revert 213 commits (to 56092) from the last month. 10 still need work to resolve...
[AROS.git] / workbench / libs / mesa / src / gallium / drivers / nvfx / nvfx_fragprog.c
blobdbd7c77346512d4ae00afa0d1308c1a1ce3f59ab
1 #include <float.h>
2 #include "pipe/p_context.h"
3 #include "pipe/p_defines.h"
4 #include "pipe/p_state.h"
5 #include "util/u_inlines.h"
6 #include "util/u_debug.h"
8 #include "pipe/p_shader_tokens.h"
9 #include "tgsi/tgsi_parse.h"
10 #include "tgsi/tgsi_util.h"
11 #include "tgsi/tgsi_dump.h"
12 #include "tgsi/tgsi_ureg.h"
14 #include "nvfx_context.h"
15 #include "nvfx_shader.h"
16 #include "nvfx_resource.h"
18 struct nvfx_fpc {
19 struct nvfx_pipe_fragment_program* pfp;
20 struct nvfx_fragment_program *fp;
22 unsigned max_temps;
23 unsigned long long r_temps;
24 unsigned long long r_temps_discard;
25 struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS];
26 struct nvfx_reg *r_temp;
27 unsigned sprite_coord_temp;
29 int num_regs;
31 unsigned inst_offset;
32 unsigned have_const;
34 struct util_dynarray imm_data;
36 struct nvfx_reg* r_imm;
37 unsigned nr_imm;
39 unsigned char generic_to_slot[256]; /* semantic idx for each input semantic */
41 struct util_dynarray if_stack;
42 //struct util_dynarray loop_stack;
43 struct util_dynarray label_relocs;
46 static INLINE struct nvfx_reg
47 temp(struct nvfx_fpc *fpc)
49 int idx = __builtin_ctzll(~fpc->r_temps);
51 if (idx >= fpc->max_temps) {
52 NOUVEAU_ERR("out of temps!!\n");
53 assert(0);
54 return nvfx_reg(NVFXSR_TEMP, 0);
57 fpc->r_temps |= (1ULL << idx);
58 fpc->r_temps_discard |= (1ULL << idx);
59 return nvfx_reg(NVFXSR_TEMP, idx);
62 static INLINE void
63 release_temps(struct nvfx_fpc *fpc)
65 fpc->r_temps &= ~fpc->r_temps_discard;
66 fpc->r_temps_discard = 0ULL;
69 static inline struct nvfx_reg
70 nvfx_fp_imm(struct nvfx_fpc *fpc, float a, float b, float c, float d)
72 float v[4] = {a, b, c, d};
73 int idx = fpc->imm_data.size >> 4;
75 memcpy(util_dynarray_grow(&fpc->imm_data, sizeof(float) * 4), v, 4 * sizeof(float));
76 return nvfx_reg(NVFXSR_IMM, idx);
79 static void
80 grow_insns(struct nvfx_fpc *fpc, int size)
82 struct nvfx_fragment_program *fp = fpc->fp;
84 fp->insn_len += size;
85 fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len);
88 static void
89 emit_src(struct nvfx_fpc *fpc, int pos, struct nvfx_src src)
91 struct nvfx_fragment_program *fp = fpc->fp;
92 uint32_t *hw = &fp->insn[fpc->inst_offset];
93 uint32_t sr = 0;
95 switch (src.reg.type) {
96 case NVFXSR_INPUT:
97 sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
98 hw[0] |= (src.reg.index << NVFX_FP_OP_INPUT_SRC_SHIFT);
99 break;
100 case NVFXSR_OUTPUT:
101 sr |= NVFX_FP_REG_SRC_HALF;
102 /* fall-through */
103 case NVFXSR_TEMP:
104 sr |= (NVFX_FP_REG_TYPE_TEMP << NVFX_FP_REG_TYPE_SHIFT);
105 sr |= (src.reg.index << NVFX_FP_REG_SRC_SHIFT);
106 break;
107 case NVFXSR_RELOCATED:
108 sr |= (NVFX_FP_REG_TYPE_TEMP << NVFX_FP_REG_TYPE_SHIFT);
109 sr |= (fpc->sprite_coord_temp << NVFX_FP_REG_SRC_SHIFT);
110 //printf("adding relocation at %x for %x\n", fpc->inst_offset, src.index);
111 util_dynarray_append(&fpc->fp->slot_relocations[src.reg.index], unsigned, fpc->inst_offset + pos + 1);
112 break;
113 case NVFXSR_IMM:
114 if (!fpc->have_const) {
115 grow_insns(fpc, 4);
116 hw = &fp->insn[fpc->inst_offset];
117 fpc->have_const = 1;
120 memcpy(&fp->insn[fpc->inst_offset + 4],
121 (float*)fpc->imm_data.data + src.reg.index * 4,
122 sizeof(uint32_t) * 4);
124 sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
125 break;
126 case NVFXSR_CONST:
127 if (!fpc->have_const) {
128 grow_insns(fpc, 4);
129 hw = &fp->insn[fpc->inst_offset];
130 fpc->have_const = 1;
134 struct nvfx_fragment_program_data *fpd;
136 fp->consts = realloc(fp->consts, ++fp->nr_consts *
137 sizeof(*fpd));
138 fpd = &fp->consts[fp->nr_consts - 1];
139 fpd->offset = fpc->inst_offset + 4;
140 fpd->index = src.reg.index;
141 memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4);
144 sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
145 break;
146 case NVFXSR_NONE:
147 sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
148 break;
149 default:
150 assert(0);
153 if (src.negate)
154 sr |= NVFX_FP_REG_NEGATE;
156 if (src.abs)
157 hw[1] |= (1 << (29 + pos));
159 sr |= ((src.swz[0] << NVFX_FP_REG_SWZ_X_SHIFT) |
160 (src.swz[1] << NVFX_FP_REG_SWZ_Y_SHIFT) |
161 (src.swz[2] << NVFX_FP_REG_SWZ_Z_SHIFT) |
162 (src.swz[3] << NVFX_FP_REG_SWZ_W_SHIFT));
164 hw[pos + 1] |= sr;
167 static void
168 emit_dst(struct nvfx_fpc *fpc, struct nvfx_reg dst)
170 struct nvfx_fragment_program *fp = fpc->fp;
171 uint32_t *hw = &fp->insn[fpc->inst_offset];
173 switch (dst.type) {
174 case NVFXSR_TEMP:
175 if (fpc->num_regs < (dst.index + 1))
176 fpc->num_regs = dst.index + 1;
177 break;
178 case NVFXSR_OUTPUT:
179 if (dst.index == 1) {
180 fp->fp_control |= 0xe;
181 } else {
182 hw[0] |= NVFX_FP_OP_OUT_REG_HALF;
184 break;
185 case NVFXSR_NONE:
186 hw[0] |= (1 << 30);
187 break;
188 default:
189 assert(0);
192 hw[0] |= (dst.index << NVFX_FP_OP_OUT_REG_SHIFT);
195 static void
196 nvfx_fp_emit(struct nvfx_fpc *fpc, struct nvfx_insn insn)
198 struct nvfx_fragment_program *fp = fpc->fp;
199 uint32_t *hw;
201 fpc->inst_offset = fp->insn_len;
202 fpc->have_const = 0;
203 grow_insns(fpc, 4);
204 hw = &fp->insn[fpc->inst_offset];
205 memset(hw, 0, sizeof(uint32_t) * 4);
207 if (insn.op == NVFX_FP_OP_OPCODE_KIL)
208 fp->fp_control |= NV30_3D_FP_CONTROL_USES_KIL;
209 hw[0] |= (insn.op << NVFX_FP_OP_OPCODE_SHIFT);
210 hw[0] |= (insn.mask << NVFX_FP_OP_OUTMASK_SHIFT);
211 hw[2] |= (insn.scale << NVFX_FP_OP_DST_SCALE_SHIFT);
213 if (insn.sat)
214 hw[0] |= NVFX_FP_OP_OUT_SAT;
216 if (insn.cc_update)
217 hw[0] |= NVFX_FP_OP_COND_WRITE_ENABLE;
218 hw[1] |= (insn.cc_test << NVFX_FP_OP_COND_SHIFT);
219 hw[1] |= ((insn.cc_swz[0] << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
220 (insn.cc_swz[1] << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
221 (insn.cc_swz[2] << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
222 (insn.cc_swz[3] << NVFX_FP_OP_COND_SWZ_W_SHIFT));
224 if(insn.unit >= 0)
226 hw[0] |= (insn.unit << NVFX_FP_OP_TEX_UNIT_SHIFT);
227 fp->samplers |= (1 << insn.unit);
230 emit_dst(fpc, insn.dst);
231 emit_src(fpc, 0, insn.src[0]);
232 emit_src(fpc, 1, insn.src[1]);
233 emit_src(fpc, 2, insn.src[2]);
236 #define arith(s,o,d,m,s0,s1,s2) \
237 nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, -1, \
238 (d), (m), (s0), (s1), (s2))
240 #define tex(s,o,u,d,m,s0,s1,s2) \
241 nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, (u), \
242 (d), (m), (s0), none, none)
244 /* IF src.x != 0, as TGSI specifies */
245 static void
246 nv40_fp_if(struct nvfx_fpc *fpc, struct nvfx_src src)
248 const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
249 struct nvfx_insn insn = arith(0, MOV, none.reg, NVFX_FP_MASK_X, src, none, none);
250 uint32_t *hw;
251 insn.cc_update = 1;
252 nvfx_fp_emit(fpc, insn);
254 fpc->inst_offset = fpc->fp->insn_len;
255 grow_insns(fpc, 4);
256 hw = &fpc->fp->insn[fpc->inst_offset];
257 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
258 hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
259 NV40_FP_OP_OUT_NONE |
260 (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
261 /* Use .xxxx swizzle so that we check only src[0].x*/
262 hw[1] = (0 << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
263 (0 << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
264 (0 << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
265 (0 << NVFX_FP_OP_COND_SWZ_W_SHIFT) |
266 (NVFX_FP_OP_COND_NE << NVFX_FP_OP_COND_SHIFT);
267 hw[2] = 0; /* | NV40_FP_OP_OPCODE_IS_BRANCH | else_offset */
268 hw[3] = 0; /* | endif_offset */
269 util_dynarray_append(&fpc->if_stack, unsigned, fpc->inst_offset);
272 /* IF src.x != 0, as TGSI specifies */
273 static void
274 nv40_fp_cal(struct nvfx_fpc *fpc, unsigned target)
276 struct nvfx_relocation reloc;
277 uint32_t *hw;
278 fpc->inst_offset = fpc->fp->insn_len;
279 grow_insns(fpc, 4);
280 hw = &fpc->fp->insn[fpc->inst_offset];
281 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
282 hw[0] = (NV40_FP_OP_BRA_OPCODE_CAL << NVFX_FP_OP_OPCODE_SHIFT);
283 /* Use .xxxx swizzle so that we check only src[0].x*/
284 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
285 (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
286 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
287 hw[3] = 0;
288 reloc.target = target;
289 reloc.location = fpc->inst_offset + 2;
290 util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
293 static void
294 nv40_fp_ret(struct nvfx_fpc *fpc)
296 uint32_t *hw;
297 fpc->inst_offset = fpc->fp->insn_len;
298 grow_insns(fpc, 4);
299 hw = &fpc->fp->insn[fpc->inst_offset];
300 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
301 hw[0] = (NV40_FP_OP_BRA_OPCODE_RET << NVFX_FP_OP_OPCODE_SHIFT);
302 /* Use .xxxx swizzle so that we check only src[0].x*/
303 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
304 (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
305 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
306 hw[3] = 0;
309 static void
310 nv40_fp_rep(struct nvfx_fpc *fpc, unsigned count, unsigned target)
312 struct nvfx_relocation reloc;
313 uint32_t *hw;
314 fpc->inst_offset = fpc->fp->insn_len;
315 grow_insns(fpc, 4);
316 hw = &fpc->fp->insn[fpc->inst_offset];
317 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
318 hw[0] = (NV40_FP_OP_BRA_OPCODE_REP << NVFX_FP_OP_OPCODE_SHIFT) |
319 NV40_FP_OP_OUT_NONE |
320 (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
321 /* Use .xxxx swizzle so that we check only src[0].x*/
322 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
323 (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
324 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH |
325 (count << NV40_FP_OP_REP_COUNT1_SHIFT) |
326 (count << NV40_FP_OP_REP_COUNT2_SHIFT) |
327 (count << NV40_FP_OP_REP_COUNT3_SHIFT);
328 hw[3] = 0; /* | end_offset */
329 reloc.target = target;
330 reloc.location = fpc->inst_offset + 3;
331 util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
332 //util_dynarray_append(&fpc->loop_stack, unsigned, target);
335 /* warning: this only works forward, and probably only if not inside any IF */
336 static void
337 nv40_fp_bra(struct nvfx_fpc *fpc, unsigned target)
339 struct nvfx_relocation reloc;
340 uint32_t *hw;
341 fpc->inst_offset = fpc->fp->insn_len;
342 grow_insns(fpc, 4);
343 hw = &fpc->fp->insn[fpc->inst_offset];
344 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
345 hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
346 NV40_FP_OP_OUT_NONE |
347 (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
348 /* Use .xxxx swizzle so that we check only src[0].x*/
349 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
350 (NVFX_FP_OP_COND_FL << NVFX_FP_OP_COND_SHIFT);
351 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | else_offset */
352 hw[3] = 0; /* | endif_offset */
353 reloc.target = target;
354 reloc.location = fpc->inst_offset + 2;
355 util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
356 reloc.target = target;
357 reloc.location = fpc->inst_offset + 3;
358 util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
361 static void
362 nv40_fp_brk(struct nvfx_fpc *fpc)
364 uint32_t *hw;
365 fpc->inst_offset = fpc->fp->insn_len;
366 grow_insns(fpc, 4);
367 hw = &fpc->fp->insn[fpc->inst_offset];
368 /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
369 hw[0] = (NV40_FP_OP_BRA_OPCODE_BRK << NVFX_FP_OP_OPCODE_SHIFT) |
370 NV40_FP_OP_OUT_NONE;
371 /* Use .xxxx swizzle so that we check only src[0].x*/
372 hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
373 (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
374 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH;
375 hw[3] = 0;
378 static INLINE struct nvfx_src
379 tgsi_src(struct nvfx_fpc *fpc, const struct tgsi_full_src_register *fsrc)
381 struct nvfx_src src;
383 switch (fsrc->Register.File) {
384 case TGSI_FILE_INPUT:
385 if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_POSITION) {
386 assert(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 0);
387 src.reg = nvfx_reg(NVFXSR_INPUT, NVFX_FP_OP_INPUT_SRC_POSITION);
388 } else if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_COLOR) {
389 if(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 0)
390 src.reg = nvfx_reg(NVFXSR_INPUT, NVFX_FP_OP_INPUT_SRC_COL0);
391 else if(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 1)
392 src.reg = nvfx_reg(NVFXSR_INPUT, NVFX_FP_OP_INPUT_SRC_COL1);
393 else
394 assert(0);
395 } else if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FOG) {
396 assert(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 0);
397 src.reg = nvfx_reg(NVFXSR_INPUT, NVFX_FP_OP_INPUT_SRC_FOGC);
398 } else if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FACE) {
399 /* TODO: check this has the correct values */
400 /* XXX: what do we do for nv30 here (assuming it lacks facing)?! */
401 assert(fpc->pfp->info.input_semantic_index[fsrc->Register.Index] == 0);
402 src.reg = nvfx_reg(NVFXSR_INPUT, NV40_FP_OP_INPUT_SRC_FACING);
403 } else {
404 assert(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_GENERIC);
405 src.reg = nvfx_reg(NVFXSR_RELOCATED, fpc->generic_to_slot[fpc->pfp->info.input_semantic_index[fsrc->Register.Index]]);
407 break;
408 case TGSI_FILE_CONSTANT:
409 src.reg = nvfx_reg(NVFXSR_CONST, fsrc->Register.Index);
410 break;
411 case TGSI_FILE_IMMEDIATE:
412 assert(fsrc->Register.Index < fpc->nr_imm);
413 src.reg = fpc->r_imm[fsrc->Register.Index];
414 break;
415 case TGSI_FILE_TEMPORARY:
416 src.reg = fpc->r_temp[fsrc->Register.Index];
417 break;
418 /* NV40 fragprog result regs are just temps, so this is simple */
419 case TGSI_FILE_OUTPUT:
420 src.reg = fpc->r_result[fsrc->Register.Index];
421 break;
422 default:
423 NOUVEAU_ERR("bad src file\n");
424 src.reg.index = 0;
425 src.reg.type = 0;
426 break;
429 src.abs = fsrc->Register.Absolute;
430 src.negate = fsrc->Register.Negate;
431 src.swz[0] = fsrc->Register.SwizzleX;
432 src.swz[1] = fsrc->Register.SwizzleY;
433 src.swz[2] = fsrc->Register.SwizzleZ;
434 src.swz[3] = fsrc->Register.SwizzleW;
435 src.indirect = 0;
436 src.indirect_reg = 0;
437 src.indirect_swz = 0;
438 return src;
441 static INLINE struct nvfx_reg
442 tgsi_dst(struct nvfx_fpc *fpc, const struct tgsi_full_dst_register *fdst) {
443 switch (fdst->Register.File) {
444 case TGSI_FILE_OUTPUT:
445 return fpc->r_result[fdst->Register.Index];
446 case TGSI_FILE_TEMPORARY:
447 return fpc->r_temp[fdst->Register.Index];
448 case TGSI_FILE_NULL:
449 return nvfx_reg(NVFXSR_NONE, 0);
450 default:
451 NOUVEAU_ERR("bad dst file %d\n", fdst->Register.File);
452 return nvfx_reg(NVFXSR_NONE, 0);
456 static INLINE int
457 tgsi_mask(uint tgsi)
459 int mask = 0;
461 if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_FP_MASK_X;
462 if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_FP_MASK_Y;
463 if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_FP_MASK_Z;
464 if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_FP_MASK_W;
465 return mask;
468 static boolean
469 nvfx_fragprog_parse_instruction(struct nvfx_context* nvfx, struct nvfx_fpc *fpc,
470 const struct tgsi_full_instruction *finst)
472 const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
473 struct nvfx_insn insn;
474 struct nvfx_src src[3], tmp;
475 struct nvfx_reg dst;
476 int mask, sat, unit = 0;
477 int ai = -1, ci = -1, ii = -1;
478 int i;
480 if (finst->Instruction.Opcode == TGSI_OPCODE_END)
481 return TRUE;
483 for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
484 const struct tgsi_full_src_register *fsrc;
486 fsrc = &finst->Src[i];
487 if (fsrc->Register.File == TGSI_FILE_TEMPORARY) {
488 src[i] = tgsi_src(fpc, fsrc);
492 for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
493 const struct tgsi_full_src_register *fsrc;
495 fsrc = &finst->Src[i];
497 switch (fsrc->Register.File) {
498 case TGSI_FILE_INPUT:
499 if(fpc->pfp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FOG && (0
500 || fsrc->Register.SwizzleX == PIPE_SWIZZLE_ALPHA
501 || fsrc->Register.SwizzleY == PIPE_SWIZZLE_ALPHA
502 || fsrc->Register.SwizzleZ == PIPE_SWIZZLE_ALPHA
503 || fsrc->Register.SwizzleW == PIPE_SWIZZLE_ALPHA
504 )) {
505 /* hardware puts 0 in fogcoord.w, but GL/Gallium want 1 there */
506 struct nvfx_src addend = nvfx_src(nvfx_fp_imm(fpc, 0, 0, 0, 1));
507 addend.swz[0] = fsrc->Register.SwizzleX;
508 addend.swz[1] = fsrc->Register.SwizzleY;
509 addend.swz[2] = fsrc->Register.SwizzleZ;
510 addend.swz[3] = fsrc->Register.SwizzleW;
511 src[i] = nvfx_src(temp(fpc));
512 nvfx_fp_emit(fpc, arith(0, ADD, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), addend, none));
513 } else if (ai == -1 || ai == fsrc->Register.Index) {
514 ai = fsrc->Register.Index;
515 src[i] = tgsi_src(fpc, fsrc);
516 } else {
517 src[i] = nvfx_src(temp(fpc));
518 nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
520 break;
521 case TGSI_FILE_CONSTANT:
522 if ((ci == -1 && ii == -1) ||
523 ci == fsrc->Register.Index) {
524 ci = fsrc->Register.Index;
525 src[i] = tgsi_src(fpc, fsrc);
526 } else {
527 src[i] = nvfx_src(temp(fpc));
528 nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
530 break;
531 case TGSI_FILE_IMMEDIATE:
532 if ((ci == -1 && ii == -1) ||
533 ii == fsrc->Register.Index) {
534 ii = fsrc->Register.Index;
535 src[i] = tgsi_src(fpc, fsrc);
536 } else {
537 src[i] = nvfx_src(temp(fpc));
538 nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
540 break;
541 case TGSI_FILE_TEMPORARY:
542 /* handled above */
543 break;
544 case TGSI_FILE_SAMPLER:
545 unit = fsrc->Register.Index;
546 break;
547 case TGSI_FILE_OUTPUT:
548 break;
549 default:
550 NOUVEAU_ERR("bad src file\n");
551 return FALSE;
555 dst = tgsi_dst(fpc, &finst->Dst[0]);
556 mask = tgsi_mask(finst->Dst[0].Register.WriteMask);
557 sat = (finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE);
559 switch (finst->Instruction.Opcode) {
560 case TGSI_OPCODE_ABS:
561 nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, abs(src[0]), none, none));
562 break;
563 case TGSI_OPCODE_ADD:
564 nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], src[1], none));
565 break;
566 case TGSI_OPCODE_CMP:
567 insn = arith(0, MOV, none.reg, mask, src[0], none, none);
568 insn.cc_update = 1;
569 nvfx_fp_emit(fpc, insn);
571 insn = arith(sat, MOV, dst, mask, src[2], none, none);
572 insn.cc_test = NVFX_COND_GE;
573 nvfx_fp_emit(fpc, insn);
575 insn = arith(sat, MOV, dst, mask, src[1], none, none);
576 insn.cc_test = NVFX_COND_LT;
577 nvfx_fp_emit(fpc, insn);
578 break;
579 case TGSI_OPCODE_COS:
580 nvfx_fp_emit(fpc, arith(sat, COS, dst, mask, src[0], none, none));
581 break;
582 case TGSI_OPCODE_DDX:
583 if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
584 tmp = nvfx_src(temp(fpc));
585 nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
586 nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
587 nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
588 nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
589 } else {
590 nvfx_fp_emit(fpc, arith(sat, DDX, dst, mask, src[0], none, none));
592 break;
593 case TGSI_OPCODE_DDY:
594 if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
595 tmp = nvfx_src(temp(fpc));
596 nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
597 nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
598 nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
599 nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
600 } else {
601 nvfx_fp_emit(fpc, arith(sat, DDY, dst, mask, src[0], none, none));
603 break;
604 case TGSI_OPCODE_DP2:
605 tmp = nvfx_src(temp(fpc));
606 nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], src[1], none));
607 nvfx_fp_emit(fpc, arith(0, ADD, dst, mask, swz(tmp, X, X, X, X), swz(tmp, Y, Y, Y, Y), none));
608 break;
609 case TGSI_OPCODE_DP3:
610 nvfx_fp_emit(fpc, arith(sat, DP3, dst, mask, src[0], src[1], none));
611 break;
612 case TGSI_OPCODE_DP4:
613 nvfx_fp_emit(fpc, arith(sat, DP4, dst, mask, src[0], src[1], none));
614 break;
615 case TGSI_OPCODE_DPH:
616 tmp = nvfx_src(temp(fpc));
617 nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_X, src[0], src[1], none));
618 nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, swz(tmp, X, X, X, X), swz(src[1], W, W, W, W), none));
619 break;
620 case TGSI_OPCODE_DST:
621 nvfx_fp_emit(fpc, arith(sat, DST, dst, mask, src[0], src[1], none));
622 break;
623 case TGSI_OPCODE_EX2:
624 nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, src[0], none, none));
625 break;
626 case TGSI_OPCODE_FLR:
627 nvfx_fp_emit(fpc, arith(sat, FLR, dst, mask, src[0], none, none));
628 break;
629 case TGSI_OPCODE_FRC:
630 nvfx_fp_emit(fpc, arith(sat, FRC, dst, mask, src[0], none, none));
631 break;
632 case TGSI_OPCODE_KILP:
633 nvfx_fp_emit(fpc, arith(0, KIL, none.reg, 0, none, none, none));
634 break;
635 case TGSI_OPCODE_KIL:
636 insn = arith(0, MOV, none.reg, NVFX_FP_MASK_ALL, src[0], none, none);
637 insn.cc_update = 1;
638 nvfx_fp_emit(fpc, insn);
640 insn = arith(0, KIL, none.reg, 0, none, none, none);
641 insn.cc_test = NVFX_COND_LT;
642 nvfx_fp_emit(fpc, insn);
643 break;
644 case TGSI_OPCODE_LG2:
645 nvfx_fp_emit(fpc, arith(sat, LG2, dst, mask, src[0], none, none));
646 break;
647 case TGSI_OPCODE_LIT:
648 if(!nvfx->is_nv4x)
649 nvfx_fp_emit(fpc, arith(sat, LIT_NV30, dst, mask, src[0], src[1], src[2]));
650 else {
651 /* we use FLT_MIN, so that log2 never gives -infinity, and thus multiplication by
652 * specular 0 always gives 0, so that ex2 gives 1, to satisfy the 0^0 = 1 requirement
654 * NOTE: if we start using half precision, we might need an fp16 FLT_MIN here instead
656 struct nvfx_src maxs = nvfx_src(nvfx_fp_imm(fpc, 0, FLT_MIN, 0, 0));
657 tmp = nvfx_src(temp(fpc));
658 if (ci>= 0 || ii >= 0) {
659 nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, maxs, none, none));
660 maxs = tmp;
662 nvfx_fp_emit(fpc, arith(0, MAX, tmp.reg, NVFX_FP_MASK_Y | NVFX_FP_MASK_W, swz(src[0], X, X, X, Y), swz(maxs, X, X, Y, Y), none));
663 nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), none, none));
664 nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), swz(src[0], W, W, W, W), none));
665 nvfx_fp_emit(fpc, arith(sat, LITEX2_NV40, dst, mask, swz(tmp, Y, Y, W, W), none, none));
667 break;
668 case TGSI_OPCODE_LRP:
669 if(!nvfx->is_nv4x)
670 nvfx_fp_emit(fpc, arith(sat, LRP_NV30, dst, mask, src[0], src[1], src[2]));
671 else {
672 tmp = nvfx_src(temp(fpc));
673 nvfx_fp_emit(fpc, arith(0, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2]));
674 nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], tmp));
676 break;
677 case TGSI_OPCODE_MAD:
678 nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], src[2]));
679 break;
680 case TGSI_OPCODE_MAX:
681 nvfx_fp_emit(fpc, arith(sat, MAX, dst, mask, src[0], src[1], none));
682 break;
683 case TGSI_OPCODE_MIN:
684 nvfx_fp_emit(fpc, arith(sat, MIN, dst, mask, src[0], src[1], none));
685 break;
686 case TGSI_OPCODE_MOV:
687 nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, src[0], none, none));
688 break;
689 case TGSI_OPCODE_MUL:
690 nvfx_fp_emit(fpc, arith(sat, MUL, dst, mask, src[0], src[1], none));
691 break;
692 case TGSI_OPCODE_NOP:
693 break;
694 case TGSI_OPCODE_POW:
695 if(!nvfx->is_nv4x)
696 nvfx_fp_emit(fpc, arith(sat, POW_NV30, dst, mask, src[0], src[1], none));
697 else {
698 tmp = nvfx_src(temp(fpc));
699 nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
700 nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none));
701 nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, swz(tmp, X, X, X, X), none, none));
703 break;
704 case TGSI_OPCODE_RCP:
705 nvfx_fp_emit(fpc, arith(sat, RCP, dst, mask, src[0], none, none));
706 break;
707 case TGSI_OPCODE_RFL:
708 if(!nvfx->is_nv4x)
709 nvfx_fp_emit(fpc, arith(0, RFL_NV30, dst, mask, src[0], src[1], none));
710 else {
711 tmp = nvfx_src(temp(fpc));
712 nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_X, src[0], src[0], none));
713 nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_Y, src[0], src[1], none));
714 insn = arith(0, DIV, tmp.reg, NVFX_FP_MASK_Z, swz(tmp, Y, Y, Y, Y), swz(tmp, X, X, X, X), none);
715 insn.scale = NVFX_FP_OP_DST_SCALE_2X;
716 nvfx_fp_emit(fpc, insn);
717 nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, swz(tmp, Z, Z, Z, Z), src[0], neg(src[1])));
719 break;
720 case TGSI_OPCODE_RSQ:
721 if(!nvfx->is_nv4x)
722 nvfx_fp_emit(fpc, arith(sat, RSQ_NV30, dst, mask, abs(swz(src[0], X, X, X, X)), none, none));
723 else {
724 tmp = nvfx_src(temp(fpc));
725 insn = arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, abs(swz(src[0], X, X, X, X)), none, none);
726 insn.scale = NVFX_FP_OP_DST_SCALE_INV_2X;
727 nvfx_fp_emit(fpc, insn);
728 nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, neg(swz(tmp, X, X, X, X)), none, none));
730 break;
731 case TGSI_OPCODE_SCS:
732 /* avoid overwriting the source */
733 if(src[0].swz[NVFX_SWZ_X] != NVFX_SWZ_X)
735 if (mask & NVFX_FP_MASK_X)
736 nvfx_fp_emit(fpc, arith(sat, COS, dst, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
737 if (mask & NVFX_FP_MASK_Y)
738 nvfx_fp_emit(fpc, arith(sat, SIN, dst, NVFX_FP_MASK_Y, swz(src[0], X, X, X, X), none, none));
740 else
742 if (mask & NVFX_FP_MASK_Y)
743 nvfx_fp_emit(fpc, arith(sat, SIN, dst, NVFX_FP_MASK_Y, swz(src[0], X, X, X, X), none, none));
744 if (mask & NVFX_FP_MASK_X)
745 nvfx_fp_emit(fpc, arith(sat, COS, dst, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
747 break;
748 case TGSI_OPCODE_SEQ:
749 nvfx_fp_emit(fpc, arith(sat, SEQ, dst, mask, src[0], src[1], none));
750 break;
751 case TGSI_OPCODE_SFL:
752 nvfx_fp_emit(fpc, arith(sat, SFL, dst, mask, src[0], src[1], none));
753 break;
754 case TGSI_OPCODE_SGE:
755 nvfx_fp_emit(fpc, arith(sat, SGE, dst, mask, src[0], src[1], none));
756 break;
757 case TGSI_OPCODE_SGT:
758 nvfx_fp_emit(fpc, arith(sat, SGT, dst, mask, src[0], src[1], none));
759 break;
760 case TGSI_OPCODE_SIN:
761 nvfx_fp_emit(fpc, arith(sat, SIN, dst, mask, src[0], none, none));
762 break;
763 case TGSI_OPCODE_SLE:
764 nvfx_fp_emit(fpc, arith(sat, SLE, dst, mask, src[0], src[1], none));
765 break;
766 case TGSI_OPCODE_SLT:
767 nvfx_fp_emit(fpc, arith(sat, SLT, dst, mask, src[0], src[1], none));
768 break;
769 case TGSI_OPCODE_SNE:
770 nvfx_fp_emit(fpc, arith(sat, SNE, dst, mask, src[0], src[1], none));
771 break;
772 case TGSI_OPCODE_SSG:
774 struct nvfx_src minones = swz(nvfx_src(nvfx_fp_imm(fpc, -1, -1, -1, -1)), X, X, X, X);
776 insn = arith(sat, MOV, dst, mask, src[0], none, none);
777 insn.cc_update = 1;
778 nvfx_fp_emit(fpc, insn);
780 insn = arith(0, STR, dst, mask, none, none, none);
781 insn.cc_test = NVFX_COND_GT;
782 nvfx_fp_emit(fpc, insn);
784 if(!sat) {
785 insn = arith(0, MOV, dst, mask, minones, none, none);
786 insn.cc_test = NVFX_COND_LT;
787 nvfx_fp_emit(fpc, insn);
789 break;
791 case TGSI_OPCODE_STR:
792 nvfx_fp_emit(fpc, arith(sat, STR, dst, mask, src[0], src[1], none));
793 break;
794 case TGSI_OPCODE_SUB:
795 nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], neg(src[1]), none));
796 break;
797 case TGSI_OPCODE_TEX:
798 nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
799 break;
800 case TGSI_OPCODE_TRUNC:
801 tmp = nvfx_src(temp(fpc));
802 insn = arith(0, MOV, none.reg, mask, src[0], none, none);
803 insn.cc_update = 1;
804 nvfx_fp_emit(fpc, insn);
806 nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, abs(src[0]), none, none));
807 nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, tmp, none, none));
809 insn = arith(sat, MOV, dst, mask, neg(tmp), none, none);
810 insn.cc_test = NVFX_COND_LT;
811 nvfx_fp_emit(fpc, insn);
812 break;
813 case TGSI_OPCODE_TXB:
814 nvfx_fp_emit(fpc, tex(sat, TXB, unit, dst, mask, src[0], none, none));
815 break;
816 case TGSI_OPCODE_TXL:
817 if(nvfx->is_nv4x)
818 nvfx_fp_emit(fpc, tex(sat, TXL_NV40, unit, dst, mask, src[0], none, none));
819 else /* unsupported on nv30, use TEX and hope they like it */
820 nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
821 break;
822 case TGSI_OPCODE_TXP:
823 nvfx_fp_emit(fpc, tex(sat, TXP, unit, dst, mask, src[0], none, none));
824 break;
825 case TGSI_OPCODE_XPD:
826 tmp = nvfx_src(temp(fpc));
827 nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none));
828 nvfx_fp_emit(fpc, arith(sat, MAD, dst, (mask & ~NVFX_FP_MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp)));
829 break;
831 case TGSI_OPCODE_IF:
832 // MOVRC0 R31 (TR0.xyzw), R<src>:
833 // IF (NE.xxxx) ELSE <else> END <end>
834 if(!nvfx->use_nv4x)
835 goto nv3x_cflow;
836 nv40_fp_if(fpc, src[0]);
837 break;
839 case TGSI_OPCODE_ELSE:
841 uint32_t *hw;
842 if(!nvfx->use_nv4x)
843 goto nv3x_cflow;
844 assert(util_dynarray_contains(&fpc->if_stack, unsigned));
845 hw = &fpc->fp->insn[util_dynarray_top(&fpc->if_stack, unsigned)];
846 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
847 break;
850 case TGSI_OPCODE_ENDIF:
852 uint32_t *hw;
853 if(!nvfx->use_nv4x)
854 goto nv3x_cflow;
855 assert(util_dynarray_contains(&fpc->if_stack, unsigned));
856 hw = &fpc->fp->insn[util_dynarray_pop(&fpc->if_stack, unsigned)];
857 if(!hw[2])
858 hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
859 hw[3] = fpc->fp->insn_len;
860 break;
863 case TGSI_OPCODE_BRA:
864 /* This can in limited cases be implemented with an IF with the else and endif labels pointing to the target */
865 /* no state tracker uses this, so don't implement this for now */
866 assert(0);
867 nv40_fp_bra(fpc, finst->Label.Label);
868 break;
870 case TGSI_OPCODE_BGNSUB:
871 case TGSI_OPCODE_ENDSUB:
872 /* nothing to do here */
873 break;
875 case TGSI_OPCODE_CAL:
876 if(!nvfx->use_nv4x)
877 goto nv3x_cflow;
878 nv40_fp_cal(fpc, finst->Label.Label);
879 break;
881 case TGSI_OPCODE_RET:
882 if(!nvfx->use_nv4x)
883 goto nv3x_cflow;
884 nv40_fp_ret(fpc);
885 break;
887 case TGSI_OPCODE_BGNLOOP:
888 if(!nvfx->use_nv4x)
889 goto nv3x_cflow;
890 /* TODO: we should support using two nested REPs to allow a > 255 iteration count */
891 nv40_fp_rep(fpc, 255, finst->Label.Label);
892 break;
894 case TGSI_OPCODE_ENDLOOP:
895 break;
897 case TGSI_OPCODE_BRK:
898 if(!nvfx->use_nv4x)
899 goto nv3x_cflow;
900 nv40_fp_brk(fpc);
901 break;
903 case TGSI_OPCODE_CONT:
905 static int warned = 0;
906 if(!warned) {
907 NOUVEAU_ERR("Sorry, the continue keyword is not implemented: ignoring it.\n");
908 warned = 1;
910 break;
913 default:
914 NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode);
915 return FALSE;
918 out:
919 release_temps(fpc);
920 return TRUE;
921 nv3x_cflow:
923 static int warned = 0;
924 if(!warned) {
925 NOUVEAU_ERR(
926 "Sorry, control flow instructions are not supported in hardware on nv3x: ignoring them\n"
927 "If rendering is incorrect, try to disable GLSL support in the application.\n");
928 warned = 1;
931 goto out;
934 static boolean
935 nvfx_fragprog_parse_decl_output(struct nvfx_context* nvfx, struct nvfx_fpc *fpc,
936 const struct tgsi_full_declaration *fdec)
938 unsigned idx = fdec->Range.First;
939 unsigned hw;
941 switch (fdec->Semantic.Name) {
942 case TGSI_SEMANTIC_POSITION:
943 hw = 1;
944 break;
945 case TGSI_SEMANTIC_COLOR:
946 hw = ~0;
947 switch (fdec->Semantic.Index) {
948 case 0: hw = 0; break;
949 case 1: hw = 2; break;
950 case 2: hw = 3; break;
951 case 3: hw = 4; break;
953 if(hw > ((nvfx->use_nv4x) ? 4 : 2)) {
954 NOUVEAU_ERR("bad rcol index\n");
955 return FALSE;
957 break;
958 default:
959 NOUVEAU_ERR("bad output semantic\n");
960 return FALSE;
963 fpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw);
964 fpc->r_temps |= (1ULL << hw);
965 return TRUE;
968 static boolean
969 nvfx_fragprog_prepare(struct nvfx_context* nvfx, struct nvfx_fpc *fpc)
971 struct tgsi_parse_context p;
972 int high_temp = -1, i;
973 struct util_semantic_set set;
974 unsigned num_texcoords = nvfx->use_nv4x ? 10 : 8;
976 fpc->fp->num_slots = util_semantic_set_from_program_file(&set, fpc->pfp->pipe.tokens, TGSI_FILE_INPUT);
977 if(fpc->fp->num_slots > num_texcoords)
978 return FALSE;
979 util_semantic_layout_from_set(fpc->fp->slot_to_generic, &set, 0, num_texcoords);
980 util_semantic_table_from_layout(fpc->generic_to_slot, fpc->fp->slot_to_generic, 0, num_texcoords);
982 memset(fpc->fp->slot_to_fp_input, 0xff, sizeof(fpc->fp->slot_to_fp_input));
984 fpc->r_imm = CALLOC(fpc->pfp->info.immediate_count, sizeof(struct nvfx_reg));
986 tgsi_parse_init(&p, fpc->pfp->pipe.tokens);
987 while (!tgsi_parse_end_of_tokens(&p)) {
988 const union tgsi_full_token *tok = &p.FullToken;
990 tgsi_parse_token(&p);
991 switch(tok->Token.Type) {
992 case TGSI_TOKEN_TYPE_DECLARATION:
994 const struct tgsi_full_declaration *fdec;
995 fdec = &p.FullToken.FullDeclaration;
996 switch (fdec->Declaration.File) {
997 case TGSI_FILE_OUTPUT:
998 if (!nvfx_fragprog_parse_decl_output(nvfx, fpc, fdec))
999 goto out_err;
1000 break;
1001 case TGSI_FILE_TEMPORARY:
1002 if (fdec->Range.Last > high_temp) {
1003 high_temp =
1004 fdec->Range.Last;
1006 break;
1007 default:
1008 break;
1011 break;
1012 case TGSI_TOKEN_TYPE_IMMEDIATE:
1014 struct tgsi_full_immediate *imm;
1016 imm = &p.FullToken.FullImmediate;
1017 assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32);
1018 assert(fpc->nr_imm < fpc->pfp->info.immediate_count);
1020 fpc->r_imm[fpc->nr_imm++] = nvfx_fp_imm(fpc, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float);
1021 break;
1023 default:
1024 break;
1027 tgsi_parse_free(&p);
1029 if (++high_temp) {
1030 fpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg));
1031 for (i = 0; i < high_temp; i++)
1032 fpc->r_temp[i] = temp(fpc);
1033 fpc->r_temps_discard = 0ULL;
1036 return TRUE;
1038 out_err:
1039 if (fpc->r_temp) {
1040 FREE(fpc->r_temp);
1041 fpc->r_temp = NULL;
1043 tgsi_parse_free(&p);
1044 return FALSE;
1047 DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_fp, "NVFX_DUMP_FP", FALSE)
1049 static struct nvfx_fragment_program*
1050 nvfx_fragprog_translate(struct nvfx_context *nvfx,
1051 struct nvfx_pipe_fragment_program *pfp,
1052 boolean emulate_sprite_flipping)
1054 struct tgsi_parse_context parse;
1055 struct nvfx_fpc *fpc = NULL;
1056 struct util_dynarray insns;
1057 struct nvfx_fragment_program* fp = NULL;
1058 const int min_size = 4096;
1060 fp = CALLOC_STRUCT(nvfx_fragment_program);
1061 if(!fp)
1062 goto out_err;
1064 fpc = CALLOC_STRUCT(nvfx_fpc);
1065 if (!fpc)
1066 goto out_err;
1068 fpc->max_temps = nvfx->use_nv4x ? 48 : 32;
1069 fpc->pfp = pfp;
1070 fpc->fp = fp;
1071 fpc->num_regs = 2;
1073 for (unsigned i = 0; i < pfp->info.num_properties; ++i) {
1074 if (pfp->info.properties[i].name == TGSI_PROPERTY_FS_COORD_ORIGIN) {
1075 if(pfp->info.properties[i].data[0])
1076 fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_ORIGIN_INVERTED;
1077 } else if (pfp->info.properties[i].name == TGSI_PROPERTY_FS_COORD_PIXEL_CENTER) {
1078 if(pfp->info.properties[i].data[0])
1079 fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_CENTER_INTEGER;
1083 if (!nvfx_fragprog_prepare(nvfx, fpc))
1084 goto out_err;
1086 tgsi_parse_init(&parse, pfp->pipe.tokens);
1087 util_dynarray_init(&insns);
1089 if(emulate_sprite_flipping)
1091 struct nvfx_reg reg = temp(fpc);
1092 struct nvfx_src sprite_input = nvfx_src(nvfx_reg(NVFXSR_RELOCATED, fp->num_slots));
1093 struct nvfx_src imm = nvfx_src(nvfx_fp_imm(fpc, 1, -1, 0, 0));
1095 fpc->sprite_coord_temp = reg.index;
1096 fpc->r_temps_discard = 0ULL;
1097 nvfx_fp_emit(fpc, arith(0, MAD, reg, NVFX_FP_MASK_ALL, sprite_input, swz(imm, X, Y, X, X), swz(imm, Z, X, Z, Z)));
1100 while (!tgsi_parse_end_of_tokens(&parse)) {
1101 tgsi_parse_token(&parse);
1103 switch (parse.FullToken.Token.Type) {
1104 case TGSI_TOKEN_TYPE_INSTRUCTION:
1106 const struct tgsi_full_instruction *finst;
1108 util_dynarray_append(&insns, unsigned, fp->insn_len);
1109 finst = &parse.FullToken.FullInstruction;
1110 if (!nvfx_fragprog_parse_instruction(nvfx, fpc, finst))
1111 goto out_err;
1113 break;
1114 default:
1115 break;
1118 util_dynarray_append(&insns, unsigned, fp->insn_len);
1120 for(unsigned i = 0; i < fpc->label_relocs.size; i += sizeof(struct nvfx_relocation))
1122 struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)fpc->label_relocs.data + i);
1123 fp->insn[label_reloc->location] |= ((unsigned*)insns.data)[label_reloc->target];
1125 util_dynarray_fini(&insns);
1127 if(!nvfx->is_nv4x)
1128 fp->fp_control |= (fpc->num_regs-1)/2;
1129 else
1130 fp->fp_control |= fpc->num_regs << NV40_3D_FP_CONTROL_TEMP_COUNT__SHIFT;
1132 /* Terminate final instruction */
1133 if(fp->insn)
1134 fp->insn[fpc->inst_offset] |= 0x00000001;
1136 /* Append NOP + END instruction for branches to the end of the program */
1137 fpc->inst_offset = fp->insn_len;
1138 grow_insns(fpc, 4);
1139 fp->insn[fpc->inst_offset + 0] = 0x00000001;
1140 fp->insn[fpc->inst_offset + 1] = 0x00000000;
1141 fp->insn[fpc->inst_offset + 2] = 0x00000000;
1142 fp->insn[fpc->inst_offset + 3] = 0x00000000;
1144 if(debug_get_option_nvfx_dump_fp())
1146 debug_printf("\n");
1147 tgsi_dump(pfp->pipe.tokens, 0);
1149 debug_printf("\n%s fragment program:\n", nvfx->is_nv4x ? "nv4x" : "nv3x");
1150 for (unsigned i = 0; i < fp->insn_len; i += 4)
1151 debug_printf("%3u: %08x %08x %08x %08x\n", i >> 2, fp->insn[i], fp->insn[i + 1], fp->insn[i + 2], fp->insn[i + 3]);
1152 debug_printf("\n");
1155 fp->prog_size = (fp->insn_len * 4 + 63) & ~63;
1157 if(fp->prog_size >= min_size)
1158 fp->progs_per_bo = 1;
1159 else
1160 fp->progs_per_bo = min_size / fp->prog_size;
1161 fp->bo_prog_idx = fp->progs_per_bo - 1;
1163 out:
1164 tgsi_parse_free(&parse);
1165 if(fpc)
1167 if (fpc->r_temp)
1168 FREE(fpc->r_temp);
1169 util_dynarray_fini(&fpc->if_stack);
1170 util_dynarray_fini(&fpc->label_relocs);
1171 util_dynarray_fini(&fpc->imm_data);
1172 //util_dynarray_fini(&fpc->loop_stack);
1173 FREE(fpc);
1175 return fp;
1177 out_err:
1178 _debug_printf("Error: failed to compile this fragment program:\n");
1179 tgsi_dump(pfp->pipe.tokens, 0);
1181 if(fp)
1183 FREE(fp);
1184 fp = NULL;
1186 goto out;
1189 static inline void
1190 nvfx_fp_memcpy(void* dst, const void* src, size_t len)
1192 #ifndef PIPE_ARCH_BIG_ENDIAN
1193 memcpy(dst, src, len);
1194 #else
1195 size_t i;
1196 for(i = 0; i < len; i += 4) {
1197 uint32_t v = *(uint32_t*)((char*)src + i);
1198 *(uint32_t*)((char*)dst + i) = (v >> 16) | (v << 16);
1200 #endif
1203 /* The hardware only supports immediate constants inside the fragment program,
1204 * and at least on nv30 doesn't support an indirect linkage table.
1206 * Hence, we need to patch the fragment program itself both to update constants
1207 * and update linkage.
1209 * Using a single fragment program would entail unacceptable stalls if the GPU is
1210 * already rendering with that fragment program.
1211 * Thus, we instead use a "rotating queue" of buffer objects, each of which is
1212 * packed with multiple versions of the same program.
1214 * Whenever we need to patch something, we move to the next program and
1215 * patch it. If all buffer objects are in use by the GPU, we allocate another one,
1216 * expanding the queue.
1218 * As an additional optimization, we record when all the programs have the
1219 * current input slot configuration, and at that point we stop patching inputs.
1220 * This happens, for instance, if a given fragment program is always used with
1221 * the same vertex program (i.e. always with GLSL), or if the layouts match
1222 * enough (non-GLSL).
1224 * Note that instead of using multiple programs, we could push commands
1225 * on the FIFO to patch a single program: it's not fully clear which option is
1226 * faster, but my guess is that the current way is faster.
1228 * We also track the previous slot assignments for each version and don't
1229 * patch if they are the same (this could perhaps be removed).
1232 void
1233 nvfx_fragprog_validate(struct nvfx_context *nvfx)
1235 struct nouveau_channel* chan = nvfx->screen->base.channel;
1236 struct nouveau_grobj *eng3d = nvfx->screen->eng3d;
1237 struct nvfx_pipe_fragment_program *pfp = nvfx->fragprog;
1238 struct nvfx_vertex_program* vp;
1240 // TODO: the multiplication by point_quad_rasterization is probably superfluous
1241 unsigned sprite_coord_enable = nvfx->rasterizer->pipe.point_quad_rasterization * nvfx->rasterizer->pipe.sprite_coord_enable;
1243 boolean emulate_sprite_flipping = sprite_coord_enable && nvfx->rasterizer->pipe.sprite_coord_mode;
1244 unsigned key = emulate_sprite_flipping;
1245 struct nvfx_fragment_program* fp;
1247 fp = pfp->fps[key];
1248 if (!fp)
1250 fp = nvfx_fragprog_translate(nvfx, pfp, emulate_sprite_flipping);
1252 if(!fp)
1254 if(!nvfx->dummy_fs)
1256 struct ureg_program *ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
1257 if (ureg)
1259 ureg_END( ureg );
1260 nvfx->dummy_fs = ureg_create_shader_and_destroy( ureg, &nvfx->pipe );
1263 if(!nvfx->dummy_fs)
1265 _debug_printf("Error: unable to create a dummy fragment shader: aborting.");
1266 abort();
1270 fp = nvfx_fragprog_translate(nvfx, nvfx->dummy_fs, FALSE);
1271 emulate_sprite_flipping = FALSE;
1273 if(!fp)
1275 _debug_printf("Error: unable to compile even a dummy fragment shader: aborting.");
1276 abort();
1280 pfp->fps[key] = fp;
1283 vp = nvfx->hw_vertprog;
1285 if (fp->last_vp_id != vp->id || fp->last_sprite_coord_enable != sprite_coord_enable) {
1286 int sprite_real_input = -1;
1287 int sprite_reloc_input;
1288 unsigned i;
1289 fp->last_vp_id = vp->id;
1290 fp->last_sprite_coord_enable = sprite_coord_enable;
1292 if(sprite_coord_enable)
1294 sprite_real_input = vp->sprite_fp_input;
1295 if(sprite_real_input < 0)
1297 unsigned used_texcoords = 0;
1298 for(unsigned i = 0; i < fp->num_slots; ++i) {
1299 unsigned generic = fp->slot_to_generic[i];
1300 if((generic < 32) && !((1 << generic) & sprite_coord_enable))
1302 unsigned char slot_mask = vp->generic_to_fp_input[generic];
1303 if(slot_mask >= 0xf0)
1304 used_texcoords |= 1 << ((slot_mask & 0xf) - NVFX_FP_OP_INPUT_SRC_TC0);
1308 sprite_real_input = NVFX_FP_OP_INPUT_SRC_TC(__builtin_ctz(~used_texcoords));
1311 fp->point_sprite_control |= (1 << (sprite_real_input - NVFX_FP_OP_INPUT_SRC_TC0 + 8));
1313 else
1314 fp->point_sprite_control = 0;
1316 if(emulate_sprite_flipping)
1317 sprite_reloc_input = 0;
1318 else
1319 sprite_reloc_input = sprite_real_input;
1321 for(i = 0; i < fp->num_slots; ++i) {
1322 unsigned generic = fp->slot_to_generic[i];
1323 if((generic < 32) && ((1 << generic) & sprite_coord_enable))
1325 if(fp->slot_to_fp_input[i] != sprite_reloc_input)
1326 goto update_slots;
1328 else
1330 unsigned char slot_mask = vp->generic_to_fp_input[generic];
1331 if((slot_mask >> 4) & (slot_mask ^ fp->slot_to_fp_input[i]))
1332 goto update_slots;
1336 if(emulate_sprite_flipping)
1338 if(fp->slot_to_fp_input[fp->num_slots] != sprite_real_input)
1339 goto update_slots;
1342 if(0)
1344 update_slots:
1345 /* optimization: we start updating from the slot we found the first difference in */
1346 for(; i < fp->num_slots; ++i)
1348 unsigned generic = fp->slot_to_generic[i];
1349 if((generic < 32) && ((1 << generic) & sprite_coord_enable))
1350 fp->slot_to_fp_input[i] = sprite_reloc_input;
1351 else
1352 fp->slot_to_fp_input[i] = vp->generic_to_fp_input[generic] & 0xf;
1355 fp->slot_to_fp_input[fp->num_slots] = sprite_real_input;
1357 if(nvfx->is_nv4x)
1359 fp->or = 0;
1360 for(i = 0; i <= fp->num_slots; ++i) {
1361 unsigned fp_input = fp->slot_to_fp_input[i];
1362 if(fp_input == NVFX_FP_OP_INPUT_SRC_TC(8))
1363 fp->or |= (1 << 12);
1364 else if(fp_input == NVFX_FP_OP_INPUT_SRC_TC(9))
1365 fp->or |= (1 << 13);
1366 else if(fp_input >= NVFX_FP_OP_INPUT_SRC_TC(0) && fp_input <= NVFX_FP_OP_INPUT_SRC_TC(7))
1367 fp->or |= (1 << (fp_input - NVFX_FP_OP_INPUT_SRC_TC0 + 14));
1371 fp->progs_left_with_obsolete_slot_assignments = fp->progs;
1372 goto update;
1376 /* We must update constants even on "just" fragprog changes, because
1377 * we don't check whether the current constant buffer matches the latest
1378 * one bound to this fragment program.
1379 * Doing such a check would likely be a pessimization.
1381 if ((nvfx->hw_fragprog != fp) || (nvfx->dirty & (NVFX_NEW_FRAGPROG | NVFX_NEW_FRAGCONST))) {
1382 int offset;
1383 uint32_t* fpmap;
1385 update:
1386 ++fp->bo_prog_idx;
1387 if(fp->bo_prog_idx >= fp->progs_per_bo)
1389 if(fp->fpbo && !nouveau_bo_busy(fp->fpbo->next->bo, NOUVEAU_BO_WR))
1391 fp->fpbo = fp->fpbo->next;
1393 else
1395 struct nvfx_fragment_program_bo* fpbo = os_malloc_aligned(sizeof(struct nvfx_fragment_program) + (fp->prog_size + 8) * fp->progs_per_bo, 16);
1396 uint8_t* map;
1397 uint8_t* buf;
1399 fpbo->slots = (unsigned char*)&fpbo->insn[(fp->prog_size) * fp->progs_per_bo];
1400 memset(fpbo->slots, 0, 8 * fp->progs_per_bo);
1401 if(fp->fpbo)
1403 fpbo->next = fp->fpbo->next;
1404 fp->fpbo->next = fpbo;
1406 else
1407 fpbo->next = fpbo;
1408 fp->fpbo = fpbo;
1409 fpbo->bo = 0;
1410 fp->progs += fp->progs_per_bo;
1411 fp->progs_left_with_obsolete_slot_assignments += fp->progs_per_bo;
1412 nouveau_bo_new(nvfx->screen->base.device, NOUVEAU_BO_VRAM | NOUVEAU_BO_MAP, 64, fp->prog_size * fp->progs_per_bo, &fpbo->bo);
1413 nouveau_bo_map(fpbo->bo, NOUVEAU_BO_NOSYNC);
1415 map = fpbo->bo->map;
1416 buf = (uint8_t*)fpbo->insn;
1417 for(unsigned i = 0; i < fp->progs_per_bo; ++i)
1419 memcpy(buf, fp->insn, fp->insn_len * 4);
1420 nvfx_fp_memcpy(map, fp->insn, fp->insn_len * 4);
1421 map += fp->prog_size;
1422 buf += fp->prog_size;
1425 fp->bo_prog_idx = 0;
1428 offset = fp->bo_prog_idx * fp->prog_size;
1429 fpmap = (uint32_t*)((char*)fp->fpbo->bo->map + offset);
1431 if(nvfx->constbuf[PIPE_SHADER_FRAGMENT]) {
1432 struct pipe_resource* constbuf = nvfx->constbuf[PIPE_SHADER_FRAGMENT];
1433 uint32_t* map = (uint32_t*)nvfx_buffer(constbuf)->data;
1434 uint32_t* fpmap = (uint32_t*)((char*)fp->fpbo->bo->map + offset);
1435 uint32_t* buf = (uint32_t*)((char*)fp->fpbo->insn + offset);
1436 int i;
1437 for (i = 0; i < fp->nr_consts; ++i) {
1438 unsigned off = fp->consts[i].offset;
1439 unsigned idx = fp->consts[i].index * 4;
1441 /* TODO: is checking a good idea? */
1442 if(memcmp(&buf[off], &map[idx], 4 * sizeof(uint32_t))) {
1443 memcpy(&buf[off], &map[idx], 4 * sizeof(uint32_t));
1444 nvfx_fp_memcpy(&fpmap[off], &map[idx], 4 * sizeof(uint32_t));
1449 /* we only do this if we aren't sure that all program versions have the
1450 * current slot assignments, otherwise we just update constants for speed
1452 if(fp->progs_left_with_obsolete_slot_assignments) {
1453 unsigned char* fpbo_slots = &fp->fpbo->slots[fp->bo_prog_idx * 8];
1454 /* also relocate sprite coord slot, if any */
1455 for(unsigned i = 0; i <= fp->num_slots; ++i) {
1456 unsigned value = fp->slot_to_fp_input[i];;
1457 if(value != fpbo_slots[i]) {
1458 unsigned* p;
1459 unsigned* begin = (unsigned*)fp->slot_relocations[i].data;
1460 unsigned* end = (unsigned*)((char*)fp->slot_relocations[i].data + fp->slot_relocations[i].size);
1461 //printf("fp %p reloc slot %u/%u: %u -> %u\n", fp, i, fp->num_slots, fpbo_slots[i], value);
1462 if(value == 0)
1464 /* was relocated to an input, switch type to temporary */
1465 for(p = begin; p != end; ++p) {
1466 unsigned off = *p;
1467 unsigned dw = fp->insn[off];
1468 dw &=~ NVFX_FP_REG_TYPE_MASK;
1469 //printf("reloc_tmp at %x\n", off);
1470 nvfx_fp_memcpy(&fpmap[off], &dw, sizeof(dw));
1472 } else {
1473 if(!fpbo_slots[i])
1475 /* was relocated to a temporary, switch type to input */
1476 for(p= begin; p != end; ++p) {
1477 unsigned off = *p;
1478 unsigned dw = fp->insn[off];
1479 //printf("reloc_in at %x\n", off);
1480 dw |= NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT;
1481 nvfx_fp_memcpy(&fpmap[off], &dw, sizeof(dw));
1485 /* set the correct input index */
1486 for(p = begin; p != end; ++p) {
1487 unsigned off = *p & ~3;
1488 unsigned dw = fp->insn[off];
1489 //printf("reloc&~3 at %x\n", off);
1490 dw = (dw & ~NVFX_FP_OP_INPUT_SRC_MASK) | (value << NVFX_FP_OP_INPUT_SRC_SHIFT);
1491 nvfx_fp_memcpy(&fpmap[off], &dw, sizeof(dw));
1494 fpbo_slots[i] = value;
1497 --fp->progs_left_with_obsolete_slot_assignments;
1500 nvfx->hw_fragprog = fp;
1502 MARK_RING(chan, 8, 1);
1503 BEGIN_RING(chan, eng3d, NV30_3D_FP_ACTIVE_PROGRAM, 1);
1504 OUT_RELOC(chan, fp->fpbo->bo, offset, NOUVEAU_BO_VRAM |
1505 NOUVEAU_BO_GART | NOUVEAU_BO_RD | NOUVEAU_BO_LOW |
1506 NOUVEAU_BO_OR, NV30_3D_FP_ACTIVE_PROGRAM_DMA0,
1507 NV30_3D_FP_ACTIVE_PROGRAM_DMA1);
1508 BEGIN_RING(chan, eng3d, NV30_3D_FP_CONTROL, 1);
1509 OUT_RING(chan, fp->fp_control);
1510 if(!nvfx->is_nv4x) {
1511 BEGIN_RING(chan, eng3d, NV30_3D_FP_REG_CONTROL, 1);
1512 OUT_RING(chan, (1<<16)|0x4);
1513 BEGIN_RING(chan, eng3d, NV30_3D_TEX_UNITS_ENABLE, 1);
1514 OUT_RING(chan, fp->samplers);
1519 unsigned pointsprite_control = fp->point_sprite_control | nvfx->rasterizer->pipe.point_quad_rasterization;
1520 if(pointsprite_control != nvfx->hw_pointsprite_control)
1522 BEGIN_RING(chan, eng3d, NV30_3D_POINT_SPRITE, 1);
1523 OUT_RING(chan, pointsprite_control);
1524 nvfx->hw_pointsprite_control = pointsprite_control;
1528 nvfx->relocs_needed &=~ NVFX_RELOCATE_FRAGPROG;
1531 void
1532 nvfx_fragprog_relocate(struct nvfx_context *nvfx)
1534 struct nouveau_channel* chan = nvfx->screen->base.channel;
1535 struct nvfx_fragment_program *fp = nvfx->hw_fragprog;
1536 struct nouveau_bo* bo = fp->fpbo->bo;
1537 int offset = fp->bo_prog_idx * fp->prog_size;
1538 unsigned fp_flags = NOUVEAU_BO_VRAM | NOUVEAU_BO_RD; // TODO: GART?
1539 fp_flags |= NOUVEAU_BO_DUMMY;
1540 MARK_RING(chan, 2, 2);
1541 OUT_RELOC(chan, bo, RING_3D(NV30_3D_FP_ACTIVE_PROGRAM, 1), fp_flags, 0, 0);
1542 OUT_RELOC(chan, bo, offset, fp_flags | NOUVEAU_BO_LOW |
1543 NOUVEAU_BO_OR, NV30_3D_FP_ACTIVE_PROGRAM_DMA0,
1544 NV30_3D_FP_ACTIVE_PROGRAM_DMA1);
1545 nvfx->relocs_needed &=~ NVFX_RELOCATE_FRAGPROG;
1548 void
1549 nvfx_fragprog_destroy(struct nvfx_context *nvfx,
1550 struct nvfx_fragment_program *fp)
1552 unsigned i;
1553 struct nvfx_fragment_program_bo* fpbo = fp->fpbo;
1554 if(fpbo)
1558 struct nvfx_fragment_program_bo* next = fpbo->next;
1559 nouveau_bo_unmap(fpbo->bo);
1560 nouveau_bo_ref(0, &fpbo->bo);
1561 os_free_aligned(fpbo);
1562 fpbo = next;
1564 while(fpbo != fp->fpbo);
1567 for(i = 0; i < Elements(fp->slot_relocations); ++i)
1568 util_dynarray_fini(&fp->slot_relocations[i]);
1570 if (fp->insn_len)
1571 FREE(fp->insn);
1574 static void *
1575 nvfx_fp_state_create(struct pipe_context *pipe,
1576 const struct pipe_shader_state *cso)
1578 struct nvfx_pipe_fragment_program *pfp;
1580 pfp = CALLOC(1, sizeof(struct nvfx_pipe_fragment_program));
1581 pfp->pipe.tokens = tgsi_dup_tokens(cso->tokens);
1583 tgsi_scan_shader(pfp->pipe.tokens, &pfp->info);
1585 return (void *)pfp;
1588 static void
1589 nvfx_fp_state_bind(struct pipe_context *pipe, void *hwcso)
1591 struct nvfx_context *nvfx = nvfx_context(pipe);
1593 nvfx->fragprog = hwcso;
1594 nvfx->dirty |= NVFX_NEW_FRAGPROG;
1597 static void
1598 nvfx_fp_state_delete(struct pipe_context *pipe, void *hwcso)
1600 struct nvfx_context *nvfx = nvfx_context(pipe);
1601 struct nvfx_pipe_fragment_program *pfp = hwcso;
1602 unsigned i;
1604 for(i = 0; i < Elements(pfp->fps); ++i)
1606 if(pfp->fps[i])
1608 nvfx_fragprog_destroy(nvfx, pfp->fps[i]);
1609 FREE(pfp->fps[i]);
1613 FREE((void*)pfp->pipe.tokens);
1614 FREE(pfp);
1617 void
1618 nvfx_init_fragprog_functions(struct nvfx_context *nvfx)
1620 nvfx->pipe.create_fs_state = nvfx_fp_state_create;
1621 nvfx->pipe.bind_fs_state = nvfx_fp_state_bind;
1622 nvfx->pipe.delete_fs_state = nvfx_fp_state_delete;