1 /* $OpenBSD: s_log1pl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */
4 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 * Relative error logarithm
22 * Natural logarithm of 1+x, 128-bit long double precision
28 * long double x, y, log1pl();
36 * Returns the base e (2.718...) logarithm of 1+x.
38 * The argument 1+x is separated into its exponent and fractional
39 * parts. If the exponent is between -1 and +1, the logarithm
40 * of the fraction is approximated by
42 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
44 * Otherwise, setting z = 2(w-1)/(w+1),
46 * log(w) = z + z^3 P(z)/Q(z).
53 * arithmetic domain # trials peak rms
54 * IEEE -1, 8 100000 1.9e-34 4.3e-35
59 #include "math_private.h"
61 /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
62 * 1/sqrt(2) <= 1+x < sqrt(2)
63 * Theoretical peak relative error = 5.3e-37,
64 * relative peak error spread = 2.3e-14
66 static const long double
67 P12
= 1.538612243596254322971797716843006400388E-6L,
68 P11
= 4.998469661968096229986658302195402690910E-1L,
69 P10
= 2.321125933898420063925789532045674660756E1L
,
70 P9
= 4.114517881637811823002128927449878962058E2L
,
71 P8
= 3.824952356185897735160588078446136783779E3L
,
72 P7
= 2.128857716871515081352991964243375186031E4L
,
73 P6
= 7.594356839258970405033155585486712125861E4L
,
74 P5
= 1.797628303815655343403735250238293741397E5L
,
75 P4
= 2.854829159639697837788887080758954924001E5L
,
76 P3
= 3.007007295140399532324943111654767187848E5L
,
77 P2
= 2.014652742082537582487669938141683759923E5L
,
78 P1
= 7.771154681358524243729929227226708890930E4L
,
79 P0
= 1.313572404063446165910279910527789794488E4L
,
80 /* Q12 = 1.000000000000000000000000000000000000000E0L, */
81 Q11
= 4.839208193348159620282142911143429644326E1L
,
82 Q10
= 9.104928120962988414618126155557301584078E2L
,
83 Q9
= 9.147150349299596453976674231612674085381E3L
,
84 Q8
= 5.605842085972455027590989944010492125825E4L
,
85 Q7
= 2.248234257620569139969141618556349415120E5L
,
86 Q6
= 6.132189329546557743179177159925690841200E5L
,
87 Q5
= 1.158019977462989115839826904108208787040E6L
,
88 Q4
= 1.514882452993549494932585972882995548426E6L
,
89 Q3
= 1.347518538384329112529391120390701166528E6L
,
90 Q2
= 7.777690340007566932935753241556479363645E5L
,
91 Q1
= 2.626900195321832660448791748036714883242E5L
,
92 Q0
= 3.940717212190338497730839731583397586124E4L
;
94 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
95 * where z = 2(x-1)/(x+1)
96 * 1/sqrt(2) <= x < sqrt(2)
97 * Theoretical peak relative error = 1.1e-35,
98 * relative peak error spread 1.1e-9
100 static const long double
101 R5
= -8.828896441624934385266096344596648080902E-1L,
102 R4
= 8.057002716646055371965756206836056074715E1L
,
103 R3
= -2.024301798136027039250415126250455056397E3L
,
104 R2
= 2.048819892795278657810231591630928516206E4L
,
105 R1
= -8.977257995689735303686582344659576526998E4L
,
106 R0
= 1.418134209872192732479751274970992665513E5L
,
107 /* S6 = 1.000000000000000000000000000000000000000E0L, */
108 S5
= -1.186359407982897997337150403816839480438E2L
,
109 S4
= 3.998526750980007367835804959888064681098E3L
,
110 S3
= -5.748542087379434595104154610899551484314E4L
,
111 S2
= 4.001557694070773974936904547424676279307E5L
,
112 S1
= -1.332535117259762928288745111081235577029E6L
,
113 S0
= 1.701761051846631278975701529965589676574E6L
;
116 static const long double C1
= 6.93145751953125E-1L;
117 static const long double C2
= 1.428606820309417232121458176568075500134E-6L;
119 static const long double sqrth
= 0.7071067811865475244008443621048490392848L;
120 /* ln (2^16384 * (1 - 2^-113)) */
121 static const long double zero
= 0.0L;
124 log1pl(long double xm1
)
126 long double x
, y
, z
, r
, s
;
127 ieee_quad_shape_type u
;
131 /* Test for NaN or infinity input. */
133 hx
= u
.parts32
.mswhi
;
134 if (hx
>= 0x7fff0000)
137 /* log1p(+- 0) = +- 0. */
138 if (((hx
& 0x7fffffff) == 0)
139 && (u
.parts32
.mswlo
| u
.parts32
.lswhi
| u
.parts32
.lswlo
) == 0)
144 /* log1p(-1) = -inf */
148 return (-1.0L / (x
- x
));
150 return (zero
/ (x
- x
));
153 /* Separate mantissa from exponent. */
155 /* Use frexp used so that denormal numbers will be handled properly. */
158 /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
159 where z = 2(x-1)/x+1). */
160 if ((e
> 2) || (e
< -2))
163 { /* 2( 2x-1 )/( 2x+1 ) */
169 { /* 2 (x-1)/(x+1) */
197 /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
203 x
= 2.0L * x
- 1.0L; /* 2x - 1 */
215 r
= (((((((((((P12
* x