1 //---------------------------------------------------------------------------------
3 // Little Color Management System
4 // Copyright (c) 1998-2013 Marti Maria Saguer
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 //---------------------------------------------------------------------------------
26 #include "lcms2_internal.h"
28 // Tone curves are powerful constructs that can contain curves specified in diverse ways.
29 // The curve is stored in segments, where each segment can be sampled or specified by parameters.
30 // a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
31 // each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
32 // each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
33 // the plug-in should provide the type id, how many parameters each type has, and a pointer to
34 // a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
35 // be called with the type id as a negative value, and a sampled version of the reversed curve
38 // ----------------------------------------------------------------- Implementation
39 // Maxim number of nodes
40 #define MAX_NODES_IN_CURVE 4097
41 #define MINUS_INF (-1E22F)
42 #define PLUS_INF (+1E22F)
44 // The list of supported parametric curves
45 typedef struct _cmsParametricCurvesCollection_st
{
47 int nFunctions
; // Number of supported functions in this chunk
48 int FunctionTypes
[MAX_TYPES_IN_LCMS_PLUGIN
]; // The identification types
49 int ParameterCount
[MAX_TYPES_IN_LCMS_PLUGIN
]; // Number of parameters for each function
50 cmsParametricCurveEvaluator Evaluator
; // The evaluator
52 struct _cmsParametricCurvesCollection_st
* Next
; // Next in list
54 } _cmsParametricCurvesCollection
;
57 // This is the default (built-in) evaluator
58 static cmsFloat64Number
DefaultEvalParametricFn(cmsInt32Number Type
, const cmsFloat64Number Params
[], cmsFloat64Number R
);
61 static _cmsParametricCurvesCollection DefaultCurves
= {
62 9, // # of curve types
63 { 1, 2, 3, 4, 5, 6, 7, 8, 108 }, // Parametric curve ID
64 { 1, 3, 4, 5, 7, 4, 5, 5, 1 }, // Parameters by type
65 DefaultEvalParametricFn
, // Evaluator
69 // The linked list head
70 static _cmsParametricCurvesCollection
* ParametricCurves
= &DefaultCurves
;
72 // As a way to install new parametric curves
73 cmsBool
_cmsRegisterParametricCurvesPlugin(cmsContext id
, cmsPluginBase
* Data
)
75 cmsPluginParametricCurves
* Plugin
= (cmsPluginParametricCurves
*) Data
;
76 _cmsParametricCurvesCollection
* fl
;
80 ParametricCurves
= &DefaultCurves
;
84 fl
= (_cmsParametricCurvesCollection
*) _cmsPluginMalloc(id
, sizeof(_cmsParametricCurvesCollection
));
85 if (fl
== NULL
) return FALSE
;
87 // Copy the parameters
88 fl
->Evaluator
= Plugin
->Evaluator
;
89 fl
->nFunctions
= Plugin
->nFunctions
;
91 // Make sure no mem overwrites
92 if (fl
->nFunctions
> MAX_TYPES_IN_LCMS_PLUGIN
)
93 fl
->nFunctions
= MAX_TYPES_IN_LCMS_PLUGIN
;
96 memmove(fl
->FunctionTypes
, Plugin
->FunctionTypes
, fl
->nFunctions
* sizeof(cmsUInt32Number
));
97 memmove(fl
->ParameterCount
, Plugin
->ParameterCount
, fl
->nFunctions
* sizeof(cmsUInt32Number
));
100 fl
->Next
= ParametricCurves
;
101 ParametricCurves
= fl
;
108 // Search in type list, return position or -1 if not found
110 int IsInSet(int Type
, _cmsParametricCurvesCollection
* c
)
114 for (i
=0; i
< c
->nFunctions
; i
++)
115 if (abs(Type
) == c
->FunctionTypes
[i
]) return i
;
121 // Search for the collection which contains a specific type
123 _cmsParametricCurvesCollection
*GetParametricCurveByType(int Type
, int* index
)
125 _cmsParametricCurvesCollection
* c
;
128 for (c
= ParametricCurves
; c
!= NULL
; c
= c
->Next
) {
130 Position
= IsInSet(Type
, c
);
132 if (Position
!= -1) {
142 // Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
143 // no optimation curve is computed. nSegments may also be zero in the inverse case, where only the
144 // optimization curve is given. Both features simultaneously is an error
146 cmsToneCurve
* AllocateToneCurveStruct(cmsContext ContextID
, cmsInt32Number nEntries
,
147 cmsInt32Number nSegments
, const cmsCurveSegment
* Segments
,
148 const cmsUInt16Number
* Values
)
153 // We allow huge tables, which are then restricted for smoothing operations
154 if (nEntries
> 65530 || nEntries
< 0) {
155 cmsSignalError(ContextID
, cmsERROR_RANGE
, "Couldn't create tone curve of more than 65530 entries");
159 if (nEntries
<= 0 && nSegments
<= 0) {
160 cmsSignalError(ContextID
, cmsERROR_RANGE
, "Couldn't create tone curve with zero segments and no table");
164 // Allocate all required pointers, etc.
165 p
= (cmsToneCurve
*) _cmsMallocZero(ContextID
, sizeof(cmsToneCurve
));
168 // In this case, there are no segments
169 if (nSegments
<= 0) {
174 p
->Segments
= (cmsCurveSegment
*) _cmsCalloc(ContextID
, nSegments
, sizeof(cmsCurveSegment
));
175 if (p
->Segments
== NULL
) goto Error
;
177 p
->Evals
= (cmsParametricCurveEvaluator
*) _cmsCalloc(ContextID
, nSegments
, sizeof(cmsParametricCurveEvaluator
));
178 if (p
->Evals
== NULL
) goto Error
;
181 p
-> nSegments
= nSegments
;
183 // This 16-bit table contains a limited precision representation of the whole curve and is kept for
184 // increasing xput on certain operations.
189 p
->Table16
= (cmsUInt16Number
*) _cmsCalloc(ContextID
, nEntries
, sizeof(cmsUInt16Number
));
190 if (p
->Table16
== NULL
) goto Error
;
193 p
-> nEntries
= nEntries
;
195 // Initialize members if requested
196 if (Values
!= NULL
&& (nEntries
> 0)) {
198 for (i
=0; i
< nEntries
; i
++)
199 p
->Table16
[i
] = Values
[i
];
202 // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
203 // is placed in advance to maximize performance.
204 if (Segments
!= NULL
&& (nSegments
> 0)) {
206 _cmsParametricCurvesCollection
*c
;
208 p
->SegInterp
= (cmsInterpParams
**) _cmsCalloc(ContextID
, nSegments
, sizeof(cmsInterpParams
*));
209 if (p
->SegInterp
== NULL
) goto Error
;
211 for (i
=0; i
< nSegments
; i
++) {
213 // Type 0 is a special marker for table-based curves
214 if (Segments
[i
].Type
== 0)
215 p
->SegInterp
[i
] = _cmsComputeInterpParams(ContextID
, Segments
[i
].nGridPoints
, 1, 1, NULL
, CMS_LERP_FLAGS_FLOAT
);
217 memmove(&p
->Segments
[i
], &Segments
[i
], sizeof(cmsCurveSegment
));
219 if (Segments
[i
].Type
== 0 && Segments
[i
].SampledPoints
!= NULL
)
220 p
->Segments
[i
].SampledPoints
= (cmsFloat32Number
*) _cmsDupMem(ContextID
, Segments
[i
].SampledPoints
, sizeof(cmsFloat32Number
) * Segments
[i
].nGridPoints
);
222 p
->Segments
[i
].SampledPoints
= NULL
;
225 c
= GetParametricCurveByType(Segments
[i
].Type
, NULL
);
227 p
->Evals
[i
] = c
->Evaluator
;
231 p
->InterpParams
= _cmsComputeInterpParams(ContextID
, p
->nEntries
, 1, 1, p
->Table16
, CMS_LERP_FLAGS_16BITS
);
232 if (p
->InterpParams
!= NULL
)
236 if (p
-> Segments
) _cmsFree(ContextID
, p
->Segments
);
237 if (p
-> Evals
) _cmsFree(ContextID
, p
-> Evals
);
238 if (p
->Table16
) _cmsFree(ContextID
, p
->Table16
);
239 _cmsFree(ContextID
, p
);
244 // Parametric Fn using floating point
246 cmsFloat64Number
DefaultEvalParametricFn(cmsInt32Number Type
, const cmsFloat64Number Params
[], cmsFloat64Number R
)
248 cmsFloat64Number e
, Val
, disc
;
256 if (fabs(Params
[0] - 1.0) < MATRIX_DET_TOLERANCE
)
262 Val
= pow(R
, Params
[0]);
265 // Type 1 Reversed: X = Y ^1/gamma
269 if (fabs(Params
[0] - 1.0) < MATRIX_DET_TOLERANCE
)
275 Val
= pow(R
, 1/Params
[0]);
279 // Y = (aX + b)^Gamma | X >= -b/a
282 disc
= -Params
[2] / Params
[1];
286 e
= Params
[1]*R
+ Params
[2];
289 Val
= pow(e
, Params
[0]);
298 // X = (Y ^1/g - b) / a
303 Val
= (pow(R
, 1.0/Params
[0]) - Params
[2]) / Params
[1];
311 // Y = (aX + b)^Gamma | X <= -b/a
314 disc
= -Params
[2] / Params
[1];
320 e
= Params
[1]*R
+ Params
[2];
323 Val
= pow(e
, Params
[0]) + Params
[3];
333 // X=((Y-c)^1/g - b)/a | (Y>=c)
336 if (R
>= Params
[3]) {
341 Val
= (pow(e
, 1/Params
[0]) - Params
[2]) / Params
[1];
346 Val
= -Params
[2] / Params
[1];
351 // IEC 61966-2.1 (sRGB)
352 // Y = (aX + b)^Gamma | X >= d
355 if (R
>= Params
[4]) {
357 e
= Params
[1]*R
+ Params
[2];
360 Val
= pow(e
, Params
[0]);
369 // X=((Y^1/g-b)/a) | Y >= (ad+b)^g
370 // X=Y/c | Y< (ad+b)^g
372 e
= Params
[1] * Params
[4] + Params
[2];
376 disc
= pow(e
, Params
[0]);
380 Val
= (pow(R
, 1.0/Params
[0]) - Params
[2]) / Params
[1];
388 // Y = (aX + b)^Gamma + e | X >= d
389 // Y = cX + f | X < d
391 if (R
>= Params
[4]) {
393 e
= Params
[1]*R
+ Params
[2];
396 Val
= pow(e
, Params
[0]) + Params
[5];
401 Val
= R
*Params
[3] + Params
[6];
406 // X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f
410 disc
= Params
[3] * Params
[4] + Params
[6];
417 Val
= (pow(e
, 1.0/Params
[0]) - Params
[2]) / Params
[1];
420 Val
= (R
- Params
[6]) / Params
[3];
425 // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
426 // Type 6 is basically identical to type 5 without d
428 // Y = (a * X + b) ^ Gamma + c
430 e
= Params
[1]*R
+ Params
[2];
435 Val
= pow(e
, Params
[0]) + Params
[3];
438 // ((Y - c) ^1/Gamma - b) / a
444 Val
= (pow(e
, 1.0/Params
[0]) - Params
[2]) / Params
[1];
448 // Y = a * log (b * X^Gamma + c) + d
451 e
= Params
[2] * pow(R
, Params
[0]) + Params
[3];
455 Val
= Params
[1]*log10(e
) + Params
[4];
458 // (Y - d) / a = log(b * X ^Gamma + c)
459 // pow(10, (Y-d) / a) = b * X ^Gamma + c
460 // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
462 Val
= pow((pow(10.0, (R
-Params
[4]) / Params
[1]) - Params
[3]) / Params
[2], 1.0 / Params
[0]);
466 //Y = a * b^(c*X+d) + e
468 Val
= (Params
[0] * pow(Params
[1], Params
[2] * R
+ Params
[3]) + Params
[4]);
472 // Y = (log((y-e) / a) / log(b) - d ) / c
473 // a=0, b=1, c=2, d=3, e=4,
476 disc
= R
- Params
[4];
477 if (disc
< 0) Val
= 0;
479 Val
= (log(disc
/ Params
[0]) / log(Params
[1]) - Params
[3]) / Params
[2];
482 // S-Shaped: (1 - (1-x)^1/g)^1/g
484 Val
= pow(1.0 - pow(1 - R
, 1/Params
[0]), 1/Params
[0]);
487 // y = (1 - (1-x)^1/g)^1/g
488 // y^g = (1 - (1-x)^1/g)
489 // 1 - y^g = (1-x)^1/g
490 // (1 - y^g)^g = 1 - x
493 Val
= 1 - pow(1 - pow(R
, Params
[0]), Params
[0]);
497 // Unsupported parametric curve. Should never reach here
504 // Evaluate a segmented funtion for a single value. Return -1 if no valid segment found .
505 // If fn type is 0, perform an interpolation on the table
507 cmsFloat64Number
EvalSegmentedFn(const cmsToneCurve
*g
, cmsFloat64Number R
)
511 for (i
= g
->nSegments
-1; i
>= 0 ; --i
) {
514 if ((R
> g
->Segments
[i
].x0
) && (R
<= g
->Segments
[i
].x1
)) {
516 // Type == 0 means segment is sampled
517 if (g
->Segments
[i
].Type
== 0) {
519 cmsFloat32Number R1
= (cmsFloat32Number
) (R
- g
->Segments
[i
].x0
) / (g
->Segments
[i
].x1
- g
->Segments
[i
].x0
);
520 cmsFloat32Number Out
;
522 // Setup the table (TODO: clean that)
523 g
->SegInterp
[i
]-> Table
= g
->Segments
[i
].SampledPoints
;
525 g
->SegInterp
[i
] -> Interpolation
.LerpFloat(&R1
, &Out
, g
->SegInterp
[i
]);
530 return g
->Evals
[i
](g
->Segments
[i
].Type
, g
->Segments
[i
].Params
, R
);
537 // Access to estimated low-res table
538 cmsUInt32Number CMSEXPORT
cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve
* t
)
540 _cmsAssert(t
!= NULL
);
544 const cmsUInt16Number
* CMSEXPORT
cmsGetToneCurveEstimatedTable(const cmsToneCurve
* t
)
546 _cmsAssert(t
!= NULL
);
551 // Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
552 // floating point description empty.
553 cmsToneCurve
* CMSEXPORT
cmsBuildTabulatedToneCurve16(cmsContext ContextID
, cmsInt32Number nEntries
, const cmsUInt16Number Values
[])
555 return AllocateToneCurveStruct(ContextID
, nEntries
, 0, NULL
, Values
);
559 int EntriesByGamma(cmsFloat64Number Gamma
)
561 if (fabs(Gamma
- 1.0) < 0.001) return 2;
566 // Create a segmented gamma, fill the table
567 cmsToneCurve
* CMSEXPORT
cmsBuildSegmentedToneCurve(cmsContext ContextID
,
568 cmsInt32Number nSegments
, const cmsCurveSegment Segments
[])
571 cmsFloat64Number R
, Val
;
573 int nGridPoints
= 4096;
575 _cmsAssert(Segments
!= NULL
);
577 // Optimizatin for identity curves.
578 if (nSegments
== 1 && Segments
[0].Type
== 1) {
580 nGridPoints
= EntriesByGamma(Segments
[0].Params
[0]);
583 g
= AllocateToneCurveStruct(ContextID
, nGridPoints
, nSegments
, Segments
, NULL
);
584 if (g
== NULL
) return NULL
;
586 // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
587 // for performance reasons. This table would normally not be used except on 8/16 bits transforms.
588 for (i
=0; i
< nGridPoints
; i
++) {
590 R
= (cmsFloat64Number
) i
/ (nGridPoints
-1);
592 Val
= EvalSegmentedFn(g
, R
);
594 // Round and saturate
595 g
->Table16
[i
] = _cmsQuickSaturateWord(Val
* 65535.0);
601 // Use a segmented curve to store the floating point table
602 cmsToneCurve
* CMSEXPORT
cmsBuildTabulatedToneCurveFloat(cmsContext ContextID
, cmsUInt32Number nEntries
, const cmsFloat32Number values
[])
604 cmsCurveSegment Seg
[3];
606 // A segmented tone curve should have function segments in the first and last positions
607 // Initialize segmented curve part up to 0 to constant value = samples[0]
608 Seg
[0].x0
= MINUS_INF
;
612 Seg
[0].Params
[0] = 1;
613 Seg
[0].Params
[1] = 0;
614 Seg
[0].Params
[2] = 0;
615 Seg
[0].Params
[3] = values
[0];
616 Seg
[0].Params
[4] = 0;
623 Seg
[1].nGridPoints
= nEntries
;
624 Seg
[1].SampledPoints
= (cmsFloat32Number
*) values
;
626 // Final segment is constant = lastsample
628 Seg
[2].x1
= PLUS_INF
;
631 Seg
[2].Params
[0] = 1;
632 Seg
[2].Params
[1] = 0;
633 Seg
[2].Params
[2] = 0;
634 Seg
[2].Params
[3] = values
[nEntries
-1];
635 Seg
[2].Params
[4] = 0;
638 return cmsBuildSegmentedToneCurve(ContextID
, 3, Seg
);
643 // Parameters goes as: Curve, a, b, c, d, e, f
644 // Type is the ICC type +1
645 // if type is negative, then the curve is analyticaly inverted
646 cmsToneCurve
* CMSEXPORT
cmsBuildParametricToneCurve(cmsContext ContextID
, cmsInt32Number Type
, const cmsFloat64Number Params
[])
648 cmsCurveSegment Seg0
;
650 cmsUInt32Number size
;
651 _cmsParametricCurvesCollection
* c
= GetParametricCurveByType(Type
, &Pos
);
653 _cmsAssert(Params
!= NULL
);
656 cmsSignalError(ContextID
, cmsERROR_UNKNOWN_EXTENSION
, "Invalid parametric curve type %d", Type
);
660 memset(&Seg0
, 0, sizeof(Seg0
));
666 size
= c
->ParameterCount
[Pos
] * sizeof(cmsFloat64Number
);
667 memmove(Seg0
.Params
, Params
, size
);
669 return cmsBuildSegmentedToneCurve(ContextID
, 1, &Seg0
);
674 // Build a gamma table based on gamma constant
675 cmsToneCurve
* CMSEXPORT
cmsBuildGamma(cmsContext ContextID
, cmsFloat64Number Gamma
)
677 return cmsBuildParametricToneCurve(ContextID
, 1, &Gamma
);
681 // Free all memory taken by the gamma curve
682 void CMSEXPORT
cmsFreeToneCurve(cmsToneCurve
* Curve
)
684 cmsContext ContextID
;
686 if (Curve
== NULL
) return;
688 ContextID
= Curve
->InterpParams
->ContextID
;
690 _cmsFreeInterpParams(Curve
->InterpParams
);
692 if (Curve
-> Table16
)
693 _cmsFree(ContextID
, Curve
->Table16
);
695 if (Curve
->Segments
) {
699 for (i
=0; i
< Curve
->nSegments
; i
++) {
701 if (Curve
->Segments
[i
].SampledPoints
) {
702 _cmsFree(ContextID
, Curve
->Segments
[i
].SampledPoints
);
705 if (Curve
->SegInterp
[i
] != 0)
706 _cmsFreeInterpParams(Curve
->SegInterp
[i
]);
709 _cmsFree(ContextID
, Curve
->Segments
);
710 _cmsFree(ContextID
, Curve
->SegInterp
);
714 _cmsFree(ContextID
, Curve
-> Evals
);
716 if (Curve
) _cmsFree(ContextID
, Curve
);
719 // Utility function, free 3 gamma tables
720 void CMSEXPORT
cmsFreeToneCurveTriple(cmsToneCurve
* Curve
[3])
723 _cmsAssert(Curve
!= NULL
);
725 if (Curve
[0] != NULL
) cmsFreeToneCurve(Curve
[0]);
726 if (Curve
[1] != NULL
) cmsFreeToneCurve(Curve
[1]);
727 if (Curve
[2] != NULL
) cmsFreeToneCurve(Curve
[2]);
729 Curve
[0] = Curve
[1] = Curve
[2] = NULL
;
733 // Duplicate a gamma table
734 cmsToneCurve
* CMSEXPORT
cmsDupToneCurve(const cmsToneCurve
* In
)
736 if (In
== NULL
) return NULL
;
738 return AllocateToneCurveStruct(In
->InterpParams
->ContextID
, In
->nEntries
, In
->nSegments
, In
->Segments
, In
->Table16
);
741 // Joins two curves for X and Y. Curves should be monotonic.
746 cmsToneCurve
* CMSEXPORT
cmsJoinToneCurve(cmsContext ContextID
,
747 const cmsToneCurve
* X
,
748 const cmsToneCurve
* Y
, cmsUInt32Number nResultingPoints
)
750 cmsToneCurve
* out
= NULL
;
751 cmsToneCurve
* Yreversed
= NULL
;
752 cmsFloat32Number t
, x
;
753 cmsFloat32Number
* Res
= NULL
;
757 _cmsAssert(X
!= NULL
);
758 _cmsAssert(Y
!= NULL
);
760 Yreversed
= cmsReverseToneCurveEx(nResultingPoints
, Y
);
761 if (Yreversed
== NULL
) goto Error
;
763 Res
= (cmsFloat32Number
*) _cmsCalloc(ContextID
, nResultingPoints
, sizeof(cmsFloat32Number
));
764 if (Res
== NULL
) goto Error
;
767 for (i
=0; i
< nResultingPoints
; i
++) {
769 t
= (cmsFloat32Number
) i
/ (nResultingPoints
-1);
770 x
= cmsEvalToneCurveFloat(X
, t
);
771 Res
[i
] = cmsEvalToneCurveFloat(Yreversed
, x
);
774 // Allocate space for output
775 out
= cmsBuildTabulatedToneCurveFloat(ContextID
, nResultingPoints
, Res
);
779 if (Res
!= NULL
) _cmsFree(ContextID
, Res
);
780 if (Yreversed
!= NULL
) cmsFreeToneCurve(Yreversed
);
787 // Get the surrounding nodes. This is tricky on non-monotonic tables
789 int GetInterval(cmsFloat64Number In
, const cmsUInt16Number LutTable
[], const struct _cms_interp_struc
* p
)
794 // A 1 point table is not allowed
795 if (p
-> Domain
[0] < 1) return -1;
797 // Let's see if ascending or descending.
798 if (LutTable
[0] < LutTable
[p
->Domain
[0]]) {
800 // Table is overall ascending
801 for (i
=p
->Domain
[0]-1; i
>=0; --i
) {
806 if (y0
<= y1
) { // Increasing
807 if (In
>= y0
&& In
<= y1
) return i
;
810 if (y1
< y0
) { // Decreasing
811 if (In
>= y1
&& In
<= y0
) return i
;
816 // Table is overall descending
817 for (i
=0; i
< (int) p
-> Domain
[0]; i
++) {
822 if (y0
<= y1
) { // Increasing
823 if (In
>= y0
&& In
<= y1
) return i
;
826 if (y1
< y0
) { // Decreasing
827 if (In
>= y1
&& In
<= y0
) return i
;
835 // Reverse a gamma table
836 cmsToneCurve
* CMSEXPORT
cmsReverseToneCurveEx(cmsInt32Number nResultSamples
, const cmsToneCurve
* InCurve
)
839 cmsFloat64Number a
= 0, b
= 0, y
, x1
, y1
, x2
, y2
;
843 _cmsAssert(InCurve
!= NULL
);
845 // Try to reverse it analytically whatever possible
846 if (InCurve
->nSegments
== 1 && InCurve
->Segments
[0].Type
> 0 && InCurve
-> Segments
[0].Type
<= 5) {
848 return cmsBuildParametricToneCurve(InCurve
->InterpParams
->ContextID
,
849 -(InCurve
-> Segments
[0].Type
),
850 InCurve
-> Segments
[0].Params
);
853 // Nope, reverse the table.
854 out
= cmsBuildTabulatedToneCurve16(InCurve
->InterpParams
->ContextID
, nResultSamples
, NULL
);
858 // We want to know if this is an ascending or descending table
859 Ascending
= !cmsIsToneCurveDescending(InCurve
);
861 // Iterate across Y axis
862 for (i
=0; i
< nResultSamples
; i
++) {
864 y
= (cmsFloat64Number
) i
* 65535.0 / (nResultSamples
- 1);
866 // Find interval in which y is within.
867 j
= GetInterval(y
, InCurve
->Table16
, InCurve
->InterpParams
);
871 // Get limits of interval
872 x1
= InCurve
->Table16
[j
];
873 x2
= InCurve
->Table16
[j
+1];
875 y1
= (cmsFloat64Number
) (j
* 65535.0) / (InCurve
->nEntries
- 1);
876 y2
= (cmsFloat64Number
) ((j
+1) * 65535.0 ) / (InCurve
->nEntries
- 1);
878 // If collapsed, then use any
881 out
->Table16
[i
] = _cmsQuickSaturateWord(Ascending
? y2
: y1
);
887 a
= (y2
- y1
) / (x2
- x1
);
892 out
->Table16
[i
] = _cmsQuickSaturateWord(a
* y
+ b
);
899 // Reverse a gamma table
900 cmsToneCurve
* CMSEXPORT
cmsReverseToneCurve(const cmsToneCurve
* InGamma
)
902 _cmsAssert(InGamma
!= NULL
);
904 return cmsReverseToneCurveEx(4096, InGamma
);
907 // From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
908 // differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
910 // Smoothing and interpolation with second differences.
912 // Input: weights (w), data (y): vector from 1 to m.
913 // Input: smoothing parameter (lambda), length (m).
914 // Output: smoothed vector (z): vector from 1 to m.
917 cmsBool
smooth2(cmsContext ContextID
, cmsFloat32Number w
[], cmsFloat32Number y
[], cmsFloat32Number z
[], cmsFloat32Number lambda
, int m
)
920 cmsFloat32Number
*c
, *d
, *e
;
924 c
= (cmsFloat32Number
*) _cmsCalloc(ContextID
, MAX_NODES_IN_CURVE
, sizeof(cmsFloat32Number
));
925 d
= (cmsFloat32Number
*) _cmsCalloc(ContextID
, MAX_NODES_IN_CURVE
, sizeof(cmsFloat32Number
));
926 e
= (cmsFloat32Number
*) _cmsCalloc(ContextID
, MAX_NODES_IN_CURVE
, sizeof(cmsFloat32Number
));
928 if (c
!= NULL
&& d
!= NULL
&& e
!= NULL
) {
931 d
[1] = w
[1] + lambda
;
932 c
[1] = -2 * lambda
/ d
[1];
935 d
[2] = w
[2] + 5 * lambda
- d
[1] * c
[1] * c
[1];
936 c
[2] = (-4 * lambda
- d
[1] * c
[1] * e
[1]) / d
[2];
937 e
[2] = lambda
/ d
[2];
938 z
[2] = w
[2] * y
[2] - c
[1] * z
[1];
940 for (i
= 3; i
< m
- 1; i
++) {
941 i1
= i
- 1; i2
= i
- 2;
942 d
[i
]= w
[i
] + 6 * lambda
- c
[i1
] * c
[i1
] * d
[i1
] - e
[i2
] * e
[i2
] * d
[i2
];
943 c
[i
] = (-4 * lambda
-d
[i1
] * c
[i1
] * e
[i1
])/ d
[i
];
944 e
[i
] = lambda
/ d
[i
];
945 z
[i
] = w
[i
] * y
[i
] - c
[i1
] * z
[i1
] - e
[i2
] * z
[i2
];
948 i1
= m
- 2; i2
= m
- 3;
950 d
[m
- 1] = w
[m
- 1] + 5 * lambda
-c
[i1
] * c
[i1
] * d
[i1
] - e
[i2
] * e
[i2
] * d
[i2
];
951 c
[m
- 1] = (-2 * lambda
- d
[i1
] * c
[i1
] * e
[i1
]) / d
[m
- 1];
952 z
[m
- 1] = w
[m
- 1] * y
[m
- 1] - c
[i1
] * z
[i1
] - e
[i2
] * z
[i2
];
953 i1
= m
- 1; i2
= m
- 2;
955 d
[m
] = w
[m
] + lambda
- c
[i1
] * c
[i1
] * d
[i1
] - e
[i2
] * e
[i2
] * d
[i2
];
956 z
[m
] = (w
[m
] * y
[m
] - c
[i1
] * z
[i1
] - e
[i2
] * z
[i2
]) / d
[m
];
957 z
[m
- 1] = z
[m
- 1] / d
[m
- 1] - c
[m
- 1] * z
[m
];
959 for (i
= m
- 2; 1<= i
; i
--)
960 z
[i
] = z
[i
] / d
[i
] - c
[i
] * z
[i
+ 1] - e
[i
] * z
[i
+ 2];
966 if (c
!= NULL
) _cmsFree(ContextID
, c
);
967 if (d
!= NULL
) _cmsFree(ContextID
, d
);
968 if (e
!= NULL
) _cmsFree(ContextID
, e
);
973 // Smooths a curve sampled at regular intervals.
974 cmsBool CMSEXPORT
cmsSmoothToneCurve(cmsToneCurve
* Tab
, cmsFloat64Number lambda
)
976 cmsFloat32Number w
[MAX_NODES_IN_CURVE
], y
[MAX_NODES_IN_CURVE
], z
[MAX_NODES_IN_CURVE
];
977 int i
, nItems
, Zeros
, Poles
;
979 if (Tab
== NULL
) return FALSE
;
981 if (cmsIsToneCurveLinear(Tab
)) return TRUE
; // Nothing to do
983 nItems
= Tab
-> nEntries
;
985 if (nItems
>= MAX_NODES_IN_CURVE
) {
986 cmsSignalError(Tab
->InterpParams
->ContextID
, cmsERROR_RANGE
, "cmsSmoothToneCurve: too many points.");
990 memset(w
, 0, nItems
* sizeof(cmsFloat32Number
));
991 memset(y
, 0, nItems
* sizeof(cmsFloat32Number
));
992 memset(z
, 0, nItems
* sizeof(cmsFloat32Number
));
994 for (i
=0; i
< nItems
; i
++)
996 y
[i
+1] = (cmsFloat32Number
) Tab
-> Table16
[i
];
1000 if (!smooth2(Tab
->InterpParams
->ContextID
, w
, y
, z
, (cmsFloat32Number
) lambda
, nItems
)) return FALSE
;
1002 // Do some reality - checking...
1004 for (i
=nItems
; i
> 1; --i
) {
1006 if (z
[i
] == 0.) Zeros
++;
1007 if (z
[i
] >= 65535.) Poles
++;
1008 if (z
[i
] < z
[i
-1]) {
1009 cmsSignalError(Tab
->InterpParams
->ContextID
, cmsERROR_RANGE
, "cmsSmoothToneCurve: Non-Monotonic.");
1014 if (Zeros
> (nItems
/ 3)) {
1015 cmsSignalError(Tab
->InterpParams
->ContextID
, cmsERROR_RANGE
, "cmsSmoothToneCurve: Degenerated, mostly zeros.");
1018 if (Poles
> (nItems
/ 3)) {
1019 cmsSignalError(Tab
->InterpParams
->ContextID
, cmsERROR_RANGE
, "cmsSmoothToneCurve: Degenerated, mostly poles.");
1024 for (i
=0; i
< nItems
; i
++) {
1026 // Clamp to cmsUInt16Number
1027 Tab
-> Table16
[i
] = _cmsQuickSaturateWord(z
[i
+1]);
1033 // Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
1034 // in a linear table. This way assures it is linear in 12 bits, which should be enought in most cases.
1035 cmsBool CMSEXPORT
cmsIsToneCurveLinear(const cmsToneCurve
* Curve
)
1040 _cmsAssert(Curve
!= NULL
);
1042 for (i
=0; i
< Curve
->nEntries
; i
++) {
1044 diff
= abs((int) Curve
->Table16
[i
] - (int) _cmsQuantizeVal(i
, Curve
->nEntries
));
1052 // Same, but for monotonicity
1053 cmsBool CMSEXPORT
cmsIsToneCurveMonotonic(const cmsToneCurve
* t
)
1057 cmsBool lDescending
;
1059 _cmsAssert(t
!= NULL
);
1061 // Degenerated curves are monotonic? Ok, let's pass them
1063 if (n
< 2) return TRUE
;
1066 lDescending
= cmsIsToneCurveDescending(t
);
1070 last
= t
->Table16
[0];
1072 for (i
= 1; i
< n
; i
++) {
1074 if (t
->Table16
[i
] - last
> 2) // We allow some ripple
1077 last
= t
->Table16
[i
];
1083 last
= t
->Table16
[n
-1];
1085 for (i
= n
-2; i
>= 0; --i
) {
1087 if (t
->Table16
[i
] - last
> 2)
1090 last
= t
->Table16
[i
];
1098 // Same, but for descending tables
1099 cmsBool CMSEXPORT
cmsIsToneCurveDescending(const cmsToneCurve
* t
)
1101 _cmsAssert(t
!= NULL
);
1103 return t
->Table16
[0] > t
->Table16
[t
->nEntries
-1];
1107 // Another info fn: is out gamma table multisegment?
1108 cmsBool CMSEXPORT
cmsIsToneCurveMultisegment(const cmsToneCurve
* t
)
1110 _cmsAssert(t
!= NULL
);
1112 return t
-> nSegments
> 1;
1115 cmsInt32Number CMSEXPORT
cmsGetToneCurveParametricType(const cmsToneCurve
* t
)
1117 _cmsAssert(t
!= NULL
);
1119 if (t
-> nSegments
!= 1) return 0;
1120 return t
->Segments
[0].Type
;
1123 // We need accuracy this time
1124 cmsFloat32Number CMSEXPORT
cmsEvalToneCurveFloat(const cmsToneCurve
* Curve
, cmsFloat32Number v
)
1126 _cmsAssert(Curve
!= NULL
);
1128 // Check for 16 bits table. If so, this is a limited-precision tone curve
1129 if (Curve
->nSegments
== 0) {
1131 cmsUInt16Number In
, Out
;
1133 In
= (cmsUInt16Number
) _cmsQuickSaturateWord(v
* 65535.0);
1134 Out
= cmsEvalToneCurve16(Curve
, In
);
1136 return (cmsFloat32Number
) (Out
/ 65535.0);
1139 return (cmsFloat32Number
) EvalSegmentedFn(Curve
, v
);
1142 // We need xput over here
1143 cmsUInt16Number CMSEXPORT
cmsEvalToneCurve16(const cmsToneCurve
* Curve
, cmsUInt16Number v
)
1145 cmsUInt16Number out
;
1147 _cmsAssert(Curve
!= NULL
);
1149 Curve
->InterpParams
->Interpolation
.Lerp16(&v
, &out
, Curve
->InterpParams
);
1154 // Least squares fitting.
1155 // A mathematical procedure for finding the best-fitting curve to a given set of points by
1156 // minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
1157 // The sum of the squares of the offsets is used instead of the offset absolute values because
1158 // this allows the residuals to be treated as a continuous differentiable quantity.
1162 // R = (yi - (xi^g))
1163 // R2 = (yi - (xi^g))2
1164 // SUM R2 = SUM (yi - (xi^g))2
1166 // dR2/dg = -2 SUM x^g log(x)(y - x^g)
1167 // solving for dR2/dg = 0
1169 // g = 1/n * SUM(log(y) / log(x))
1171 cmsFloat64Number CMSEXPORT
cmsEstimateGamma(const cmsToneCurve
* t
, cmsFloat64Number Precision
)
1173 cmsFloat64Number gamma
, sum
, sum2
;
1174 cmsFloat64Number n
, x
, y
, Std
;
1177 _cmsAssert(t
!= NULL
);
1181 // Excluding endpoints
1182 for (i
=1; i
< (MAX_NODES_IN_CURVE
-1); i
++) {
1184 x
= (cmsFloat64Number
) i
/ (MAX_NODES_IN_CURVE
-1);
1185 y
= (cmsFloat64Number
) cmsEvalToneCurveFloat(t
, (cmsFloat32Number
) x
);
1187 // Avoid 7% on lower part to prevent
1188 // artifacts due to linear ramps
1190 if (y
> 0. && y
< 1. && x
> 0.07) {
1192 gamma
= log(y
) / log(x
);
1194 sum2
+= gamma
* gamma
;
1199 // Take a look on SD to see if gamma isn't exponential at all
1200 Std
= sqrt((n
* sum2
- sum
* sum
) / (n
*(n
-1)));
1202 if (Std
> Precision
)
1205 return (sum
/ n
); // The mean