1 //---------------------------------------------------------------------------------
3 // Little Color Management System
4 // Copyright (c) 1998-2012 Marti Maria Saguer
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 //---------------------------------------------------------------------------------
27 #include "lcms2_internal.h"
31 const cmsCIEXYZ
* CMSEXPORT
cmsD50_XYZ(void)
33 static cmsCIEXYZ D50XYZ
= {cmsD50X
, cmsD50Y
, cmsD50Z
};
38 const cmsCIExyY
* CMSEXPORT
cmsD50_xyY(void)
40 static cmsCIExyY D50xyY
;
42 cmsXYZ2xyY(&D50xyY
, cmsD50_XYZ());
47 // Obtains WhitePoint from Temperature
48 cmsBool CMSEXPORT
cmsWhitePointFromTemp(cmsCIExyY
* WhitePoint
, cmsFloat64Number TempK
)
50 cmsFloat64Number x
, y
;
51 cmsFloat64Number T
, T2
, T3
;
52 // cmsFloat64Number M1, M2;
54 _cmsAssert(WhitePoint
!= NULL
);
60 // For correlated color temperature (T) between 4000K and 7000K:
62 if (T
>= 4000. && T
<= 7000.)
64 x
= -4.6070*(1E9
/T3
) + 2.9678*(1E6
/T2
) + 0.09911*(1E3
/T
) + 0.244063;
66 else // or for correlated color temperature (T) between 7000K and 25000K:
67 if (T
> 7000.0 && T
<= 25000.0)
69 x
= -2.0064*(1E9
/T3
) + 1.9018*(1E6
/T2
) + 0.24748*(1E3
/T
) + 0.237040;
72 cmsSignalError(0, cmsERROR_RANGE
, "cmsWhitePointFromTemp: invalid temp");
78 y
= -3.000*(x
*x
) + 2.870*x
- 0.275;
80 // wave factors (not used, but here for futures extensions)
82 // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
83 // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
87 WhitePoint
-> Y
= 1.0;
96 cmsFloat64Number mirek
; // temp (in microreciprocal kelvin)
97 cmsFloat64Number ut
; // u coord of intersection w/ blackbody locus
98 cmsFloat64Number vt
; // v coord of intersection w/ blackbody locus
99 cmsFloat64Number tt
; // slope of ISOTEMPERATURE. line
103 static ISOTEMPERATURE isotempdata
[] = {
104 // {Mirek, Ut, Vt, Tt }
105 {0, 0.18006, 0.26352, -0.24341},
106 {10, 0.18066, 0.26589, -0.25479},
107 {20, 0.18133, 0.26846, -0.26876},
108 {30, 0.18208, 0.27119, -0.28539},
109 {40, 0.18293, 0.27407, -0.30470},
110 {50, 0.18388, 0.27709, -0.32675},
111 {60, 0.18494, 0.28021, -0.35156},
112 {70, 0.18611, 0.28342, -0.37915},
113 {80, 0.18740, 0.28668, -0.40955},
114 {90, 0.18880, 0.28997, -0.44278},
115 {100, 0.19032, 0.29326, -0.47888},
116 {125, 0.19462, 0.30141, -0.58204},
117 {150, 0.19962, 0.30921, -0.70471},
118 {175, 0.20525, 0.31647, -0.84901},
119 {200, 0.21142, 0.32312, -1.0182 },
120 {225, 0.21807, 0.32909, -1.2168 },
121 {250, 0.22511, 0.33439, -1.4512 },
122 {275, 0.23247, 0.33904, -1.7298 },
123 {300, 0.24010, 0.34308, -2.0637 },
124 {325, 0.24702, 0.34655, -2.4681 },
125 {350, 0.25591, 0.34951, -2.9641 },
126 {375, 0.26400, 0.35200, -3.5814 },
127 {400, 0.27218, 0.35407, -4.3633 },
128 {425, 0.28039, 0.35577, -5.3762 },
129 {450, 0.28863, 0.35714, -6.7262 },
130 {475, 0.29685, 0.35823, -8.5955 },
131 {500, 0.30505, 0.35907, -11.324 },
132 {525, 0.31320, 0.35968, -15.628 },
133 {550, 0.32129, 0.36011, -23.325 },
134 {575, 0.32931, 0.36038, -40.770 },
135 {600, 0.33724, 0.36051, -116.45 }
138 #define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
141 // Robertson's method
142 cmsBool CMSEXPORT
cmsTempFromWhitePoint(cmsFloat64Number
* TempK
, const cmsCIExyY
* WhitePoint
)
145 cmsFloat64Number us
,vs
;
146 cmsFloat64Number uj
,vj
,tj
,di
,dj
,mi
,mj
;
147 cmsFloat64Number xs
, ys
;
149 _cmsAssert(WhitePoint
!= NULL
);
150 _cmsAssert(TempK
!= NULL
);
153 xs
= WhitePoint
-> x
;
154 ys
= WhitePoint
-> y
;
156 // convert (x,y) to CIE 1960 (u,WhitePoint)
158 us
= (2*xs
) / (-xs
+ 6*ys
+ 1.5);
159 vs
= (3*ys
) / (-xs
+ 6*ys
+ 1.5);
162 for (j
=0; j
< NISO
; j
++) {
164 uj
= isotempdata
[j
].ut
;
165 vj
= isotempdata
[j
].vt
;
166 tj
= isotempdata
[j
].tt
;
167 mj
= isotempdata
[j
].mirek
;
169 dj
= ((vs
- vj
) - tj
* (us
- uj
)) / sqrt(1.0 + tj
* tj
);
171 if ((j
!= 0) && (di
/dj
< 0.0)) {
174 *TempK
= 1000000.0 / (mi
+ (di
/ (di
- dj
)) * (mj
- mi
));
187 // Compute chromatic adaptation matrix using Chad as cone matrix
190 cmsBool
ComputeChromaticAdaptation(cmsMAT3
* Conversion
,
191 const cmsCIEXYZ
* SourceWhitePoint
,
192 const cmsCIEXYZ
* DestWhitePoint
,
198 cmsVEC3 ConeSourceXYZ
, ConeSourceRGB
;
199 cmsVEC3 ConeDestXYZ
, ConeDestRGB
;
204 if (!_cmsMAT3inverse(&Tmp
, &Chad_Inv
)) return FALSE
;
206 _cmsVEC3init(&ConeSourceXYZ
, SourceWhitePoint
-> X
,
207 SourceWhitePoint
-> Y
,
208 SourceWhitePoint
-> Z
);
210 _cmsVEC3init(&ConeDestXYZ
, DestWhitePoint
-> X
,
212 DestWhitePoint
-> Z
);
214 _cmsMAT3eval(&ConeSourceRGB
, Chad
, &ConeSourceXYZ
);
215 _cmsMAT3eval(&ConeDestRGB
, Chad
, &ConeDestXYZ
);
218 _cmsVEC3init(&Cone
.v
[0], ConeDestRGB
.n
[0]/ConeSourceRGB
.n
[0], 0.0, 0.0);
219 _cmsVEC3init(&Cone
.v
[1], 0.0, ConeDestRGB
.n
[1]/ConeSourceRGB
.n
[1], 0.0);
220 _cmsVEC3init(&Cone
.v
[2], 0.0, 0.0, ConeDestRGB
.n
[2]/ConeSourceRGB
.n
[2]);
224 _cmsMAT3per(&Tmp
, &Cone
, Chad
);
225 _cmsMAT3per(Conversion
, &Chad_Inv
, &Tmp
);
230 // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
231 // The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
232 cmsBool
_cmsAdaptationMatrix(cmsMAT3
* r
, const cmsMAT3
* ConeMatrix
, const cmsCIEXYZ
* FromIll
, const cmsCIEXYZ
* ToIll
)
234 cmsMAT3 LamRigg
= {{ // Bradford matrix
235 {{ 0.8951, 0.2664, -0.1614 }},
236 {{ -0.7502, 1.7135, 0.0367 }},
237 {{ 0.0389, -0.0685, 1.0296 }}
240 if (ConeMatrix
== NULL
)
241 ConeMatrix
= &LamRigg
;
243 return ComputeChromaticAdaptation(r
, FromIll
, ToIll
, ConeMatrix
);
246 // Same as anterior, but assuming D50 destination. White point is given in xyY
248 cmsBool
_cmsAdaptMatrixToD50(cmsMAT3
* r
, const cmsCIExyY
* SourceWhitePt
)
254 cmsxyY2XYZ(&Dn
, SourceWhitePt
);
256 if (!_cmsAdaptationMatrix(&Bradford
, NULL
, &Dn
, cmsD50_XYZ())) return FALSE
;
259 _cmsMAT3per(r
, &Bradford
, &Tmp
);
264 // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
265 // This is just an approximation, I am not handling all the non-linear
266 // aspects of the RGB to XYZ process, and assumming that the gamma correction
267 // has transitive property in the tranformation chain.
271 // - First I build the absolute conversion matrix using
272 // primaries in XYZ. This matrix is next inverted
273 // - Then I eval the source white point across this matrix
274 // obtaining the coeficients of the transformation
275 // - Then, I apply these coeficients to the original matrix
277 cmsBool
_cmsBuildRGB2XYZtransferMatrix(cmsMAT3
* r
, const cmsCIExyY
* WhitePt
, const cmsCIExyYTRIPLE
* Primrs
)
279 cmsVEC3 WhitePoint
, Coef
;
280 cmsMAT3 Result
, Primaries
;
281 cmsFloat64Number xn
, yn
;
282 cmsFloat64Number xr
, yr
;
283 cmsFloat64Number xg
, yg
;
284 cmsFloat64Number xb
, yb
;
288 xr
= Primrs
-> Red
.x
;
289 yr
= Primrs
-> Red
.y
;
290 xg
= Primrs
-> Green
.x
;
291 yg
= Primrs
-> Green
.y
;
292 xb
= Primrs
-> Blue
.x
;
293 yb
= Primrs
-> Blue
.y
;
295 // Build Primaries matrix
296 _cmsVEC3init(&Primaries
.v
[0], xr
, xg
, xb
);
297 _cmsVEC3init(&Primaries
.v
[1], yr
, yg
, yb
);
298 _cmsVEC3init(&Primaries
.v
[2], (1-xr
-yr
), (1-xg
-yg
), (1-xb
-yb
));
301 // Result = Primaries ^ (-1) inverse matrix
302 if (!_cmsMAT3inverse(&Primaries
, &Result
))
306 _cmsVEC3init(&WhitePoint
, xn
/yn
, 1.0, (1.0-xn
-yn
)/yn
);
308 // Across inverse primaries ...
309 _cmsMAT3eval(&Coef
, &Result
, &WhitePoint
);
311 // Give us the Coefs, then I build transformation matrix
312 _cmsVEC3init(&r
-> v
[0], Coef
.n
[VX
]*xr
, Coef
.n
[VY
]*xg
, Coef
.n
[VZ
]*xb
);
313 _cmsVEC3init(&r
-> v
[1], Coef
.n
[VX
]*yr
, Coef
.n
[VY
]*yg
, Coef
.n
[VZ
]*yb
);
314 _cmsVEC3init(&r
-> v
[2], Coef
.n
[VX
]*(1.0-xr
-yr
), Coef
.n
[VY
]*(1.0-xg
-yg
), Coef
.n
[VZ
]*(1.0-xb
-yb
));
317 return _cmsAdaptMatrixToD50(r
, WhitePt
);
322 // Adapts a color to a given illuminant. Original color is expected to have
323 // a SourceWhitePt white point.
324 cmsBool CMSEXPORT
cmsAdaptToIlluminant(cmsCIEXYZ
* Result
,
325 const cmsCIEXYZ
* SourceWhitePt
,
326 const cmsCIEXYZ
* Illuminant
,
327 const cmsCIEXYZ
* Value
)
332 _cmsAssert(Result
!= NULL
);
333 _cmsAssert(SourceWhitePt
!= NULL
);
334 _cmsAssert(Illuminant
!= NULL
);
335 _cmsAssert(Value
!= NULL
);
337 if (!_cmsAdaptationMatrix(&Bradford
, NULL
, SourceWhitePt
, Illuminant
)) return FALSE
;
339 _cmsVEC3init(&In
, Value
-> X
, Value
-> Y
, Value
-> Z
);
340 _cmsMAT3eval(&Out
, &Bradford
, &In
);
342 Result
-> X
= Out
.n
[0];
343 Result
-> Y
= Out
.n
[1];
344 Result
-> Z
= Out
.n
[2];