_shader(ctx
, type
);
1576 set_vertex_shader(ctx
);
1578 /* init framebuffer state */
1579 memset(&fb
, 0, sizeof(fb
));
1582 /* set min/mag to same filter for faster sw speed */
1583 ctx
->sampler
.mag_img_filter
= filter
;
1584 ctx
->sampler
.min_img_filter
= filter
;
1587 * XXX for small mipmap levels, it may be faster to use the software
1590 for (dstLevel
= baseLevel
+ 1; dstLevel
<= lastLevel
; dstLevel
++) {
1591 const uint srcLevel
= dstLevel
- 1;
1592 struct pipe_viewport_state vp
;
1593 unsigned nr_layers
, layer
, i
;
1594 float rcoord
= 0.0f
;
1596 if (pt
->target
== PIPE_TEXTURE_3D
)
1597 nr_layers
= u_minify(pt
->depth0
, dstLevel
);
1598 else if (pt
->target
== PIPE_TEXTURE_2D_ARRAY
|| pt
->target
== PIPE_TEXTURE_1D_ARRAY
)
1599 nr_layers
= pt
->array_size
;
1603 for (i
= 0; i
< nr_layers
; i
++) {
1604 struct pipe_surface
*surf
, surf_templ
;
1605 if (pt
->target
== PIPE_TEXTURE_3D
) {
1606 /* in theory with geom shaders and driver with full layer support
1607 could do that in one go. */
1609 /* XXX hmm really? */
1610 rcoord
= (float)layer
/ (float)nr_layers
+ 1.0f
/ (float)(nr_layers
* 2);
1611 } else if (pt
->target
== PIPE_TEXTURE_2D_ARRAY
|| pt
->target
== PIPE_TEXTURE_1D_ARRAY
) {
1613 rcoord
= (float)layer
;
1617 memset(&surf_templ
, 0, sizeof(surf_templ
));
1618 u_surface_default_template(&surf_templ
, pt
, PIPE_BIND_RENDER_TARGET
);
1619 surf_templ
.u
.tex
.level
= dstLevel
;
1620 surf_templ
.u
.tex
.first_layer
= layer
;
1621 surf_templ
.u
.tex
.last_layer
= layer
;
1622 surf
= pipe
->create_surface(pipe
, pt
, &surf_templ
);
1625 * Setup framebuffer / dest surface
1628 fb
.width
= u_minify(pt
->width0
, dstLevel
);
1629 fb
.height
= u_minify(pt
->height0
, dstLevel
);
1630 cso_set_framebuffer(ctx
->cso
, &fb
);
1633 vp
.scale
[0] = 0.5f
* fb
.width
;
1634 vp
.scale
[1] = 0.5f
* fb
.height
;
1637 vp
.translate
[0] = 0.5f
* fb
.width
;
1638 vp
.translate
[1] = 0.5f
* fb
.height
;
1639 vp
.translate
[2] = 0.0f
;
1640 vp
.translate
[3] = 0.0f
;
1641 cso_set_viewport(ctx
->cso
, &vp
);
1644 * Setup sampler state
1645 * Note: we should only have to set the min/max LOD clamps to ensure
1646 * we grab texels from the right mipmap level. But some hardware
1647 * has trouble with min clamping so we also set the lod_bias to
1648 * try to work around that.
1650 ctx
->sampler
.min_lod
= ctx
->sampler
.max_lod
= (float) srcLevel
;
1651 ctx
->sampler
.lod_bias
= (float) srcLevel
;
1652 cso_single_sampler(ctx
->cso
, 0, &ctx
->sampler
);
1653 cso_single_sampler_done(ctx
->cso
);
1655 cso_set_fragment_sampler_views(ctx
->cso
, 1, &psv
);
1657 /* quad coords in clip coords */
1658 offset
= set_vertex_data(ctx
,
1663 util_draw_vertex_buffer(ctx
->pipe
,
1667 PIPE_PRIM_TRIANGLE_FAN
,
1669 2); /* attribs/vert */
1671 /* need to signal that the texture has changed _after_ rendering to it */
1672 pipe_surface_reference( &surf
, NULL
);
1676 /* restore state we changed */
1677 cso_restore_blend(ctx
->cso
);
1678 cso_restore_depth_stencil_alpha(ctx
->cso
);
1679 cso_restore_rasterizer(ctx
->cso
);
1680 cso_restore_samplers(ctx
->cso
);
1681 cso_restore_fragment_sampler_views(ctx
->cso
);
1682 cso_restore_framebuffer(ctx
->cso
);
1683 cso_restore_fragment_shader(ctx
->cso
);
1684 cso_restore_vertex_shader(ctx
->cso
);
1685 cso_restore_viewport(ctx
->cso
);
1686 cso_restore_clip(ctx
->cso
);
1687 cso_restore_vertex_elements(ctx
->cso
);