2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
25 * \file lower_instructions.cpp
27 * Many GPUs lack native instructions for certain expression operations, and
28 * must replace them with some other expression tree. This pass lowers some
29 * of the most common cases, allowing the lowering code to be implemented once
30 * rather than in each driver backend.
32 * Currently supported transformations:
42 * Breaks an ir_binop_sub expression down to add(op0, neg(op1))
44 * This simplifies expression reassociation, and for many backends
45 * there is no subtract operation separate from adding the negation.
46 * For backends with native subtract operations, they will probably
47 * want to recognize add(op0, neg(op1)) or the other way around to
48 * produce a subtract anyway.
52 * Breaks an ir_unop_div expression down to op0 * (rcp(op1)).
54 * Many GPUs don't have a divide instruction (945 and 965 included),
55 * but they do have an RCP instruction to compute an approximate
56 * reciprocal. By breaking the operation down, constant reciprocals
57 * can get constant folded.
59 * EXP_TO_EXP2 and LOG_TO_LOG2:
60 * ----------------------------
61 * Many GPUs don't have a base e log or exponent instruction, but they
62 * do have base 2 versions, so this pass converts exp and log to exp2
63 * and log2 operations.
67 * Many older GPUs don't have an x**y instruction. For these GPUs, convert
68 * x**y to 2**(y * log2(x)).
72 * Breaks an ir_unop_mod expression down to (op1 * fract(op0 / op1))
74 * Many GPUs don't have a MOD instruction (945 and 965 included), and
75 * if we have to break it down like this anyway, it gives an
76 * opportunity to do things like constant fold the (1.0 / op1) easily.
79 #include "main/core.h" /* for M_LOG2E */
80 #include "glsl_types.h"
82 #include "ir_optimization.h"
84 class lower_instructions_visitor
: public ir_hierarchical_visitor
{
86 lower_instructions_visitor(unsigned lower
)
87 : progress(false), lower(lower
) { }
89 ir_visitor_status
visit_leave(ir_expression
*);
94 unsigned lower
; /** Bitfield of which operations to lower */
96 void sub_to_add_neg(ir_expression
*);
97 void div_to_mul_rcp(ir_expression
*);
98 void mod_to_fract(ir_expression
*);
99 void exp_to_exp2(ir_expression
*);
100 void pow_to_exp2(ir_expression
*);
101 void log_to_log2(ir_expression
*);
105 * Determine if a particular type of lowering should occur
107 #define lowering(x) (this->lower & x)
110 lower_instructions(exec_list
*instructions
, unsigned what_to_lower
)
112 lower_instructions_visitor
v(what_to_lower
);
114 visit_list_elements(&v
, instructions
);
119 lower_instructions_visitor::sub_to_add_neg(ir_expression
*ir
)
121 ir
->operation
= ir_binop_add
;
122 ir
->operands
[1] = new(ir
) ir_expression(ir_unop_neg
, ir
->operands
[1]->type
,
123 ir
->operands
[1], NULL
);
124 this->progress
= true;
128 lower_instructions_visitor::div_to_mul_rcp(ir_expression
*ir
)
130 if (!ir
->operands
[1]->type
->is_integer()) {
131 /* New expression for the 1.0 / op1 */
133 expr
= new(ir
) ir_expression(ir_unop_rcp
,
134 ir
->operands
[1]->type
,
138 /* op0 / op1 -> op0 * (1.0 / op1) */
139 ir
->operation
= ir_binop_mul
;
140 ir
->operands
[1] = expr
;
142 /* Be careful with integer division -- we need to do it as a
143 * float and re-truncate, since rcp(n > 1) of an integer would
146 ir_rvalue
*op0
, *op1
;
147 const struct glsl_type
*vec_type
;
149 vec_type
= glsl_type::get_instance(GLSL_TYPE_FLOAT
,
150 ir
->operands
[1]->type
->vector_elements
,
151 ir
->operands
[1]->type
->matrix_columns
);
153 if (ir
->operands
[1]->type
->base_type
== GLSL_TYPE_INT
)
154 op1
= new(ir
) ir_expression(ir_unop_i2f
, vec_type
, ir
->operands
[1], NULL
);
156 op1
= new(ir
) ir_expression(ir_unop_u2f
, vec_type
, ir
->operands
[1], NULL
);
158 op1
= new(ir
) ir_expression(ir_unop_rcp
, op1
->type
, op1
, NULL
);
160 vec_type
= glsl_type::get_instance(GLSL_TYPE_FLOAT
,
161 ir
->operands
[0]->type
->vector_elements
,
162 ir
->operands
[0]->type
->matrix_columns
);
164 if (ir
->operands
[0]->type
->base_type
== GLSL_TYPE_INT
)
165 op0
= new(ir
) ir_expression(ir_unop_i2f
, vec_type
, ir
->operands
[0], NULL
);
167 op0
= new(ir
) ir_expression(ir_unop_u2f
, vec_type
, ir
->operands
[0], NULL
);
169 op0
= new(ir
) ir_expression(ir_binop_mul
, vec_type
, op0
, op1
);
171 ir
->operation
= ir_unop_f2i
;
172 ir
->operands
[0] = op0
;
173 ir
->operands
[1] = NULL
;
176 this->progress
= true;
180 lower_instructions_visitor::exp_to_exp2(ir_expression
*ir
)
182 ir_constant
*log2_e
= new(ir
) ir_constant(float(M_LOG2E
));
184 ir
->operation
= ir_unop_exp2
;
185 ir
->operands
[0] = new(ir
) ir_expression(ir_binop_mul
, ir
->operands
[0]->type
,
186 ir
->operands
[0], log2_e
);
187 this->progress
= true;
191 lower_instructions_visitor::pow_to_exp2(ir_expression
*ir
)
193 ir_expression
*const log2_x
=
194 new(ir
) ir_expression(ir_unop_log2
, ir
->operands
[0]->type
,
197 ir
->operation
= ir_unop_exp2
;
198 ir
->operands
[0] = new(ir
) ir_expression(ir_binop_mul
, ir
->operands
[1]->type
,
199 ir
->operands
[1], log2_x
);
200 ir
->operands
[1] = NULL
;
201 this->progress
= true;
205 lower_instructions_visitor::log_to_log2(ir_expression
*ir
)
207 ir
->operation
= ir_binop_mul
;
208 ir
->operands
[0] = new(ir
) ir_expression(ir_unop_log2
, ir
->operands
[0]->type
,
209 ir
->operands
[0], NULL
);
210 ir
->operands
[1] = new(ir
) ir_constant(float(1.0 / M_LOG2E
));
211 this->progress
= true;
215 lower_instructions_visitor::mod_to_fract(ir_expression
*ir
)
217 ir_variable
*temp
= new(ir
) ir_variable(ir
->operands
[1]->type
, "mod_b",
219 this->base_ir
->insert_before(temp
);
221 ir_assignment
*const assign
=
222 new(ir
) ir_assignment(new(ir
) ir_dereference_variable(temp
),
223 ir
->operands
[1], NULL
);
225 this->base_ir
->insert_before(assign
);
227 ir_expression
*const div_expr
=
228 new(ir
) ir_expression(ir_binop_div
, ir
->operands
[0]->type
,
230 new(ir
) ir_dereference_variable(temp
));
232 /* Don't generate new IR that would need to be lowered in an additional
235 if (lowering(DIV_TO_MUL_RCP
))
236 div_to_mul_rcp(div_expr
);
238 ir_rvalue
*expr
= new(ir
) ir_expression(ir_unop_fract
,
239 ir
->operands
[0]->type
,
243 ir
->operation
= ir_binop_mul
;
244 ir
->operands
[0] = new(ir
) ir_dereference_variable(temp
);
245 ir
->operands
[1] = expr
;
246 this->progress
= true;
250 lower_instructions_visitor::visit_leave(ir_expression
*ir
)
252 switch (ir
->operation
) {
254 if (lowering(SUB_TO_ADD_NEG
))
259 if (lowering(DIV_TO_MUL_RCP
))
264 if (lowering(EXP_TO_EXP2
))
269 if (lowering(LOG_TO_LOG2
))
274 if (lowering(MOD_TO_FRACT
))
279 if (lowering(POW_TO_EXP2
))
284 return visit_continue
;
287 return visit_continue
;