revert 213 commits (to 56092) from the last month. 10 still need work to resolve...
[AROS.git] / workbench / libs / mesa / src / mesa / program / ir_to_mesa.cpp
blob9756ed9c2879aca97cadd00b0a0ff1f1b3150e75
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
26 /**
27 * \file ir_to_mesa.cpp
29 * Translate GLSL IR to Mesa's gl_program representation.
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_print_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
44 extern "C" {
45 #include "main/mtypes.h"
46 #include "main/shaderapi.h"
47 #include "main/shaderobj.h"
48 #include "main/uniforms.h"
49 #include "program/hash_table.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_uniform.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
59 class src_reg;
60 class dst_reg;
62 static int swizzle_for_size(int size);
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
82 src_reg()
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
91 explicit src_reg(dst_reg reg);
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->cond_mask = COND_TR;
109 this->reladdr = NULL;
112 dst_reg()
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->cond_mask = COND_TR;
118 this->reladdr = NULL;
121 explicit dst_reg(src_reg reg);
123 gl_register_file file; /**< PROGRAM_* from Mesa */
124 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
125 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
126 GLuint cond_mask:4;
127 /** Register index should be offset by the integer in this reg. */
128 src_reg *reladdr;
131 src_reg::src_reg(dst_reg reg)
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
140 dst_reg::dst_reg(src_reg reg)
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->cond_mask = COND_TR;
146 this->reladdr = reg.reladdr;
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151 /* Callers of this ralloc-based new need not call delete. It's
152 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
153 static void* operator new(size_t size, void *ctx)
155 void *node;
157 node = rzalloc_size(ctx, size);
158 assert(node != NULL);
160 return node;
163 enum prog_opcode op;
164 dst_reg dst;
165 src_reg src[3];
166 /** Pointer to the ir source this tree came from for debugging */
167 ir_instruction *ir;
168 GLboolean cond_update;
169 bool saturate;
170 int sampler; /**< sampler index */
171 int tex_target; /**< One of TEXTURE_*_INDEX */
172 GLboolean tex_shadow;
174 class function_entry *function; /* Set on OPCODE_CAL or OPCODE_BGNSUB */
177 class variable_storage : public exec_node {
178 public:
179 variable_storage(ir_variable *var, gl_register_file file, int index)
180 : file(file), index(index), var(var)
182 /* empty */
185 gl_register_file file;
186 int index;
187 ir_variable *var; /* variable that maps to this, if any */
190 class function_entry : public exec_node {
191 public:
192 ir_function_signature *sig;
195 * identifier of this function signature used by the program.
197 * At the point that Mesa instructions for function calls are
198 * generated, we don't know the address of the first instruction of
199 * the function body. So we make the BranchTarget that is called a
200 * small integer and rewrite them during set_branchtargets().
202 int sig_id;
205 * Pointer to first instruction of the function body.
207 * Set during function body emits after main() is processed.
209 ir_to_mesa_instruction *bgn_inst;
212 * Index of the first instruction of the function body in actual
213 * Mesa IR.
215 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
217 int inst;
219 /** Storage for the return value. */
220 src_reg return_reg;
223 class ir_to_mesa_visitor : public ir_visitor {
224 public:
225 ir_to_mesa_visitor();
226 ~ir_to_mesa_visitor();
228 function_entry *current_function;
230 struct gl_context *ctx;
231 struct gl_program *prog;
232 struct gl_shader_program *shader_program;
233 struct gl_shader_compiler_options *options;
235 int next_temp;
237 variable_storage *find_variable_storage(ir_variable *var);
239 function_entry *get_function_signature(ir_function_signature *sig);
241 src_reg get_temp(const glsl_type *type);
242 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
244 src_reg src_reg_for_float(float val);
247 * \name Visit methods
249 * As typical for the visitor pattern, there must be one \c visit method for
250 * each concrete subclass of \c ir_instruction. Virtual base classes within
251 * the hierarchy should not have \c visit methods.
253 /*@{*/
254 virtual void visit(ir_variable *);
255 virtual void visit(ir_loop *);
256 virtual void visit(ir_loop_jump *);
257 virtual void visit(ir_function_signature *);
258 virtual void visit(ir_function *);
259 virtual void visit(ir_expression *);
260 virtual void visit(ir_swizzle *);
261 virtual void visit(ir_dereference_variable *);
262 virtual void visit(ir_dereference_array *);
263 virtual void visit(ir_dereference_record *);
264 virtual void visit(ir_assignment *);
265 virtual void visit(ir_constant *);
266 virtual void visit(ir_call *);
267 virtual void visit(ir_return *);
268 virtual void visit(ir_discard *);
269 virtual void visit(ir_texture *);
270 virtual void visit(ir_if *);
271 /*@}*/
273 src_reg result;
275 /** List of variable_storage */
276 exec_list variables;
278 /** List of function_entry */
279 exec_list function_signatures;
280 int next_signature_id;
282 /** List of ir_to_mesa_instruction */
283 exec_list instructions;
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288 dst_reg dst, src_reg src0);
290 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
291 dst_reg dst, src_reg src0, src_reg src1);
293 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
294 dst_reg dst,
295 src_reg src0, src_reg src1, src_reg src2);
298 * Emit the correct dot-product instruction for the type of arguments
300 void emit_dp(ir_instruction *ir,
301 dst_reg dst,
302 src_reg src0,
303 src_reg src1,
304 unsigned elements);
306 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
307 dst_reg dst, src_reg src0);
309 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
310 dst_reg dst, src_reg src0, src_reg src1);
312 void emit_scs(ir_instruction *ir, enum prog_opcode op,
313 dst_reg dst, const src_reg &src);
315 GLboolean try_emit_mad(ir_expression *ir,
316 int mul_operand);
317 GLboolean try_emit_sat(ir_expression *ir);
319 void emit_swz(ir_expression *ir);
321 bool process_move_condition(ir_rvalue *ir);
323 void copy_propagate(void);
325 void *mem_ctx;
328 src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
330 dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
332 dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
334 static void
335 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
337 static void
338 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
340 va_list args;
341 va_start(args, fmt);
342 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
343 va_end(args);
345 prog->LinkStatus = GL_FALSE;
348 static int
349 swizzle_for_size(int size)
351 int size_swizzles[4] = {
352 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
353 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
354 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
355 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
358 assert((size >= 1) && (size <= 4));
359 return size_swizzles[size - 1];
362 ir_to_mesa_instruction *
363 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
364 dst_reg dst,
365 src_reg src0, src_reg src1, src_reg src2)
367 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
368 int num_reladdr = 0;
370 /* If we have to do relative addressing, we want to load the ARL
371 * reg directly for one of the regs, and preload the other reladdr
372 * sources into temps.
374 num_reladdr += dst.reladdr != NULL;
375 num_reladdr += src0.reladdr != NULL;
376 num_reladdr += src1.reladdr != NULL;
377 num_reladdr += src2.reladdr != NULL;
379 reladdr_to_temp(ir, &src2, &num_reladdr);
380 reladdr_to_temp(ir, &src1, &num_reladdr);
381 reladdr_to_temp(ir, &src0, &num_reladdr);
383 if (dst.reladdr) {
384 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
385 num_reladdr--;
387 assert(num_reladdr == 0);
389 inst->op = op;
390 inst->dst = dst;
391 inst->src[0] = src0;
392 inst->src[1] = src1;
393 inst->src[2] = src2;
394 inst->ir = ir;
396 inst->function = NULL;
398 this->instructions.push_tail(inst);
400 return inst;
404 ir_to_mesa_instruction *
405 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
406 dst_reg dst, src_reg src0, src_reg src1)
408 return emit(ir, op, dst, src0, src1, undef_src);
411 ir_to_mesa_instruction *
412 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
413 dst_reg dst, src_reg src0)
415 assert(dst.writemask != 0);
416 return emit(ir, op, dst, src0, undef_src, undef_src);
419 ir_to_mesa_instruction *
420 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
422 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
425 void
426 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
427 dst_reg dst, src_reg src0, src_reg src1,
428 unsigned elements)
430 static const gl_inst_opcode dot_opcodes[] = {
431 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
434 emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
438 * Emits Mesa scalar opcodes to produce unique answers across channels.
440 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
441 * channel determines the result across all channels. So to do a vec4
442 * of this operation, we want to emit a scalar per source channel used
443 * to produce dest channels.
445 void
446 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
447 dst_reg dst,
448 src_reg orig_src0, src_reg orig_src1)
450 int i, j;
451 int done_mask = ~dst.writemask;
453 /* Mesa RCP is a scalar operation splatting results to all channels,
454 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
455 * dst channels.
457 for (i = 0; i < 4; i++) {
458 GLuint this_mask = (1 << i);
459 ir_to_mesa_instruction *inst;
460 src_reg src0 = orig_src0;
461 src_reg src1 = orig_src1;
463 if (done_mask & this_mask)
464 continue;
466 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
467 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
468 for (j = i + 1; j < 4; j++) {
469 /* If there is another enabled component in the destination that is
470 * derived from the same inputs, generate its value on this pass as
471 * well.
473 if (!(done_mask & (1 << j)) &&
474 GET_SWZ(src0.swizzle, j) == src0_swiz &&
475 GET_SWZ(src1.swizzle, j) == src1_swiz) {
476 this_mask |= (1 << j);
479 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
480 src0_swiz, src0_swiz);
481 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
482 src1_swiz, src1_swiz);
484 inst = emit(ir, op, dst, src0, src1);
485 inst->dst.writemask = this_mask;
486 done_mask |= this_mask;
490 void
491 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
492 dst_reg dst, src_reg src0)
494 src_reg undef = undef_src;
496 undef.swizzle = SWIZZLE_XXXX;
498 emit_scalar(ir, op, dst, src0, undef);
502 * Emit an OPCODE_SCS instruction
504 * The \c SCS opcode functions a bit differently than the other Mesa (or
505 * ARB_fragment_program) opcodes. Instead of splatting its result across all
506 * four components of the destination, it writes one value to the \c x
507 * component and another value to the \c y component.
509 * \param ir IR instruction being processed
510 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
511 * value is desired.
512 * \param dst Destination register
513 * \param src Source register
515 void
516 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
517 dst_reg dst,
518 const src_reg &src)
520 /* Vertex programs cannot use the SCS opcode.
522 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
523 emit_scalar(ir, op, dst, src);
524 return;
527 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
528 const unsigned scs_mask = (1U << component);
529 int done_mask = ~dst.writemask;
530 src_reg tmp;
532 assert(op == OPCODE_SIN || op == OPCODE_COS);
534 /* If there are compnents in the destination that differ from the component
535 * that will be written by the SCS instrution, we'll need a temporary.
537 if (scs_mask != unsigned(dst.writemask)) {
538 tmp = get_temp(glsl_type::vec4_type);
541 for (unsigned i = 0; i < 4; i++) {
542 unsigned this_mask = (1U << i);
543 src_reg src0 = src;
545 if ((done_mask & this_mask) != 0)
546 continue;
548 /* The source swizzle specified which component of the source generates
549 * sine / cosine for the current component in the destination. The SCS
550 * instruction requires that this value be swizzle to the X component.
551 * Replace the current swizzle with a swizzle that puts the source in
552 * the X component.
554 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
556 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
557 src0_swiz, src0_swiz);
558 for (unsigned j = i + 1; j < 4; j++) {
559 /* If there is another enabled component in the destination that is
560 * derived from the same inputs, generate its value on this pass as
561 * well.
563 if (!(done_mask & (1 << j)) &&
564 GET_SWZ(src0.swizzle, j) == src0_swiz) {
565 this_mask |= (1 << j);
569 if (this_mask != scs_mask) {
570 ir_to_mesa_instruction *inst;
571 dst_reg tmp_dst = dst_reg(tmp);
573 /* Emit the SCS instruction.
575 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
576 inst->dst.writemask = scs_mask;
578 /* Move the result of the SCS instruction to the desired location in
579 * the destination.
581 tmp.swizzle = MAKE_SWIZZLE4(component, component,
582 component, component);
583 inst = emit(ir, OPCODE_SCS, dst, tmp);
584 inst->dst.writemask = this_mask;
585 } else {
586 /* Emit the SCS instruction to write directly to the destination.
588 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
589 inst->dst.writemask = scs_mask;
592 done_mask |= this_mask;
596 struct src_reg
597 ir_to_mesa_visitor::src_reg_for_float(float val)
599 src_reg src(PROGRAM_CONSTANT, -1, NULL);
601 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
602 &val, 1, &src.swizzle);
604 return src;
607 static int
608 type_size(const struct glsl_type *type)
610 unsigned int i;
611 int size;
613 switch (type->base_type) {
614 case GLSL_TYPE_UINT:
615 case GLSL_TYPE_INT:
616 case GLSL_TYPE_FLOAT:
617 case GLSL_TYPE_BOOL:
618 if (type->is_matrix()) {
619 return type->matrix_columns;
620 } else {
621 /* Regardless of size of vector, it gets a vec4. This is bad
622 * packing for things like floats, but otherwise arrays become a
623 * mess. Hopefully a later pass over the code can pack scalars
624 * down if appropriate.
626 return 1;
628 case GLSL_TYPE_ARRAY:
629 assert(type->length > 0);
630 return type_size(type->fields.array) * type->length;
631 case GLSL_TYPE_STRUCT:
632 size = 0;
633 for (i = 0; i < type->length; i++) {
634 size += type_size(type->fields.structure[i].type);
636 return size;
637 case GLSL_TYPE_SAMPLER:
638 /* Samplers take up one slot in UNIFORMS[], but they're baked in
639 * at link time.
641 return 1;
642 default:
643 assert(0);
644 return 0;
649 * In the initial pass of codegen, we assign temporary numbers to
650 * intermediate results. (not SSA -- variable assignments will reuse
651 * storage). Actual register allocation for the Mesa VM occurs in a
652 * pass over the Mesa IR later.
654 src_reg
655 ir_to_mesa_visitor::get_temp(const glsl_type *type)
657 src_reg src;
658 int swizzle[4];
659 int i;
661 src.file = PROGRAM_TEMPORARY;
662 src.index = next_temp;
663 src.reladdr = NULL;
664 next_temp += type_size(type);
666 if (type->is_array() || type->is_record()) {
667 src.swizzle = SWIZZLE_NOOP;
668 } else {
669 for (i = 0; i < type->vector_elements; i++)
670 swizzle[i] = i;
671 for (; i < 4; i++)
672 swizzle[i] = type->vector_elements - 1;
673 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
674 swizzle[2], swizzle[3]);
676 src.negate = 0;
678 return src;
681 variable_storage *
682 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
685 variable_storage *entry;
687 foreach_iter(exec_list_iterator, iter, this->variables) {
688 entry = (variable_storage *)iter.get();
690 if (entry->var == var)
691 return entry;
694 return NULL;
697 void
698 ir_to_mesa_visitor::visit(ir_variable *ir)
700 if (strcmp(ir->name, "gl_FragCoord") == 0) {
701 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
703 fp->OriginUpperLeft = ir->origin_upper_left;
704 fp->PixelCenterInteger = ir->pixel_center_integer;
706 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
707 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
708 switch (ir->depth_layout) {
709 case ir_depth_layout_none:
710 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
711 break;
712 case ir_depth_layout_any:
713 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
714 break;
715 case ir_depth_layout_greater:
716 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
717 break;
718 case ir_depth_layout_less:
719 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
720 break;
721 case ir_depth_layout_unchanged:
722 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
723 break;
724 default:
725 assert(0);
726 break;
730 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
731 unsigned int i;
732 const ir_state_slot *const slots = ir->state_slots;
733 assert(ir->state_slots != NULL);
735 /* Check if this statevar's setup in the STATE file exactly
736 * matches how we'll want to reference it as a
737 * struct/array/whatever. If not, then we need to move it into
738 * temporary storage and hope that it'll get copy-propagated
739 * out.
741 for (i = 0; i < ir->num_state_slots; i++) {
742 if (slots[i].swizzle != SWIZZLE_XYZW) {
743 break;
747 struct variable_storage *storage;
748 dst_reg dst;
749 if (i == ir->num_state_slots) {
750 /* We'll set the index later. */
751 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
752 this->variables.push_tail(storage);
754 dst = undef_dst;
755 } else {
756 /* The variable_storage constructor allocates slots based on the size
757 * of the type. However, this had better match the number of state
758 * elements that we're going to copy into the new temporary.
760 assert((int) ir->num_state_slots == type_size(ir->type));
762 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
763 this->next_temp);
764 this->variables.push_tail(storage);
765 this->next_temp += type_size(ir->type);
767 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
771 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
772 int index = _mesa_add_state_reference(this->prog->Parameters,
773 (gl_state_index *)slots[i].tokens);
775 if (storage->file == PROGRAM_STATE_VAR) {
776 if (storage->index == -1) {
777 storage->index = index;
778 } else {
779 assert(index == storage->index + (int)i);
781 } else {
782 src_reg src(PROGRAM_STATE_VAR, index, NULL);
783 src.swizzle = slots[i].swizzle;
784 emit(ir, OPCODE_MOV, dst, src);
785 /* even a float takes up a whole vec4 reg in a struct/array. */
786 dst.index++;
790 if (storage->file == PROGRAM_TEMPORARY &&
791 dst.index != storage->index + (int) ir->num_state_slots) {
792 fail_link(this->shader_program,
793 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
794 ir->name, dst.index - storage->index,
795 type_size(ir->type));
800 void
801 ir_to_mesa_visitor::visit(ir_loop *ir)
803 ir_dereference_variable *counter = NULL;
805 if (ir->counter != NULL)
806 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
808 if (ir->from != NULL) {
809 assert(ir->counter != NULL);
811 ir_assignment *a =
812 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
814 a->accept(this);
817 emit(NULL, OPCODE_BGNLOOP);
819 if (ir->to) {
820 ir_expression *e =
821 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
822 counter, ir->to);
823 ir_if *if_stmt = new(mem_ctx) ir_if(e);
825 ir_loop_jump *brk =
826 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
828 if_stmt->then_instructions.push_tail(brk);
830 if_stmt->accept(this);
833 visit_exec_list(&ir->body_instructions, this);
835 if (ir->increment) {
836 ir_expression *e =
837 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
838 counter, ir->increment);
840 ir_assignment *a =
841 new(mem_ctx) ir_assignment(counter, e, NULL);
843 a->accept(this);
846 emit(NULL, OPCODE_ENDLOOP);
849 void
850 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
852 switch (ir->mode) {
853 case ir_loop_jump::jump_break:
854 emit(NULL, OPCODE_BRK);
855 break;
856 case ir_loop_jump::jump_continue:
857 emit(NULL, OPCODE_CONT);
858 break;
863 void
864 ir_to_mesa_visitor::visit(ir_function_signature *ir)
866 assert(0);
867 (void)ir;
870 void
871 ir_to_mesa_visitor::visit(ir_function *ir)
873 /* Ignore function bodies other than main() -- we shouldn't see calls to
874 * them since they should all be inlined before we get to ir_to_mesa.
876 if (strcmp(ir->name, "main") == 0) {
877 const ir_function_signature *sig;
878 exec_list empty;
880 sig = ir->matching_signature(&empty);
882 assert(sig);
884 foreach_iter(exec_list_iterator, iter, sig->body) {
885 ir_instruction *ir = (ir_instruction *)iter.get();
887 ir->accept(this);
892 GLboolean
893 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
895 int nonmul_operand = 1 - mul_operand;
896 src_reg a, b, c;
898 ir_expression *expr = ir->operands[mul_operand]->as_expression();
899 if (!expr || expr->operation != ir_binop_mul)
900 return false;
902 expr->operands[0]->accept(this);
903 a = this->result;
904 expr->operands[1]->accept(this);
905 b = this->result;
906 ir->operands[nonmul_operand]->accept(this);
907 c = this->result;
909 this->result = get_temp(ir->type);
910 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
912 return true;
915 GLboolean
916 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
918 /* Saturates were only introduced to vertex programs in
919 * NV_vertex_program3, so don't give them to drivers in the VP.
921 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
922 return false;
924 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
925 if (!sat_src)
926 return false;
928 sat_src->accept(this);
929 src_reg src = this->result;
931 this->result = get_temp(ir->type);
932 ir_to_mesa_instruction *inst;
933 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
934 inst->saturate = true;
936 return true;
939 void
940 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
941 src_reg *reg, int *num_reladdr)
943 if (!reg->reladdr)
944 return;
946 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
948 if (*num_reladdr != 1) {
949 src_reg temp = get_temp(glsl_type::vec4_type);
951 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
952 *reg = temp;
955 (*num_reladdr)--;
958 void
959 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
961 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
962 * This means that each of the operands is either an immediate value of -1,
963 * 0, or 1, or is a component from one source register (possibly with
964 * negation).
966 uint8_t components[4] = { 0 };
967 bool negate[4] = { false };
968 ir_variable *var = NULL;
970 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
971 ir_rvalue *op = ir->operands[i];
973 assert(op->type->is_scalar());
975 while (op != NULL) {
976 switch (op->ir_type) {
977 case ir_type_constant: {
979 assert(op->type->is_scalar());
981 const ir_constant *const c = op->as_constant();
982 if (c->is_one()) {
983 components[i] = SWIZZLE_ONE;
984 } else if (c->is_zero()) {
985 components[i] = SWIZZLE_ZERO;
986 } else if (c->is_negative_one()) {
987 components[i] = SWIZZLE_ONE;
988 negate[i] = true;
989 } else {
990 assert(!"SWZ constant must be 0.0 or 1.0.");
993 op = NULL;
994 break;
997 case ir_type_dereference_variable: {
998 ir_dereference_variable *const deref =
999 (ir_dereference_variable *) op;
1001 assert((var == NULL) || (deref->var == var));
1002 components[i] = SWIZZLE_X;
1003 var = deref->var;
1004 op = NULL;
1005 break;
1008 case ir_type_expression: {
1009 ir_expression *const expr = (ir_expression *) op;
1011 assert(expr->operation == ir_unop_neg);
1012 negate[i] = true;
1014 op = expr->operands[0];
1015 break;
1018 case ir_type_swizzle: {
1019 ir_swizzle *const swiz = (ir_swizzle *) op;
1021 components[i] = swiz->mask.x;
1022 op = swiz->val;
1023 break;
1026 default:
1027 assert(!"Should not get here.");
1028 return;
1033 assert(var != NULL);
1035 ir_dereference_variable *const deref =
1036 new(mem_ctx) ir_dereference_variable(var);
1038 this->result.file = PROGRAM_UNDEFINED;
1039 deref->accept(this);
1040 if (this->result.file == PROGRAM_UNDEFINED) {
1041 ir_print_visitor v;
1042 printf("Failed to get tree for expression operand:\n");
1043 deref->accept(&v);
1044 exit(1);
1047 src_reg src;
1049 src = this->result;
1050 src.swizzle = MAKE_SWIZZLE4(components[0],
1051 components[1],
1052 components[2],
1053 components[3]);
1054 src.negate = ((unsigned(negate[0]) << 0)
1055 | (unsigned(negate[1]) << 1)
1056 | (unsigned(negate[2]) << 2)
1057 | (unsigned(negate[3]) << 3));
1059 /* Storage for our result. Ideally for an assignment we'd be using the
1060 * actual storage for the result here, instead.
1062 const src_reg result_src = get_temp(ir->type);
1063 dst_reg result_dst = dst_reg(result_src);
1065 /* Limit writes to the channels that will be used by result_src later.
1066 * This does limit this temp's use as a temporary for multi-instruction
1067 * sequences.
1069 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1071 emit(ir, OPCODE_SWZ, result_dst, src);
1072 this->result = result_src;
1075 void
1076 ir_to_mesa_visitor::visit(ir_expression *ir)
1078 unsigned int operand;
1079 src_reg op[Elements(ir->operands)];
1080 src_reg result_src;
1081 dst_reg result_dst;
1083 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1085 if (ir->operation == ir_binop_add) {
1086 if (try_emit_mad(ir, 1))
1087 return;
1088 if (try_emit_mad(ir, 0))
1089 return;
1091 if (try_emit_sat(ir))
1092 return;
1094 if (ir->operation == ir_quadop_vector) {
1095 this->emit_swz(ir);
1096 return;
1099 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1100 this->result.file = PROGRAM_UNDEFINED;
1101 ir->operands[operand]->accept(this);
1102 if (this->result.file == PROGRAM_UNDEFINED) {
1103 ir_print_visitor v;
1104 printf("Failed to get tree for expression operand:\n");
1105 ir->operands[operand]->accept(&v);
1106 exit(1);
1108 op[operand] = this->result;
1110 /* Matrix expression operands should have been broken down to vector
1111 * operations already.
1113 assert(!ir->operands[operand]->type->is_matrix());
1116 int vector_elements = ir->operands[0]->type->vector_elements;
1117 if (ir->operands[1]) {
1118 vector_elements = MAX2(vector_elements,
1119 ir->operands[1]->type->vector_elements);
1122 this->result.file = PROGRAM_UNDEFINED;
1124 /* Storage for our result. Ideally for an assignment we'd be using
1125 * the actual storage for the result here, instead.
1127 result_src = get_temp(ir->type);
1128 /* convenience for the emit functions below. */
1129 result_dst = dst_reg(result_src);
1130 /* Limit writes to the channels that will be used by result_src later.
1131 * This does limit this temp's use as a temporary for multi-instruction
1132 * sequences.
1134 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1136 switch (ir->operation) {
1137 case ir_unop_logic_not:
1138 emit(ir, OPCODE_SEQ, result_dst, op[0], src_reg_for_float(0.0));
1139 break;
1140 case ir_unop_neg:
1141 op[0].negate = ~op[0].negate;
1142 result_src = op[0];
1143 break;
1144 case ir_unop_abs:
1145 emit(ir, OPCODE_ABS, result_dst, op[0]);
1146 break;
1147 case ir_unop_sign:
1148 emit(ir, OPCODE_SSG, result_dst, op[0]);
1149 break;
1150 case ir_unop_rcp:
1151 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1152 break;
1154 case ir_unop_exp2:
1155 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1156 break;
1157 case ir_unop_exp:
1158 case ir_unop_log:
1159 assert(!"not reached: should be handled by ir_explog_to_explog2");
1160 break;
1161 case ir_unop_log2:
1162 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1163 break;
1164 case ir_unop_sin:
1165 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1166 break;
1167 case ir_unop_cos:
1168 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1169 break;
1170 case ir_unop_sin_reduced:
1171 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1172 break;
1173 case ir_unop_cos_reduced:
1174 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1175 break;
1177 case ir_unop_dFdx:
1178 emit(ir, OPCODE_DDX, result_dst, op[0]);
1179 break;
1180 case ir_unop_dFdy:
1181 emit(ir, OPCODE_DDY, result_dst, op[0]);
1182 break;
1184 case ir_unop_noise: {
1185 const enum prog_opcode opcode =
1186 prog_opcode(OPCODE_NOISE1
1187 + (ir->operands[0]->type->vector_elements) - 1);
1188 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1190 emit(ir, opcode, result_dst, op[0]);
1191 break;
1194 case ir_binop_add:
1195 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1196 break;
1197 case ir_binop_sub:
1198 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1199 break;
1201 case ir_binop_mul:
1202 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1203 break;
1204 case ir_binop_div:
1205 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1206 case ir_binop_mod:
1207 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1208 break;
1210 case ir_binop_less:
1211 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1212 break;
1213 case ir_binop_greater:
1214 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1215 break;
1216 case ir_binop_lequal:
1217 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1218 break;
1219 case ir_binop_gequal:
1220 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1221 break;
1222 case ir_binop_equal:
1223 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1224 break;
1225 case ir_binop_nequal:
1226 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1227 break;
1228 case ir_binop_all_equal:
1229 /* "==" operator producing a scalar boolean. */
1230 if (ir->operands[0]->type->is_vector() ||
1231 ir->operands[1]->type->is_vector()) {
1232 src_reg temp = get_temp(glsl_type::vec4_type);
1233 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1234 emit_dp(ir, result_dst, temp, temp, vector_elements);
1235 emit(ir, OPCODE_SEQ, result_dst, result_src, src_reg_for_float(0.0));
1236 } else {
1237 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1239 break;
1240 case ir_binop_any_nequal:
1241 /* "!=" operator producing a scalar boolean. */
1242 if (ir->operands[0]->type->is_vector() ||
1243 ir->operands[1]->type->is_vector()) {
1244 src_reg temp = get_temp(glsl_type::vec4_type);
1245 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1246 emit_dp(ir, result_dst, temp, temp, vector_elements);
1247 emit(ir, OPCODE_SNE, result_dst, result_src, src_reg_for_float(0.0));
1248 } else {
1249 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1251 break;
1253 case ir_unop_any:
1254 assert(ir->operands[0]->type->is_vector());
1255 emit_dp(ir, result_dst, op[0], op[0],
1256 ir->operands[0]->type->vector_elements);
1257 emit(ir, OPCODE_SNE, result_dst, result_src, src_reg_for_float(0.0));
1258 break;
1260 case ir_binop_logic_xor:
1261 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1262 break;
1264 case ir_binop_logic_or:
1265 /* This could be a saturated add and skip the SNE. */
1266 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1267 emit(ir, OPCODE_SNE, result_dst, result_src, src_reg_for_float(0.0));
1268 break;
1270 case ir_binop_logic_and:
1271 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1272 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1273 break;
1275 case ir_binop_dot:
1276 assert(ir->operands[0]->type->is_vector());
1277 assert(ir->operands[0]->type == ir->operands[1]->type);
1278 emit_dp(ir, result_dst, op[0], op[1],
1279 ir->operands[0]->type->vector_elements);
1280 break;
1282 case ir_unop_sqrt:
1283 /* sqrt(x) = x * rsq(x). */
1284 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1285 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1286 /* For incoming channels <= 0, set the result to 0. */
1287 op[0].negate = ~op[0].negate;
1288 emit(ir, OPCODE_CMP, result_dst,
1289 op[0], result_src, src_reg_for_float(0.0));
1290 break;
1291 case ir_unop_rsq:
1292 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1293 break;
1294 case ir_unop_i2f:
1295 case ir_unop_b2f:
1296 case ir_unop_b2i:
1297 /* Mesa IR lacks types, ints are stored as truncated floats. */
1298 result_src = op[0];
1299 break;
1300 case ir_unop_f2i:
1301 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1302 break;
1303 case ir_unop_f2b:
1304 case ir_unop_i2b:
1305 emit(ir, OPCODE_SNE, result_dst,
1306 op[0], src_reg_for_float(0.0));
1307 break;
1308 case ir_unop_trunc:
1309 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1310 break;
1311 case ir_unop_ceil:
1312 op[0].negate = ~op[0].negate;
1313 emit(ir, OPCODE_FLR, result_dst, op[0]);
1314 result_src.negate = ~result_src.negate;
1315 break;
1316 case ir_unop_floor:
1317 emit(ir, OPCODE_FLR, result_dst, op[0]);
1318 break;
1319 case ir_unop_fract:
1320 emit(ir, OPCODE_FRC, result_dst, op[0]);
1321 break;
1323 case ir_binop_min:
1324 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1325 break;
1326 case ir_binop_max:
1327 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1328 break;
1329 case ir_binop_pow:
1330 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1331 break;
1333 case ir_unop_bit_not:
1334 case ir_unop_u2f:
1335 case ir_binop_lshift:
1336 case ir_binop_rshift:
1337 case ir_binop_bit_and:
1338 case ir_binop_bit_xor:
1339 case ir_binop_bit_or:
1340 case ir_unop_round_even:
1341 assert(!"GLSL 1.30 features unsupported");
1342 break;
1344 case ir_quadop_vector:
1345 /* This operation should have already been handled.
1347 assert(!"Should not get here.");
1348 break;
1351 this->result = result_src;
1355 void
1356 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1358 src_reg src;
1359 int i;
1360 int swizzle[4];
1362 /* Note that this is only swizzles in expressions, not those on the left
1363 * hand side of an assignment, which do write masking. See ir_assignment
1364 * for that.
1367 ir->val->accept(this);
1368 src = this->result;
1369 assert(src.file != PROGRAM_UNDEFINED);
1371 for (i = 0; i < 4; i++) {
1372 if (i < ir->type->vector_elements) {
1373 switch (i) {
1374 case 0:
1375 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1376 break;
1377 case 1:
1378 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1379 break;
1380 case 2:
1381 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1382 break;
1383 case 3:
1384 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1385 break;
1387 } else {
1388 /* If the type is smaller than a vec4, replicate the last
1389 * channel out.
1391 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1395 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1397 this->result = src;
1400 void
1401 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1403 variable_storage *entry = find_variable_storage(ir->var);
1404 ir_variable *var = ir->var;
1406 if (!entry) {
1407 switch (var->mode) {
1408 case ir_var_uniform:
1409 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1410 var->location);
1411 this->variables.push_tail(entry);
1412 break;
1413 case ir_var_in:
1414 case ir_var_inout:
1415 /* The linker assigns locations for varyings and attributes,
1416 * including deprecated builtins (like gl_Color), user-assign
1417 * generic attributes (glBindVertexLocation), and
1418 * user-defined varyings.
1420 * FINISHME: We would hit this path for function arguments. Fix!
1422 assert(var->location != -1);
1423 entry = new(mem_ctx) variable_storage(var,
1424 PROGRAM_INPUT,
1425 var->location);
1426 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1427 var->location >= VERT_ATTRIB_GENERIC0) {
1428 _mesa_add_attribute(this->prog->Attributes,
1429 var->name,
1430 _mesa_sizeof_glsl_type(var->type->gl_type),
1431 var->type->gl_type,
1432 var->location - VERT_ATTRIB_GENERIC0);
1434 break;
1435 case ir_var_out:
1436 assert(var->location != -1);
1437 entry = new(mem_ctx) variable_storage(var,
1438 PROGRAM_OUTPUT,
1439 var->location);
1440 break;
1441 case ir_var_system_value:
1442 entry = new(mem_ctx) variable_storage(var,
1443 PROGRAM_SYSTEM_VALUE,
1444 var->location);
1445 break;
1446 case ir_var_auto:
1447 case ir_var_temporary:
1448 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1449 this->next_temp);
1450 this->variables.push_tail(entry);
1452 next_temp += type_size(var->type);
1453 break;
1456 if (!entry) {
1457 printf("Failed to make storage for %s\n", var->name);
1458 exit(1);
1462 this->result = src_reg(entry->file, entry->index, var->type);
1465 void
1466 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1468 ir_constant *index;
1469 src_reg src;
1470 int element_size = type_size(ir->type);
1472 index = ir->array_index->constant_expression_value();
1474 ir->array->accept(this);
1475 src = this->result;
1477 if (index) {
1478 src.index += index->value.i[0] * element_size;
1479 } else {
1480 /* Variable index array dereference. It eats the "vec4" of the
1481 * base of the array and an index that offsets the Mesa register
1482 * index.
1484 ir->array_index->accept(this);
1486 src_reg index_reg;
1488 if (element_size == 1) {
1489 index_reg = this->result;
1490 } else {
1491 index_reg = get_temp(glsl_type::float_type);
1493 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1494 this->result, src_reg_for_float(element_size));
1497 /* If there was already a relative address register involved, add the
1498 * new and the old together to get the new offset.
1500 if (src.reladdr != NULL) {
1501 src_reg accum_reg = get_temp(glsl_type::float_type);
1503 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1504 index_reg, *src.reladdr);
1506 index_reg = accum_reg;
1509 src.reladdr = ralloc(mem_ctx, src_reg);
1510 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1513 /* If the type is smaller than a vec4, replicate the last channel out. */
1514 if (ir->type->is_scalar() || ir->type->is_vector())
1515 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1516 else
1517 src.swizzle = SWIZZLE_NOOP;
1519 this->result = src;
1522 void
1523 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1525 unsigned int i;
1526 const glsl_type *struct_type = ir->record->type;
1527 int offset = 0;
1529 ir->record->accept(this);
1531 for (i = 0; i < struct_type->length; i++) {
1532 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1533 break;
1534 offset += type_size(struct_type->fields.structure[i].type);
1537 /* If the type is smaller than a vec4, replicate the last channel out. */
1538 if (ir->type->is_scalar() || ir->type->is_vector())
1539 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1540 else
1541 this->result.swizzle = SWIZZLE_NOOP;
1543 this->result.index += offset;
1547 * We want to be careful in assignment setup to hit the actual storage
1548 * instead of potentially using a temporary like we might with the
1549 * ir_dereference handler.
1551 static dst_reg
1552 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1554 /* The LHS must be a dereference. If the LHS is a variable indexed array
1555 * access of a vector, it must be separated into a series conditional moves
1556 * before reaching this point (see ir_vec_index_to_cond_assign).
1558 assert(ir->as_dereference());
1559 ir_dereference_array *deref_array = ir->as_dereference_array();
1560 if (deref_array) {
1561 assert(!deref_array->array->type->is_vector());
1564 /* Use the rvalue deref handler for the most part. We'll ignore
1565 * swizzles in it and write swizzles using writemask, though.
1567 ir->accept(v);
1568 return dst_reg(v->result);
1572 * Process the condition of a conditional assignment
1574 * Examines the condition of a conditional assignment to generate the optimal
1575 * first operand of a \c CMP instruction. If the condition is a relational
1576 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1577 * used as the source for the \c CMP instruction. Otherwise the comparison
1578 * is processed to a boolean result, and the boolean result is used as the
1579 * operand to the CMP instruction.
1581 bool
1582 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1584 ir_rvalue *src_ir = ir;
1585 bool negate = true;
1586 bool switch_order = false;
1588 ir_expression *const expr = ir->as_expression();
1589 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1590 bool zero_on_left = false;
1592 if (expr->operands[0]->is_zero()) {
1593 src_ir = expr->operands[1];
1594 zero_on_left = true;
1595 } else if (expr->operands[1]->is_zero()) {
1596 src_ir = expr->operands[0];
1597 zero_on_left = false;
1600 /* a is - 0 + - 0 +
1601 * (a < 0) T F F ( a < 0) T F F
1602 * (0 < a) F F T (-a < 0) F F T
1603 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1604 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1605 * (a > 0) F F T (-a < 0) F F T
1606 * (0 > a) T F F ( a < 0) T F F
1607 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1608 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1610 * Note that exchanging the order of 0 and 'a' in the comparison simply
1611 * means that the value of 'a' should be negated.
1613 if (src_ir != ir) {
1614 switch (expr->operation) {
1615 case ir_binop_less:
1616 switch_order = false;
1617 negate = zero_on_left;
1618 break;
1620 case ir_binop_greater:
1621 switch_order = false;
1622 negate = !zero_on_left;
1623 break;
1625 case ir_binop_lequal:
1626 switch_order = true;
1627 negate = !zero_on_left;
1628 break;
1630 case ir_binop_gequal:
1631 switch_order = true;
1632 negate = zero_on_left;
1633 break;
1635 default:
1636 /* This isn't the right kind of comparison afterall, so make sure
1637 * the whole condition is visited.
1639 src_ir = ir;
1640 break;
1645 src_ir->accept(this);
1647 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1648 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1649 * choose which value OPCODE_CMP produces without an extra instruction
1650 * computing the condition.
1652 if (negate)
1653 this->result.negate = ~this->result.negate;
1655 return switch_order;
1658 void
1659 ir_to_mesa_visitor::visit(ir_assignment *ir)
1661 dst_reg l;
1662 src_reg r;
1663 int i;
1665 ir->rhs->accept(this);
1666 r = this->result;
1668 l = get_assignment_lhs(ir->lhs, this);
1670 /* FINISHME: This should really set to the correct maximal writemask for each
1671 * FINISHME: component written (in the loops below). This case can only
1672 * FINISHME: occur for matrices, arrays, and structures.
1674 if (ir->write_mask == 0) {
1675 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1676 l.writemask = WRITEMASK_XYZW;
1677 } else if (ir->lhs->type->is_scalar()) {
1678 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1679 * FINISHME: W component of fragment shader output zero, work correctly.
1681 l.writemask = WRITEMASK_XYZW;
1682 } else {
1683 int swizzles[4];
1684 int first_enabled_chan = 0;
1685 int rhs_chan = 0;
1687 assert(ir->lhs->type->is_vector());
1688 l.writemask = ir->write_mask;
1690 for (int i = 0; i < 4; i++) {
1691 if (l.writemask & (1 << i)) {
1692 first_enabled_chan = GET_SWZ(r.swizzle, i);
1693 break;
1697 /* Swizzle a small RHS vector into the channels being written.
1699 * glsl ir treats write_mask as dictating how many channels are
1700 * present on the RHS while Mesa IR treats write_mask as just
1701 * showing which channels of the vec4 RHS get written.
1703 for (int i = 0; i < 4; i++) {
1704 if (l.writemask & (1 << i))
1705 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1706 else
1707 swizzles[i] = first_enabled_chan;
1709 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1710 swizzles[2], swizzles[3]);
1713 assert(l.file != PROGRAM_UNDEFINED);
1714 assert(r.file != PROGRAM_UNDEFINED);
1716 if (ir->condition) {
1717 const bool switch_order = this->process_move_condition(ir->condition);
1718 src_reg condition = this->result;
1720 for (i = 0; i < type_size(ir->lhs->type); i++) {
1721 if (switch_order) {
1722 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1723 } else {
1724 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1727 l.index++;
1728 r.index++;
1730 } else {
1731 for (i = 0; i < type_size(ir->lhs->type); i++) {
1732 emit(ir, OPCODE_MOV, l, r);
1733 l.index++;
1734 r.index++;
1740 void
1741 ir_to_mesa_visitor::visit(ir_constant *ir)
1743 src_reg src;
1744 GLfloat stack_vals[4] = { 0 };
1745 GLfloat *values = stack_vals;
1746 unsigned int i;
1748 /* Unfortunately, 4 floats is all we can get into
1749 * _mesa_add_unnamed_constant. So, make a temp to store an
1750 * aggregate constant and move each constant value into it. If we
1751 * get lucky, copy propagation will eliminate the extra moves.
1754 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1755 src_reg temp_base = get_temp(ir->type);
1756 dst_reg temp = dst_reg(temp_base);
1758 foreach_iter(exec_list_iterator, iter, ir->components) {
1759 ir_constant *field_value = (ir_constant *)iter.get();
1760 int size = type_size(field_value->type);
1762 assert(size > 0);
1764 field_value->accept(this);
1765 src = this->result;
1767 for (i = 0; i < (unsigned int)size; i++) {
1768 emit(ir, OPCODE_MOV, temp, src);
1770 src.index++;
1771 temp.index++;
1774 this->result = temp_base;
1775 return;
1778 if (ir->type->is_array()) {
1779 src_reg temp_base = get_temp(ir->type);
1780 dst_reg temp = dst_reg(temp_base);
1781 int size = type_size(ir->type->fields.array);
1783 assert(size > 0);
1785 for (i = 0; i < ir->type->length; i++) {
1786 ir->array_elements[i]->accept(this);
1787 src = this->result;
1788 for (int j = 0; j < size; j++) {
1789 emit(ir, OPCODE_MOV, temp, src);
1791 src.index++;
1792 temp.index++;
1795 this->result = temp_base;
1796 return;
1799 if (ir->type->is_matrix()) {
1800 src_reg mat = get_temp(ir->type);
1801 dst_reg mat_column = dst_reg(mat);
1803 for (i = 0; i < ir->type->matrix_columns; i++) {
1804 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1805 values = &ir->value.f[i * ir->type->vector_elements];
1807 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1808 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1809 values,
1810 ir->type->vector_elements,
1811 &src.swizzle);
1812 emit(ir, OPCODE_MOV, mat_column, src);
1814 mat_column.index++;
1817 this->result = mat;
1818 return;
1821 src.file = PROGRAM_CONSTANT;
1822 switch (ir->type->base_type) {
1823 case GLSL_TYPE_FLOAT:
1824 values = &ir->value.f[0];
1825 break;
1826 case GLSL_TYPE_UINT:
1827 for (i = 0; i < ir->type->vector_elements; i++) {
1828 values[i] = ir->value.u[i];
1830 break;
1831 case GLSL_TYPE_INT:
1832 for (i = 0; i < ir->type->vector_elements; i++) {
1833 values[i] = ir->value.i[i];
1835 break;
1836 case GLSL_TYPE_BOOL:
1837 for (i = 0; i < ir->type->vector_elements; i++) {
1838 values[i] = ir->value.b[i];
1840 break;
1841 default:
1842 assert(!"Non-float/uint/int/bool constant");
1845 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1846 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1847 values,
1848 ir->type->vector_elements,
1849 &this->result.swizzle);
1852 function_entry *
1853 ir_to_mesa_visitor::get_function_signature(ir_function_signature *sig)
1855 function_entry *entry;
1857 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
1858 entry = (function_entry *)iter.get();
1860 if (entry->sig == sig)
1861 return entry;
1864 entry = ralloc(mem_ctx, function_entry);
1865 entry->sig = sig;
1866 entry->sig_id = this->next_signature_id++;
1867 entry->bgn_inst = NULL;
1869 /* Allocate storage for all the parameters. */
1870 foreach_iter(exec_list_iterator, iter, sig->parameters) {
1871 ir_variable *param = (ir_variable *)iter.get();
1872 variable_storage *storage;
1874 storage = find_variable_storage(param);
1875 assert(!storage);
1877 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
1878 this->next_temp);
1879 this->variables.push_tail(storage);
1881 this->next_temp += type_size(param->type);
1884 if (!sig->return_type->is_void()) {
1885 entry->return_reg = get_temp(sig->return_type);
1886 } else {
1887 entry->return_reg = undef_src;
1890 this->function_signatures.push_tail(entry);
1891 return entry;
1894 void
1895 ir_to_mesa_visitor::visit(ir_call *ir)
1897 ir_to_mesa_instruction *call_inst;
1898 ir_function_signature *sig = ir->get_callee();
1899 function_entry *entry = get_function_signature(sig);
1900 int i;
1902 /* Process in parameters. */
1903 exec_list_iterator sig_iter = sig->parameters.iterator();
1904 foreach_iter(exec_list_iterator, iter, *ir) {
1905 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
1906 ir_variable *param = (ir_variable *)sig_iter.get();
1908 if (param->mode == ir_var_in ||
1909 param->mode == ir_var_inout) {
1910 variable_storage *storage = find_variable_storage(param);
1911 assert(storage);
1913 param_rval->accept(this);
1914 src_reg r = this->result;
1916 dst_reg l;
1917 l.file = storage->file;
1918 l.index = storage->index;
1919 l.reladdr = NULL;
1920 l.writemask = WRITEMASK_XYZW;
1921 l.cond_mask = COND_TR;
1923 for (i = 0; i < type_size(param->type); i++) {
1924 emit(ir, OPCODE_MOV, l, r);
1925 l.index++;
1926 r.index++;
1930 sig_iter.next();
1932 assert(!sig_iter.has_next());
1934 /* Emit call instruction */
1935 call_inst = emit(ir, OPCODE_CAL);
1936 call_inst->function = entry;
1938 /* Process out parameters. */
1939 sig_iter = sig->parameters.iterator();
1940 foreach_iter(exec_list_iterator, iter, *ir) {
1941 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
1942 ir_variable *param = (ir_variable *)sig_iter.get();
1944 if (param->mode == ir_var_out ||
1945 param->mode == ir_var_inout) {
1946 variable_storage *storage = find_variable_storage(param);
1947 assert(storage);
1949 src_reg r;
1950 r.file = storage->file;
1951 r.index = storage->index;
1952 r.reladdr = NULL;
1953 r.swizzle = SWIZZLE_NOOP;
1954 r.negate = 0;
1956 param_rval->accept(this);
1957 dst_reg l = dst_reg(this->result);
1959 for (i = 0; i < type_size(param->type); i++) {
1960 emit(ir, OPCODE_MOV, l, r);
1961 l.index++;
1962 r.index++;
1966 sig_iter.next();
1968 assert(!sig_iter.has_next());
1970 /* Process return value. */
1971 this->result = entry->return_reg;
1974 void
1975 ir_to_mesa_visitor::visit(ir_texture *ir)
1977 src_reg result_src, coord, lod_info, projector, dx, dy;
1978 dst_reg result_dst, coord_dst;
1979 ir_to_mesa_instruction *inst = NULL;
1980 prog_opcode opcode = OPCODE_NOP;
1982 ir->coordinate->accept(this);
1984 /* Put our coords in a temp. We'll need to modify them for shadow,
1985 * projection, or LOD, so the only case we'd use it as is is if
1986 * we're doing plain old texturing. Mesa IR optimization should
1987 * handle cleaning up our mess in that case.
1989 coord = get_temp(glsl_type::vec4_type);
1990 coord_dst = dst_reg(coord);
1991 emit(ir, OPCODE_MOV, coord_dst, this->result);
1993 if (ir->projector) {
1994 ir->projector->accept(this);
1995 projector = this->result;
1998 /* Storage for our result. Ideally for an assignment we'd be using
1999 * the actual storage for the result here, instead.
2001 result_src = get_temp(glsl_type::vec4_type);
2002 result_dst = dst_reg(result_src);
2004 switch (ir->op) {
2005 case ir_tex:
2006 opcode = OPCODE_TEX;
2007 break;
2008 case ir_txb:
2009 opcode = OPCODE_TXB;
2010 ir->lod_info.bias->accept(this);
2011 lod_info = this->result;
2012 break;
2013 case ir_txl:
2014 opcode = OPCODE_TXL;
2015 ir->lod_info.lod->accept(this);
2016 lod_info = this->result;
2017 break;
2018 case ir_txd:
2019 opcode = OPCODE_TXD;
2020 ir->lod_info.grad.dPdx->accept(this);
2021 dx = this->result;
2022 ir->lod_info.grad.dPdy->accept(this);
2023 dy = this->result;
2024 break;
2025 case ir_txf:
2026 assert(!"GLSL 1.30 features unsupported");
2027 break;
2030 if (ir->projector) {
2031 if (opcode == OPCODE_TEX) {
2032 /* Slot the projector in as the last component of the coord. */
2033 coord_dst.writemask = WRITEMASK_W;
2034 emit(ir, OPCODE_MOV, coord_dst, projector);
2035 coord_dst.writemask = WRITEMASK_XYZW;
2036 opcode = OPCODE_TXP;
2037 } else {
2038 src_reg coord_w = coord;
2039 coord_w.swizzle = SWIZZLE_WWWW;
2041 /* For the other TEX opcodes there's no projective version
2042 * since the last slot is taken up by lod info. Do the
2043 * projective divide now.
2045 coord_dst.writemask = WRITEMASK_W;
2046 emit(ir, OPCODE_RCP, coord_dst, projector);
2048 /* In the case where we have to project the coordinates "by hand,"
2049 * the shadow comparitor value must also be projected.
2051 src_reg tmp_src = coord;
2052 if (ir->shadow_comparitor) {
2053 /* Slot the shadow value in as the second to last component of the
2054 * coord.
2056 ir->shadow_comparitor->accept(this);
2058 tmp_src = get_temp(glsl_type::vec4_type);
2059 dst_reg tmp_dst = dst_reg(tmp_src);
2061 tmp_dst.writemask = WRITEMASK_Z;
2062 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2064 tmp_dst.writemask = WRITEMASK_XY;
2065 emit(ir, OPCODE_MOV, tmp_dst, coord);
2068 coord_dst.writemask = WRITEMASK_XYZ;
2069 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2071 coord_dst.writemask = WRITEMASK_XYZW;
2072 coord.swizzle = SWIZZLE_XYZW;
2076 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2077 * comparitor was put in the correct place (and projected) by the code,
2078 * above, that handles by-hand projection.
2080 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2081 /* Slot the shadow value in as the second to last component of the
2082 * coord.
2084 ir->shadow_comparitor->accept(this);
2085 coord_dst.writemask = WRITEMASK_Z;
2086 emit(ir, OPCODE_MOV, coord_dst, this->result);
2087 coord_dst.writemask = WRITEMASK_XYZW;
2090 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2091 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2092 coord_dst.writemask = WRITEMASK_W;
2093 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2094 coord_dst.writemask = WRITEMASK_XYZW;
2097 if (opcode == OPCODE_TXD)
2098 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2099 else
2100 inst = emit(ir, opcode, result_dst, coord);
2102 if (ir->shadow_comparitor)
2103 inst->tex_shadow = GL_TRUE;
2105 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2106 this->shader_program,
2107 this->prog);
2109 const glsl_type *sampler_type = ir->sampler->type;
2111 switch (sampler_type->sampler_dimensionality) {
2112 case GLSL_SAMPLER_DIM_1D:
2113 inst->tex_target = (sampler_type->sampler_array)
2114 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2115 break;
2116 case GLSL_SAMPLER_DIM_2D:
2117 inst->tex_target = (sampler_type->sampler_array)
2118 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2119 break;
2120 case GLSL_SAMPLER_DIM_3D:
2121 inst->tex_target = TEXTURE_3D_INDEX;
2122 break;
2123 case GLSL_SAMPLER_DIM_CUBE:
2124 inst->tex_target = TEXTURE_CUBE_INDEX;
2125 break;
2126 case GLSL_SAMPLER_DIM_RECT:
2127 inst->tex_target = TEXTURE_RECT_INDEX;
2128 break;
2129 case GLSL_SAMPLER_DIM_BUF:
2130 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2131 break;
2132 default:
2133 assert(!"Should not get here.");
2136 this->result = result_src;
2139 void
2140 ir_to_mesa_visitor::visit(ir_return *ir)
2142 if (ir->get_value()) {
2143 dst_reg l;
2144 int i;
2146 assert(current_function);
2148 ir->get_value()->accept(this);
2149 src_reg r = this->result;
2151 l = dst_reg(current_function->return_reg);
2153 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2154 emit(ir, OPCODE_MOV, l, r);
2155 l.index++;
2156 r.index++;
2160 emit(ir, OPCODE_RET);
2163 void
2164 ir_to_mesa_visitor::visit(ir_discard *ir)
2166 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2168 if (ir->condition) {
2169 ir->condition->accept(this);
2170 this->result.negate = ~this->result.negate;
2171 emit(ir, OPCODE_KIL, undef_dst, this->result);
2172 } else {
2173 emit(ir, OPCODE_KIL_NV);
2176 fp->UsesKill = GL_TRUE;
2179 void
2180 ir_to_mesa_visitor::visit(ir_if *ir)
2182 ir_to_mesa_instruction *cond_inst, *if_inst;
2183 ir_to_mesa_instruction *prev_inst;
2185 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2187 ir->condition->accept(this);
2188 assert(this->result.file != PROGRAM_UNDEFINED);
2190 if (this->options->EmitCondCodes) {
2191 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2193 /* See if we actually generated any instruction for generating
2194 * the condition. If not, then cook up a move to a temp so we
2195 * have something to set cond_update on.
2197 if (cond_inst == prev_inst) {
2198 src_reg temp = get_temp(glsl_type::bool_type);
2199 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2201 cond_inst->cond_update = GL_TRUE;
2203 if_inst = emit(ir->condition, OPCODE_IF);
2204 if_inst->dst.cond_mask = COND_NE;
2205 } else {
2206 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2209 this->instructions.push_tail(if_inst);
2211 visit_exec_list(&ir->then_instructions, this);
2213 if (!ir->else_instructions.is_empty()) {
2214 emit(ir->condition, OPCODE_ELSE);
2215 visit_exec_list(&ir->else_instructions, this);
2218 if_inst = emit(ir->condition, OPCODE_ENDIF);
2221 ir_to_mesa_visitor::ir_to_mesa_visitor()
2223 result.file = PROGRAM_UNDEFINED;
2224 next_temp = 1;
2225 next_signature_id = 1;
2226 current_function = NULL;
2227 mem_ctx = ralloc_context(NULL);
2230 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2232 ralloc_free(mem_ctx);
2235 static struct prog_src_register
2236 mesa_src_reg_from_ir_src_reg(src_reg reg)
2238 struct prog_src_register mesa_reg;
2240 mesa_reg.File = reg.file;
2241 assert(reg.index < (1 << INST_INDEX_BITS));
2242 mesa_reg.Index = reg.index;
2243 mesa_reg.Swizzle = reg.swizzle;
2244 mesa_reg.RelAddr = reg.reladdr != NULL;
2245 mesa_reg.Negate = reg.negate;
2246 mesa_reg.Abs = 0;
2247 mesa_reg.HasIndex2 = GL_FALSE;
2248 mesa_reg.RelAddr2 = 0;
2249 mesa_reg.Index2 = 0;
2251 return mesa_reg;
2254 static void
2255 set_branchtargets(ir_to_mesa_visitor *v,
2256 struct prog_instruction *mesa_instructions,
2257 int num_instructions)
2259 int if_count = 0, loop_count = 0;
2260 int *if_stack, *loop_stack;
2261 int if_stack_pos = 0, loop_stack_pos = 0;
2262 int i, j;
2264 for (i = 0; i < num_instructions; i++) {
2265 switch (mesa_instructions[i].Opcode) {
2266 case OPCODE_IF:
2267 if_count++;
2268 break;
2269 case OPCODE_BGNLOOP:
2270 loop_count++;
2271 break;
2272 case OPCODE_BRK:
2273 case OPCODE_CONT:
2274 mesa_instructions[i].BranchTarget = -1;
2275 break;
2276 default:
2277 break;
2281 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2282 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2284 for (i = 0; i < num_instructions; i++) {
2285 switch (mesa_instructions[i].Opcode) {
2286 case OPCODE_IF:
2287 if_stack[if_stack_pos] = i;
2288 if_stack_pos++;
2289 break;
2290 case OPCODE_ELSE:
2291 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2292 if_stack[if_stack_pos - 1] = i;
2293 break;
2294 case OPCODE_ENDIF:
2295 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2296 if_stack_pos--;
2297 break;
2298 case OPCODE_BGNLOOP:
2299 loop_stack[loop_stack_pos] = i;
2300 loop_stack_pos++;
2301 break;
2302 case OPCODE_ENDLOOP:
2303 loop_stack_pos--;
2304 /* Rewrite any breaks/conts at this nesting level (haven't
2305 * already had a BranchTarget assigned) to point to the end
2306 * of the loop.
2308 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2309 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2310 mesa_instructions[j].Opcode == OPCODE_CONT) {
2311 if (mesa_instructions[j].BranchTarget == -1) {
2312 mesa_instructions[j].BranchTarget = i;
2316 /* The loop ends point at each other. */
2317 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2318 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2319 break;
2320 case OPCODE_CAL:
2321 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2322 function_entry *entry = (function_entry *)iter.get();
2324 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2325 mesa_instructions[i].BranchTarget = entry->inst;
2326 break;
2329 break;
2330 default:
2331 break;
2336 static void
2337 print_program(struct prog_instruction *mesa_instructions,
2338 ir_instruction **mesa_instruction_annotation,
2339 int num_instructions)
2341 ir_instruction *last_ir = NULL;
2342 int i;
2343 int indent = 0;
2345 for (i = 0; i < num_instructions; i++) {
2346 struct prog_instruction *mesa_inst = mesa_instructions + i;
2347 ir_instruction *ir = mesa_instruction_annotation[i];
2349 fprintf(stdout, "%3d: ", i);
2351 if (last_ir != ir && ir) {
2352 int j;
2354 for (j = 0; j < indent; j++) {
2355 fprintf(stdout, " ");
2357 ir->print();
2358 printf("\n");
2359 last_ir = ir;
2361 fprintf(stdout, " "); /* line number spacing. */
2364 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2365 PROG_PRINT_DEBUG, NULL);
2371 * Count resources used by the given gpu program (number of texture
2372 * samplers, etc).
2374 static void
2375 count_resources(struct gl_program *prog)
2377 unsigned int i;
2379 prog->SamplersUsed = 0;
2381 for (i = 0; i < prog->NumInstructions; i++) {
2382 struct prog_instruction *inst = &prog->Instructions[i];
2384 if (_mesa_is_tex_instruction(inst->Opcode)) {
2385 prog->SamplerTargets[inst->TexSrcUnit] =
2386 (gl_texture_index)inst->TexSrcTarget;
2387 prog->SamplersUsed |= 1 << inst->TexSrcUnit;
2388 if (inst->TexShadow) {
2389 prog->ShadowSamplers |= 1 << inst->TexSrcUnit;
2394 _mesa_update_shader_textures_used(prog);
2399 * Check if the given vertex/fragment/shader program is within the
2400 * resource limits of the context (number of texture units, etc).
2401 * If any of those checks fail, record a linker error.
2403 * XXX more checks are needed...
2405 static void
2406 check_resources(const struct gl_context *ctx,
2407 struct gl_shader_program *shader_program,
2408 struct gl_program *prog)
2410 switch (prog->Target) {
2411 case GL_VERTEX_PROGRAM_ARB:
2412 if (_mesa_bitcount(prog->SamplersUsed) >
2413 ctx->Const.MaxVertexTextureImageUnits) {
2414 fail_link(shader_program, "Too many vertex shader texture samplers");
2416 if (prog->Parameters->NumParameters > MAX_UNIFORMS) {
2417 fail_link(shader_program, "Too many vertex shader constants");
2419 break;
2420 case MESA_GEOMETRY_PROGRAM:
2421 if (_mesa_bitcount(prog->SamplersUsed) >
2422 ctx->Const.MaxGeometryTextureImageUnits) {
2423 fail_link(shader_program, "Too many geometry shader texture samplers");
2425 if (prog->Parameters->NumParameters >
2426 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2427 fail_link(shader_program, "Too many geometry shader constants");
2429 break;
2430 case GL_FRAGMENT_PROGRAM_ARB:
2431 if (_mesa_bitcount(prog->SamplersUsed) >
2432 ctx->Const.MaxTextureImageUnits) {
2433 fail_link(shader_program, "Too many fragment shader texture samplers");
2435 if (prog->Parameters->NumParameters > MAX_UNIFORMS) {
2436 fail_link(shader_program, "Too many fragment shader constants");
2438 break;
2439 default:
2440 _mesa_problem(ctx, "unexpected program type in check_resources()");
2446 struct uniform_sort {
2447 struct gl_uniform *u;
2448 int pos;
2451 /* The shader_program->Uniforms list is almost sorted in increasing
2452 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2453 * uniforms shared between targets. We need to add parameters in
2454 * increasing order for the targets.
2456 static int
2457 sort_uniforms(const void *a, const void *b)
2459 struct uniform_sort *u1 = (struct uniform_sort *)a;
2460 struct uniform_sort *u2 = (struct uniform_sort *)b;
2462 return u1->pos - u2->pos;
2465 /* Add the uniforms to the parameters. The linker chose locations
2466 * in our parameters lists (which weren't created yet), which the
2467 * uniforms code will use to poke values into our parameters list
2468 * when uniforms are updated.
2470 static void
2471 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2472 struct gl_shader *shader,
2473 struct gl_program *prog)
2475 unsigned int i;
2476 unsigned int next_sampler = 0, num_uniforms = 0;
2477 struct uniform_sort *sorted_uniforms;
2479 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2480 shader_program->Uniforms->NumUniforms);
2482 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2483 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2484 int parameter_index = -1;
2486 switch (shader->Type) {
2487 case GL_VERTEX_SHADER:
2488 parameter_index = uniform->VertPos;
2489 break;
2490 case GL_FRAGMENT_SHADER:
2491 parameter_index = uniform->FragPos;
2492 break;
2493 case GL_GEOMETRY_SHADER:
2494 parameter_index = uniform->GeomPos;
2495 break;
2498 /* Only add uniforms used in our target. */
2499 if (parameter_index != -1) {
2500 sorted_uniforms[num_uniforms].pos = parameter_index;
2501 sorted_uniforms[num_uniforms].u = uniform;
2502 num_uniforms++;
2506 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2507 sort_uniforms);
2509 for (i = 0; i < num_uniforms; i++) {
2510 struct gl_uniform *uniform = sorted_uniforms[i].u;
2511 int parameter_index = sorted_uniforms[i].pos;
2512 const glsl_type *type = uniform->Type;
2513 unsigned int size;
2515 if (type->is_vector() ||
2516 type->is_scalar()) {
2517 size = type->vector_elements;
2518 } else {
2519 size = type_size(type) * 4;
2522 gl_register_file file;
2523 if (type->is_sampler() ||
2524 (type->is_array() && type->fields.array->is_sampler())) {
2525 file = PROGRAM_SAMPLER;
2526 } else {
2527 file = PROGRAM_UNIFORM;
2530 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2531 uniform->Name);
2533 if (index < 0) {
2534 index = _mesa_add_parameter(prog->Parameters, file,
2535 uniform->Name, size, type->gl_type,
2536 NULL, NULL, 0x0);
2538 /* Sampler uniform values are stored in prog->SamplerUnits,
2539 * and the entry in that array is selected by this index we
2540 * store in ParameterValues[].
2542 if (file == PROGRAM_SAMPLER) {
2543 for (unsigned int j = 0; j < size / 4; j++)
2544 prog->Parameters->ParameterValues[index + j][0] = next_sampler++;
2547 /* The location chosen in the Parameters list here (returned
2548 * from _mesa_add_uniform) has to match what the linker chose.
2550 if (index != parameter_index) {
2551 fail_link(shader_program, "Allocation of uniform `%s' to target "
2552 "failed (%d vs %d)\n",
2553 uniform->Name, index, parameter_index);
2558 ralloc_free(sorted_uniforms);
2561 static void
2562 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2563 struct gl_shader_program *shader_program,
2564 const char *name, const glsl_type *type,
2565 ir_constant *val)
2567 if (type->is_record()) {
2568 ir_constant *field_constant;
2570 field_constant = (ir_constant *)val->components.get_head();
2572 for (unsigned int i = 0; i < type->length; i++) {
2573 const glsl_type *field_type = type->fields.structure[i].type;
2574 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2575 type->fields.structure[i].name);
2576 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2577 field_type, field_constant);
2578 field_constant = (ir_constant *)field_constant->next;
2580 return;
2583 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2585 if (loc == -1) {
2586 fail_link(shader_program,
2587 "Couldn't find uniform for initializer %s\n", name);
2588 return;
2591 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2592 ir_constant *element;
2593 const glsl_type *element_type;
2594 if (type->is_array()) {
2595 element = val->array_elements[i];
2596 element_type = type->fields.array;
2597 } else {
2598 element = val;
2599 element_type = type;
2602 void *values;
2604 if (element_type->base_type == GLSL_TYPE_BOOL) {
2605 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2606 for (unsigned int j = 0; j < element_type->components(); j++) {
2607 conv[j] = element->value.b[j];
2609 values = (void *)conv;
2610 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2611 element_type->vector_elements,
2613 } else {
2614 values = &element->value;
2617 if (element_type->is_matrix()) {
2618 _mesa_uniform_matrix(ctx, shader_program,
2619 element_type->matrix_columns,
2620 element_type->vector_elements,
2621 loc, 1, GL_FALSE, (GLfloat *)values);
2622 loc += element_type->matrix_columns;
2623 } else {
2624 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2625 values, element_type->gl_type);
2626 loc += type_size(element_type);
2631 static void
2632 set_uniform_initializers(struct gl_context *ctx,
2633 struct gl_shader_program *shader_program)
2635 void *mem_ctx = NULL;
2637 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2638 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2640 if (shader == NULL)
2641 continue;
2643 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2644 ir_instruction *ir = (ir_instruction *)iter.get();
2645 ir_variable *var = ir->as_variable();
2647 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2648 continue;
2650 if (!mem_ctx)
2651 mem_ctx = ralloc_context(NULL);
2653 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2654 var->type, var->constant_value);
2658 ralloc_free(mem_ctx);
2662 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2663 * channels for copy propagation and updates following instructions to
2664 * use the original versions.
2666 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2667 * will occur. As an example, a TXP production before this pass:
2669 * 0: MOV TEMP[1], INPUT[4].xyyy;
2670 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2671 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2673 * and after:
2675 * 0: MOV TEMP[1], INPUT[4].xyyy;
2676 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2677 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2679 * which allows for dead code elimination on TEMP[1]'s writes.
2681 void
2682 ir_to_mesa_visitor::copy_propagate(void)
2684 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2685 ir_to_mesa_instruction *,
2686 this->next_temp * 4);
2687 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2688 int level = 0;
2690 foreach_iter(exec_list_iterator, iter, this->instructions) {
2691 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2693 assert(inst->dst.file != PROGRAM_TEMPORARY
2694 || inst->dst.index < this->next_temp);
2696 /* First, do any copy propagation possible into the src regs. */
2697 for (int r = 0; r < 3; r++) {
2698 ir_to_mesa_instruction *first = NULL;
2699 bool good = true;
2700 int acp_base = inst->src[r].index * 4;
2702 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2703 inst->src[r].reladdr)
2704 continue;
2706 /* See if we can find entries in the ACP consisting of MOVs
2707 * from the same src register for all the swizzled channels
2708 * of this src register reference.
2710 for (int i = 0; i < 4; i++) {
2711 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2712 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2714 if (!copy_chan) {
2715 good = false;
2716 break;
2719 assert(acp_level[acp_base + src_chan] <= level);
2721 if (!first) {
2722 first = copy_chan;
2723 } else {
2724 if (first->src[0].file != copy_chan->src[0].file ||
2725 first->src[0].index != copy_chan->src[0].index) {
2726 good = false;
2727 break;
2732 if (good) {
2733 /* We've now validated that we can copy-propagate to
2734 * replace this src register reference. Do it.
2736 inst->src[r].file = first->src[0].file;
2737 inst->src[r].index = first->src[0].index;
2739 int swizzle = 0;
2740 for (int i = 0; i < 4; i++) {
2741 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2742 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2743 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2744 (3 * i));
2746 inst->src[r].swizzle = swizzle;
2750 switch (inst->op) {
2751 case OPCODE_BGNLOOP:
2752 case OPCODE_ENDLOOP:
2753 /* End of a basic block, clear the ACP entirely. */
2754 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2755 break;
2757 case OPCODE_IF:
2758 ++level;
2759 break;
2761 case OPCODE_ENDIF:
2762 case OPCODE_ELSE:
2763 /* Clear all channels written inside the block from the ACP, but
2764 * leaving those that were not touched.
2766 for (int r = 0; r < this->next_temp; r++) {
2767 for (int c = 0; c < 4; c++) {
2768 if (!acp[4 * r + c])
2769 continue;
2771 if (acp_level[4 * r + c] >= level)
2772 acp[4 * r + c] = NULL;
2775 if (inst->op == OPCODE_ENDIF)
2776 --level;
2777 break;
2779 default:
2780 /* Continuing the block, clear any written channels from
2781 * the ACP.
2783 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2784 /* Any temporary might be written, so no copy propagation
2785 * across this instruction.
2787 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2788 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2789 inst->dst.reladdr) {
2790 /* Any output might be written, so no copy propagation
2791 * from outputs across this instruction.
2793 for (int r = 0; r < this->next_temp; r++) {
2794 for (int c = 0; c < 4; c++) {
2795 if (!acp[4 * r + c])
2796 continue;
2798 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2799 acp[4 * r + c] = NULL;
2802 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2803 inst->dst.file == PROGRAM_OUTPUT) {
2804 /* Clear where it's used as dst. */
2805 if (inst->dst.file == PROGRAM_TEMPORARY) {
2806 for (int c = 0; c < 4; c++) {
2807 if (inst->dst.writemask & (1 << c)) {
2808 acp[4 * inst->dst.index + c] = NULL;
2813 /* Clear where it's used as src. */
2814 for (int r = 0; r < this->next_temp; r++) {
2815 for (int c = 0; c < 4; c++) {
2816 if (!acp[4 * r + c])
2817 continue;
2819 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2821 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2822 acp[4 * r + c]->src[0].index == inst->dst.index &&
2823 inst->dst.writemask & (1 << src_chan))
2825 acp[4 * r + c] = NULL;
2830 break;
2833 /* If this is a copy, add it to the ACP. */
2834 if (inst->op == OPCODE_MOV &&
2835 inst->dst.file == PROGRAM_TEMPORARY &&
2836 !inst->dst.reladdr &&
2837 !inst->saturate &&
2838 !inst->src[0].reladdr &&
2839 !inst->src[0].negate) {
2840 for (int i = 0; i < 4; i++) {
2841 if (inst->dst.writemask & (1 << i)) {
2842 acp[4 * inst->dst.index + i] = inst;
2843 acp_level[4 * inst->dst.index + i] = level;
2849 ralloc_free(acp_level);
2850 ralloc_free(acp);
2855 * Convert a shader's GLSL IR into a Mesa gl_program.
2857 static struct gl_program *
2858 get_mesa_program(struct gl_context *ctx,
2859 struct gl_shader_program *shader_program,
2860 struct gl_shader *shader)
2862 ir_to_mesa_visitor v;
2863 struct prog_instruction *mesa_instructions, *mesa_inst;
2864 ir_instruction **mesa_instruction_annotation;
2865 int i;
2866 struct gl_program *prog;
2867 GLenum target;
2868 const char *target_string;
2869 GLboolean progress;
2870 struct gl_shader_compiler_options *options =
2871 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
2873 switch (shader->Type) {
2874 case GL_VERTEX_SHADER:
2875 target = GL_VERTEX_PROGRAM_ARB;
2876 target_string = "vertex";
2877 break;
2878 case GL_FRAGMENT_SHADER:
2879 target = GL_FRAGMENT_PROGRAM_ARB;
2880 target_string = "fragment";
2881 break;
2882 case GL_GEOMETRY_SHADER:
2883 target = GL_GEOMETRY_PROGRAM_NV;
2884 target_string = "geometry";
2885 break;
2886 default:
2887 assert(!"should not be reached");
2888 return NULL;
2891 validate_ir_tree(shader->ir);
2893 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2894 if (!prog)
2895 return NULL;
2896 prog->Parameters = _mesa_new_parameter_list();
2897 prog->Varying = _mesa_new_parameter_list();
2898 prog->Attributes = _mesa_new_parameter_list();
2899 v.ctx = ctx;
2900 v.prog = prog;
2901 v.shader_program = shader_program;
2902 v.options = options;
2904 add_uniforms_to_parameters_list(shader_program, shader, prog);
2906 /* Emit Mesa IR for main(). */
2907 visit_exec_list(shader->ir, &v);
2908 v.emit(NULL, OPCODE_END);
2910 /* Now emit bodies for any functions that were used. */
2911 do {
2912 progress = GL_FALSE;
2914 foreach_iter(exec_list_iterator, iter, v.function_signatures) {
2915 function_entry *entry = (function_entry *)iter.get();
2917 if (!entry->bgn_inst) {
2918 v.current_function = entry;
2920 entry->bgn_inst = v.emit(NULL, OPCODE_BGNSUB);
2921 entry->bgn_inst->function = entry;
2923 visit_exec_list(&entry->sig->body, &v);
2925 ir_to_mesa_instruction *last;
2926 last = (ir_to_mesa_instruction *)v.instructions.get_tail();
2927 if (last->op != OPCODE_RET)
2928 v.emit(NULL, OPCODE_RET);
2930 ir_to_mesa_instruction *end;
2931 end = v.emit(NULL, OPCODE_ENDSUB);
2932 end->function = entry;
2934 progress = GL_TRUE;
2937 } while (progress);
2939 prog->NumTemporaries = v.next_temp;
2941 int num_instructions = 0;
2942 foreach_iter(exec_list_iterator, iter, v.instructions) {
2943 num_instructions++;
2946 mesa_instructions =
2947 (struct prog_instruction *)calloc(num_instructions,
2948 sizeof(*mesa_instructions));
2949 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2950 num_instructions);
2952 v.copy_propagate();
2954 /* Convert ir_mesa_instructions into prog_instructions.
2956 mesa_inst = mesa_instructions;
2957 i = 0;
2958 foreach_iter(exec_list_iterator, iter, v.instructions) {
2959 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2961 mesa_inst->Opcode = inst->op;
2962 mesa_inst->CondUpdate = inst->cond_update;
2963 if (inst->saturate)
2964 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2965 mesa_inst->DstReg.File = inst->dst.file;
2966 mesa_inst->DstReg.Index = inst->dst.index;
2967 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2968 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2969 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2970 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2971 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2972 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2973 mesa_inst->TexSrcUnit = inst->sampler;
2974 mesa_inst->TexSrcTarget = inst->tex_target;
2975 mesa_inst->TexShadow = inst->tex_shadow;
2976 mesa_instruction_annotation[i] = inst->ir;
2978 /* Set IndirectRegisterFiles. */
2979 if (mesa_inst->DstReg.RelAddr)
2980 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2982 /* Update program's bitmask of indirectly accessed register files */
2983 for (unsigned src = 0; src < 3; src++)
2984 if (mesa_inst->SrcReg[src].RelAddr)
2985 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2987 if (options->EmitNoIfs && mesa_inst->Opcode == OPCODE_IF) {
2988 fail_link(shader_program, "Couldn't flatten if statement\n");
2991 switch (mesa_inst->Opcode) {
2992 case OPCODE_BGNSUB:
2993 inst->function->inst = i;
2994 mesa_inst->Comment = strdup(inst->function->sig->function_name());
2995 break;
2996 case OPCODE_ENDSUB:
2997 mesa_inst->Comment = strdup(inst->function->sig->function_name());
2998 break;
2999 case OPCODE_CAL:
3000 mesa_inst->BranchTarget = inst->function->sig_id; /* rewritten later */
3001 break;
3002 case OPCODE_ARL:
3003 prog->NumAddressRegs = 1;
3004 break;
3005 default:
3006 break;
3009 mesa_inst++;
3010 i++;
3012 if (!shader_program->LinkStatus)
3013 break;
3016 if (!shader_program->LinkStatus) {
3017 free(mesa_instructions);
3018 _mesa_reference_program(ctx, &shader->Program, NULL);
3019 return NULL;
3022 set_branchtargets(&v, mesa_instructions, num_instructions);
3024 if (ctx->Shader.Flags & GLSL_DUMP) {
3025 printf("\n");
3026 printf("GLSL IR for linked %s program %d:\n", target_string,
3027 shader_program->Name);
3028 _mesa_print_ir(shader->ir, NULL);
3029 printf("\n");
3030 printf("\n");
3031 printf("Mesa IR for linked %s program %d:\n", target_string,
3032 shader_program->Name);
3033 print_program(mesa_instructions, mesa_instruction_annotation,
3034 num_instructions);
3037 prog->Instructions = mesa_instructions;
3038 prog->NumInstructions = num_instructions;
3040 do_set_program_inouts(shader->ir, prog);
3041 count_resources(prog);
3043 check_resources(ctx, shader_program, prog);
3045 _mesa_reference_program(ctx, &shader->Program, prog);
3047 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
3048 _mesa_optimize_program(ctx, prog);
3051 return prog;
3054 extern "C" {
3057 * Link a shader.
3058 * Called via ctx->Driver.LinkShader()
3059 * This actually involves converting GLSL IR into Mesa gl_programs with
3060 * code lowering and other optimizations.
3062 GLboolean
3063 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3065 assert(prog->LinkStatus);
3067 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3068 if (prog->_LinkedShaders[i] == NULL)
3069 continue;
3071 bool progress;
3072 exec_list *ir = prog->_LinkedShaders[i]->ir;
3073 const struct gl_shader_compiler_options *options =
3074 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3076 do {
3077 progress = false;
3079 /* Lowering */
3080 do_mat_op_to_vec(ir);
3081 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3082 | LOG_TO_LOG2
3083 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3085 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3087 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
3089 progress = lower_quadop_vector(ir, true) || progress;
3091 if (options->EmitNoIfs) {
3092 progress = lower_discard(ir) || progress;
3093 progress = lower_if_to_cond_assign(ir) || progress;
3096 if (options->EmitNoNoise)
3097 progress = lower_noise(ir) || progress;
3099 /* If there are forms of indirect addressing that the driver
3100 * cannot handle, perform the lowering pass.
3102 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3103 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3104 progress =
3105 lower_variable_index_to_cond_assign(ir,
3106 options->EmitNoIndirectInput,
3107 options->EmitNoIndirectOutput,
3108 options->EmitNoIndirectTemp,
3109 options->EmitNoIndirectUniform)
3110 || progress;
3112 progress = do_vec_index_to_cond_assign(ir) || progress;
3113 } while (progress);
3115 validate_ir_tree(ir);
3118 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3119 struct gl_program *linked_prog;
3121 if (prog->_LinkedShaders[i] == NULL)
3122 continue;
3124 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3126 if (linked_prog) {
3127 bool ok = true;
3129 switch (prog->_LinkedShaders[i]->Type) {
3130 case GL_VERTEX_SHADER:
3131 _mesa_reference_vertprog(ctx, &prog->VertexProgram,
3132 (struct gl_vertex_program *)linked_prog);
3133 ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
3134 linked_prog);
3135 break;
3136 case GL_FRAGMENT_SHADER:
3137 _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
3138 (struct gl_fragment_program *)linked_prog);
3139 ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
3140 linked_prog);
3141 break;
3142 case GL_GEOMETRY_SHADER:
3143 _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
3144 (struct gl_geometry_program *)linked_prog);
3145 ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
3146 linked_prog);
3147 break;
3149 if (!ok) {
3150 return GL_FALSE;
3154 _mesa_reference_program(ctx, &linked_prog, NULL);
3157 return GL_TRUE;
3162 * Compile a GLSL shader. Called via glCompileShader().
3164 void
3165 _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
3167 struct _mesa_glsl_parse_state *state =
3168 new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
3170 const char *source = shader->Source;
3171 /* Check if the user called glCompileShader without first calling
3172 * glShaderSource. This should fail to compile, but not raise a GL_ERROR.
3174 if (source == NULL) {
3175 shader->CompileStatus = GL_FALSE;
3176 return;
3179 state->error = preprocess(state, &source, &state->info_log,
3180 &ctx->Extensions, ctx->API);
3182 if (ctx->Shader.Flags & GLSL_DUMP) {
3183 printf("GLSL source for %s shader %d:\n",
3184 _mesa_glsl_shader_target_name(state->target), shader->Name);
3185 printf("%s\n", shader->Source);
3188 if (!state->error) {
3189 _mesa_glsl_lexer_ctor(state, source);
3190 _mesa_glsl_parse(state);
3191 _mesa_glsl_lexer_dtor(state);
3194 ralloc_free(shader->ir);
3195 shader->ir = new(shader) exec_list;
3196 if (!state->error && !state->translation_unit.is_empty())
3197 _mesa_ast_to_hir(shader->ir, state);
3199 if (!state->error && !shader->ir->is_empty()) {
3200 validate_ir_tree(shader->ir);
3202 /* Do some optimization at compile time to reduce shader IR size
3203 * and reduce later work if the same shader is linked multiple times
3205 while (do_common_optimization(shader->ir, false, 32))
3208 validate_ir_tree(shader->ir);
3211 shader->symbols = state->symbols;
3213 shader->CompileStatus = !state->error;
3214 shader->InfoLog = state->info_log;
3215 shader->Version = state->language_version;
3216 memcpy(shader->builtins_to_link, state->builtins_to_link,
3217 sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
3218 shader->num_builtins_to_link = state->num_builtins_to_link;
3220 if (ctx->Shader.Flags & GLSL_LOG) {
3221 _mesa_write_shader_to_file(shader);
3224 if (ctx->Shader.Flags & GLSL_DUMP) {
3225 if (shader->CompileStatus) {
3226 printf("GLSL IR for shader %d:\n", shader->Name);
3227 _mesa_print_ir(shader->ir, NULL);
3228 printf("\n\n");
3229 } else {
3230 printf("GLSL shader %d failed to compile.\n", shader->Name);
3232 if (shader->InfoLog && shader->InfoLog[0] != 0) {
3233 printf("GLSL shader %d info log:\n", shader->Name);
3234 printf("%s\n", shader->InfoLog);
3238 /* Retain any live IR, but trash the rest. */
3239 reparent_ir(shader->ir, shader->ir);
3241 ralloc_free(state);
3246 * Link a GLSL shader program. Called via glLinkProgram().
3248 void
3249 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3251 unsigned int i;
3253 _mesa_clear_shader_program_data(ctx, prog);
3255 prog->LinkStatus = GL_TRUE;
3257 for (i = 0; i < prog->NumShaders; i++) {
3258 if (!prog->Shaders[i]->CompileStatus) {
3259 fail_link(prog, "linking with uncompiled shader");
3260 prog->LinkStatus = GL_FALSE;
3264 prog->Varying = _mesa_new_parameter_list();
3265 _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
3266 _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
3267 _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
3269 if (prog->LinkStatus) {
3270 link_shaders(ctx, prog);
3273 if (prog->LinkStatus) {
3274 if (!ctx->Driver.LinkShader(ctx, prog)) {
3275 prog->LinkStatus = GL_FALSE;
3279 set_uniform_initializers(ctx, prog);
3281 if (ctx->Shader.Flags & GLSL_DUMP) {
3282 if (!prog->LinkStatus) {
3283 printf("GLSL shader program %d failed to link\n", prog->Name);
3286 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3287 printf("GLSL shader program %d info log:\n", prog->Name);
3288 printf("%s\n", prog->InfoLog);
3293 } /* extern "C" */