grub2: bring back build of aros-side grub2 tools
[AROS.git] / workbench / libs / jpeg / jdmainct.c
blob52091fb2bedb09670e96bef3acc1decbbb3c4a62
1 /*
2 * jdmainct.c
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * Modified 2002-2012 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains the main buffer controller for decompression.
10 * The main buffer lies between the JPEG decompressor proper and the
11 * post-processor; it holds downsampled data in the JPEG colorspace.
13 * Note that this code is bypassed in raw-data mode, since the application
14 * supplies the equivalent of the main buffer in that case.
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
23 * In the current system design, the main buffer need never be a full-image
24 * buffer; any full-height buffers will be found inside the coefficient or
25 * postprocessing controllers. Nonetheless, the main controller is not
26 * trivial. Its responsibility is to provide context rows for upsampling/
27 * rescaling, and doing this in an efficient fashion is a bit tricky.
29 * Postprocessor input data is counted in "row groups". A row group
30 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
31 * sample rows of each component. (We require DCT_scaled_size values to be
32 * chosen such that these numbers are integers. In practice DCT_scaled_size
33 * values will likely be powers of two, so we actually have the stronger
34 * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
35 * Upsampling will typically produce max_v_samp_factor pixel rows from each
36 * row group (times any additional scale factor that the upsampler is
37 * applying).
39 * The coefficient controller will deliver data to us one iMCU row at a time;
40 * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
41 * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
42 * to one row of MCUs when the image is fully interleaved.) Note that the
43 * number of sample rows varies across components, but the number of row
44 * groups does not. Some garbage sample rows may be included in the last iMCU
45 * row at the bottom of the image.
47 * Depending on the vertical scaling algorithm used, the upsampler may need
48 * access to the sample row(s) above and below its current input row group.
49 * The upsampler is required to set need_context_rows TRUE at global selection
50 * time if so. When need_context_rows is FALSE, this controller can simply
51 * obtain one iMCU row at a time from the coefficient controller and dole it
52 * out as row groups to the postprocessor.
54 * When need_context_rows is TRUE, this controller guarantees that the buffer
55 * passed to postprocessing contains at least one row group's worth of samples
56 * above and below the row group(s) being processed. Note that the context
57 * rows "above" the first passed row group appear at negative row offsets in
58 * the passed buffer. At the top and bottom of the image, the required
59 * context rows are manufactured by duplicating the first or last real sample
60 * row; this avoids having special cases in the upsampling inner loops.
62 * The amount of context is fixed at one row group just because that's a
63 * convenient number for this controller to work with. The existing
64 * upsamplers really only need one sample row of context. An upsampler
65 * supporting arbitrary output rescaling might wish for more than one row
66 * group of context when shrinking the image; tough, we don't handle that.
67 * (This is justified by the assumption that downsizing will be handled mostly
68 * by adjusting the DCT_scaled_size values, so that the actual scale factor at
69 * the upsample step needn't be much less than one.)
71 * To provide the desired context, we have to retain the last two row groups
72 * of one iMCU row while reading in the next iMCU row. (The last row group
73 * can't be processed until we have another row group for its below-context,
74 * and so we have to save the next-to-last group too for its above-context.)
75 * We could do this most simply by copying data around in our buffer, but
76 * that'd be very slow. We can avoid copying any data by creating a rather
77 * strange pointer structure. Here's how it works. We allocate a workspace
78 * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
79 * of row groups per iMCU row). We create two sets of redundant pointers to
80 * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
81 * pointer lists look like this:
82 * M+1 M-1
83 * master pointer --> 0 master pointer --> 0
84 * 1 1
85 * ... ...
86 * M-3 M-3
87 * M-2 M
88 * M-1 M+1
89 * M M-2
90 * M+1 M-1
91 * 0 0
92 * We read alternate iMCU rows using each master pointer; thus the last two
93 * row groups of the previous iMCU row remain un-overwritten in the workspace.
94 * The pointer lists are set up so that the required context rows appear to
95 * be adjacent to the proper places when we pass the pointer lists to the
96 * upsampler.
98 * The above pictures describe the normal state of the pointer lists.
99 * At top and bottom of the image, we diddle the pointer lists to duplicate
100 * the first or last sample row as necessary (this is cheaper than copying
101 * sample rows around).
103 * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
104 * situation each iMCU row provides only one row group so the buffering logic
105 * must be different (eg, we must read two iMCU rows before we can emit the
106 * first row group). For now, we simply do not support providing context
107 * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
108 * be worth providing --- if someone wants a 1/8th-size preview, they probably
109 * want it quick and dirty, so a context-free upsampler is sufficient.
113 /* Private buffer controller object */
115 typedef struct {
116 struct jpeg_d_main_controller pub; /* public fields */
118 /* Pointer to allocated workspace (M or M+2 row groups). */
119 JSAMPARRAY buffer[MAX_COMPONENTS];
121 boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
122 JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
124 /* Remaining fields are only used in the context case. */
126 /* These are the master pointers to the funny-order pointer lists. */
127 JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
129 int whichptr; /* indicates which pointer set is now in use */
130 int context_state; /* process_data state machine status */
131 JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
132 JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
133 } my_main_controller;
135 typedef my_main_controller * my_main_ptr;
137 /* context_state values: */
138 #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
139 #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
140 #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
143 /* Forward declarations */
144 METHODDEF(void) process_data_simple_main
145 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
146 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
147 METHODDEF(void) process_data_context_main
148 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
149 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
150 #ifdef QUANT_2PASS_SUPPORTED
151 METHODDEF(void) process_data_crank_post
152 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
153 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
154 #endif
157 LOCAL(void)
158 alloc_funny_pointers (j_decompress_ptr cinfo)
159 /* Allocate space for the funny pointer lists.
160 * This is done only once, not once per pass.
163 my_main_ptr mainp = (my_main_ptr) cinfo->main;
164 int ci, rgroup;
165 int M = cinfo->min_DCT_v_scaled_size;
166 jpeg_component_info *compptr;
167 JSAMPARRAY xbuf;
169 /* Get top-level space for component array pointers.
170 * We alloc both arrays with one call to save a few cycles.
172 mainp->xbuffer[0] = (JSAMPIMAGE)
173 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
174 cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
175 mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components;
177 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
178 ci++, compptr++) {
179 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
180 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
181 /* Get space for pointer lists --- M+4 row groups in each list.
182 * We alloc both pointer lists with one call to save a few cycles.
184 xbuf = (JSAMPARRAY)
185 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
186 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
187 xbuf += rgroup; /* want one row group at negative offsets */
188 mainp->xbuffer[0][ci] = xbuf;
189 xbuf += rgroup * (M + 4);
190 mainp->xbuffer[1][ci] = xbuf;
195 LOCAL(void)
196 make_funny_pointers (j_decompress_ptr cinfo)
197 /* Create the funny pointer lists discussed in the comments above.
198 * The actual workspace is already allocated (in main->buffer),
199 * and the space for the pointer lists is allocated too.
200 * This routine just fills in the curiously ordered lists.
201 * This will be repeated at the beginning of each pass.
204 my_main_ptr mainp = (my_main_ptr) cinfo->main;
205 int ci, i, rgroup;
206 int M = cinfo->min_DCT_v_scaled_size;
207 jpeg_component_info *compptr;
208 JSAMPARRAY buf, xbuf0, xbuf1;
210 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
211 ci++, compptr++) {
212 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
213 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
214 xbuf0 = mainp->xbuffer[0][ci];
215 xbuf1 = mainp->xbuffer[1][ci];
216 /* First copy the workspace pointers as-is */
217 buf = mainp->buffer[ci];
218 for (i = 0; i < rgroup * (M + 2); i++) {
219 xbuf0[i] = xbuf1[i] = buf[i];
221 /* In the second list, put the last four row groups in swapped order */
222 for (i = 0; i < rgroup * 2; i++) {
223 xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
224 xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
226 /* The wraparound pointers at top and bottom will be filled later
227 * (see set_wraparound_pointers, below). Initially we want the "above"
228 * pointers to duplicate the first actual data line. This only needs
229 * to happen in xbuffer[0].
231 for (i = 0; i < rgroup; i++) {
232 xbuf0[i - rgroup] = xbuf0[0];
238 LOCAL(void)
239 set_wraparound_pointers (j_decompress_ptr cinfo)
240 /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
241 * This changes the pointer list state from top-of-image to the normal state.
244 my_main_ptr mainp = (my_main_ptr) cinfo->main;
245 int ci, i, rgroup;
246 int M = cinfo->min_DCT_v_scaled_size;
247 jpeg_component_info *compptr;
248 JSAMPARRAY xbuf0, xbuf1;
250 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
251 ci++, compptr++) {
252 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
253 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
254 xbuf0 = mainp->xbuffer[0][ci];
255 xbuf1 = mainp->xbuffer[1][ci];
256 for (i = 0; i < rgroup; i++) {
257 xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
258 xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
259 xbuf0[rgroup*(M+2) + i] = xbuf0[i];
260 xbuf1[rgroup*(M+2) + i] = xbuf1[i];
266 LOCAL(void)
267 set_bottom_pointers (j_decompress_ptr cinfo)
268 /* Change the pointer lists to duplicate the last sample row at the bottom
269 * of the image. whichptr indicates which xbuffer holds the final iMCU row.
270 * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
273 my_main_ptr mainp = (my_main_ptr) cinfo->main;
274 int ci, i, rgroup, iMCUheight, rows_left;
275 jpeg_component_info *compptr;
276 JSAMPARRAY xbuf;
278 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
279 ci++, compptr++) {
280 /* Count sample rows in one iMCU row and in one row group */
281 iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
282 rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
283 /* Count nondummy sample rows remaining for this component */
284 rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
285 if (rows_left == 0) rows_left = iMCUheight;
286 /* Count nondummy row groups. Should get same answer for each component,
287 * so we need only do it once.
289 if (ci == 0) {
290 mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
292 /* Duplicate the last real sample row rgroup*2 times; this pads out the
293 * last partial rowgroup and ensures at least one full rowgroup of context.
295 xbuf = mainp->xbuffer[mainp->whichptr][ci];
296 for (i = 0; i < rgroup * 2; i++) {
297 xbuf[rows_left + i] = xbuf[rows_left-1];
304 * Initialize for a processing pass.
307 METHODDEF(void)
308 start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
310 my_main_ptr mainp = (my_main_ptr) cinfo->main;
312 switch (pass_mode) {
313 case JBUF_PASS_THRU:
314 if (cinfo->upsample->need_context_rows) {
315 mainp->pub.process_data = process_data_context_main;
316 make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
317 mainp->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
318 mainp->context_state = CTX_PREPARE_FOR_IMCU;
319 mainp->iMCU_row_ctr = 0;
320 } else {
321 /* Simple case with no context needed */
322 mainp->pub.process_data = process_data_simple_main;
324 mainp->buffer_full = FALSE; /* Mark buffer empty */
325 mainp->rowgroup_ctr = 0;
326 break;
327 #ifdef QUANT_2PASS_SUPPORTED
328 case JBUF_CRANK_DEST:
329 /* For last pass of 2-pass quantization, just crank the postprocessor */
330 mainp->pub.process_data = process_data_crank_post;
331 break;
332 #endif
333 default:
334 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
335 break;
341 * Process some data.
342 * This handles the simple case where no context is required.
345 METHODDEF(void)
346 process_data_simple_main (j_decompress_ptr cinfo,
347 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
348 JDIMENSION out_rows_avail)
350 my_main_ptr mainp = (my_main_ptr) cinfo->main;
351 JDIMENSION rowgroups_avail;
353 /* Read input data if we haven't filled the main buffer yet */
354 if (! mainp->buffer_full) {
355 if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer))
356 return; /* suspension forced, can do nothing more */
357 mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
360 /* There are always min_DCT_scaled_size row groups in an iMCU row. */
361 rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
362 /* Note: at the bottom of the image, we may pass extra garbage row groups
363 * to the postprocessor. The postprocessor has to check for bottom
364 * of image anyway (at row resolution), so no point in us doing it too.
367 /* Feed the postprocessor */
368 (*cinfo->post->post_process_data) (cinfo, mainp->buffer,
369 &mainp->rowgroup_ctr, rowgroups_avail,
370 output_buf, out_row_ctr, out_rows_avail);
372 /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
373 if (mainp->rowgroup_ctr >= rowgroups_avail) {
374 mainp->buffer_full = FALSE;
375 mainp->rowgroup_ctr = 0;
381 * Process some data.
382 * This handles the case where context rows must be provided.
385 METHODDEF(void)
386 process_data_context_main (j_decompress_ptr cinfo,
387 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
388 JDIMENSION out_rows_avail)
390 my_main_ptr mainp = (my_main_ptr) cinfo->main;
392 /* Read input data if we haven't filled the main buffer yet */
393 if (! mainp->buffer_full) {
394 if (! (*cinfo->coef->decompress_data) (cinfo,
395 mainp->xbuffer[mainp->whichptr]))
396 return; /* suspension forced, can do nothing more */
397 mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
398 mainp->iMCU_row_ctr++; /* count rows received */
401 /* Postprocessor typically will not swallow all the input data it is handed
402 * in one call (due to filling the output buffer first). Must be prepared
403 * to exit and restart. This switch lets us keep track of how far we got.
404 * Note that each case falls through to the next on successful completion.
406 switch (mainp->context_state) {
407 case CTX_POSTPONED_ROW:
408 /* Call postprocessor using previously set pointers for postponed row */
409 (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
410 &mainp->rowgroup_ctr, mainp->rowgroups_avail,
411 output_buf, out_row_ctr, out_rows_avail);
412 if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
413 return; /* Need to suspend */
414 mainp->context_state = CTX_PREPARE_FOR_IMCU;
415 if (*out_row_ctr >= out_rows_avail)
416 return; /* Postprocessor exactly filled output buf */
417 /*FALLTHROUGH*/
418 case CTX_PREPARE_FOR_IMCU:
419 /* Prepare to process first M-1 row groups of this iMCU row */
420 mainp->rowgroup_ctr = 0;
421 mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
422 /* Check for bottom of image: if so, tweak pointers to "duplicate"
423 * the last sample row, and adjust rowgroups_avail to ignore padding rows.
425 if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows)
426 set_bottom_pointers(cinfo);
427 mainp->context_state = CTX_PROCESS_IMCU;
428 /*FALLTHROUGH*/
429 case CTX_PROCESS_IMCU:
430 /* Call postprocessor using previously set pointers */
431 (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
432 &mainp->rowgroup_ctr, mainp->rowgroups_avail,
433 output_buf, out_row_ctr, out_rows_avail);
434 if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
435 return; /* Need to suspend */
436 /* After the first iMCU, change wraparound pointers to normal state */
437 if (mainp->iMCU_row_ctr == 1)
438 set_wraparound_pointers(cinfo);
439 /* Prepare to load new iMCU row using other xbuffer list */
440 mainp->whichptr ^= 1; /* 0=>1 or 1=>0 */
441 mainp->buffer_full = FALSE;
442 /* Still need to process last row group of this iMCU row, */
443 /* which is saved at index M+1 of the other xbuffer */
444 mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
445 mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
446 mainp->context_state = CTX_POSTPONED_ROW;
452 * Process some data.
453 * Final pass of two-pass quantization: just call the postprocessor.
454 * Source data will be the postprocessor controller's internal buffer.
457 #ifdef QUANT_2PASS_SUPPORTED
459 METHODDEF(void)
460 process_data_crank_post (j_decompress_ptr cinfo,
461 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
462 JDIMENSION out_rows_avail)
464 (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
465 (JDIMENSION *) NULL, (JDIMENSION) 0,
466 output_buf, out_row_ctr, out_rows_avail);
469 #endif /* QUANT_2PASS_SUPPORTED */
473 * Initialize main buffer controller.
476 GLOBAL(void)
477 jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
479 my_main_ptr mainp;
480 int ci, rgroup, ngroups;
481 jpeg_component_info *compptr;
483 mainp = (my_main_ptr)
484 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
485 SIZEOF(my_main_controller));
486 cinfo->main = &mainp->pub;
487 mainp->pub.start_pass = start_pass_main;
489 if (need_full_buffer) /* shouldn't happen */
490 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
492 /* Allocate the workspace.
493 * ngroups is the number of row groups we need.
495 if (cinfo->upsample->need_context_rows) {
496 if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
497 ERREXIT(cinfo, JERR_NOTIMPL);
498 alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
499 ngroups = cinfo->min_DCT_v_scaled_size + 2;
500 } else {
501 ngroups = cinfo->min_DCT_v_scaled_size;
504 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
505 ci++, compptr++) {
506 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
507 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
508 mainp->buffer[ci] = (*cinfo->mem->alloc_sarray)
509 ((j_common_ptr) cinfo, JPOOL_IMAGE,
510 compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
511 (JDIMENSION) (rgroup * ngroups));