grub2: bring back build of aros-side grub2 tools
[AROS.git] / workbench / libs / mesa / src / gallium / auxiliary / translate / translate_sse.c
blobc3d15661f053f4c0d5f3481c2958dbde8312bd32
1 /*
2 * Copyright 2003 Tungsten Graphics, inc.
3 * All Rights Reserved.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * TUNGSTEN GRAPHICS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
24 * Authors:
25 * Keith Whitwell <keithw@tungstengraphics.com>
29 #include "pipe/p_config.h"
30 #include "pipe/p_compiler.h"
31 #include "util/u_memory.h"
32 #include "util/u_math.h"
33 #include "util/u_format.h"
35 #include "translate.h"
38 #if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
40 #include "rtasm/rtasm_cpu.h"
41 #include "rtasm/rtasm_x86sse.h"
44 #define X 0
45 #define Y 1
46 #define Z 2
47 #define W 3
50 struct translate_buffer {
51 const void *base_ptr;
52 uintptr_t stride;
53 unsigned max_index;
56 struct translate_buffer_variant {
57 unsigned buffer_index;
58 unsigned instance_divisor;
59 void *ptr; /* updated either per vertex or per instance */
63 #define ELEMENT_BUFFER_INSTANCE_ID 1001
65 #define NUM_CONSTS 7
67 enum
69 CONST_IDENTITY,
70 CONST_INV_127,
71 CONST_INV_255,
72 CONST_INV_32767,
73 CONST_INV_65535,
74 CONST_INV_2147483647,
75 CONST_255
78 #define C(v) {(float)(v), (float)(v), (float)(v), (float)(v)}
79 static float consts[NUM_CONSTS][4] = {
80 {0, 0, 0, 1},
81 C(1.0 / 127.0),
82 C(1.0 / 255.0),
83 C(1.0 / 32767.0),
84 C(1.0 / 65535.0),
85 C(1.0 / 2147483647.0),
86 C(255.0)
88 #undef C
90 struct translate_sse {
91 struct translate translate;
93 struct x86_function linear_func;
94 struct x86_function elt_func;
95 struct x86_function elt16_func;
96 struct x86_function elt8_func;
97 struct x86_function *func;
99 PIPE_ALIGN_VAR(16) float consts[NUM_CONSTS][4];
100 int8_t reg_to_const[16];
101 int8_t const_to_reg[NUM_CONSTS];
103 struct translate_buffer buffer[PIPE_MAX_ATTRIBS];
104 unsigned nr_buffers;
106 /* Multiple buffer variants can map to a single buffer. */
107 struct translate_buffer_variant buffer_variant[PIPE_MAX_ATTRIBS];
108 unsigned nr_buffer_variants;
110 /* Multiple elements can map to a single buffer variant. */
111 unsigned element_to_buffer_variant[PIPE_MAX_ATTRIBS];
113 boolean use_instancing;
114 unsigned instance_id;
116 /* these are actually known values, but putting them in a struct
117 * like this is helpful to keep them in sync across the file.
119 struct x86_reg tmp_EAX;
120 struct x86_reg tmp2_EDX;
121 struct x86_reg src_ECX;
122 struct x86_reg idx_ESI; /* either start+i or &elt[i] */
123 struct x86_reg machine_EDI;
124 struct x86_reg outbuf_EBX;
125 struct x86_reg count_EBP; /* decrements to zero */
128 static int get_offset( const void *a, const void *b )
130 return (const char *)b - (const char *)a;
133 static struct x86_reg get_const( struct translate_sse *p, unsigned id)
135 struct x86_reg reg;
136 unsigned i;
138 if(p->const_to_reg[id] >= 0)
139 return x86_make_reg(file_XMM, p->const_to_reg[id]);
141 for(i = 2; i < 8; ++i)
143 if(p->reg_to_const[i] < 0)
144 break;
147 /* TODO: be smarter here */
148 if(i == 8)
149 --i;
151 reg = x86_make_reg(file_XMM, i);
153 if(p->reg_to_const[i] >= 0)
154 p->const_to_reg[p->reg_to_const[i]] = -1;
156 p->reg_to_const[i] = id;
157 p->const_to_reg[id] = i;
159 /* TODO: this should happen outside the loop, if possible */
160 sse_movaps(p->func, reg,
161 x86_make_disp(p->machine_EDI,
162 get_offset(p, &p->consts[id][0])));
164 return reg;
167 /* load the data in a SSE2 register, padding with zeros */
168 static boolean emit_load_sse2( struct translate_sse *p,
169 struct x86_reg data,
170 struct x86_reg src,
171 unsigned size)
173 struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1);
174 struct x86_reg tmp = p->tmp_EAX;
175 switch(size)
177 case 1:
178 x86_movzx8(p->func, tmp, src);
179 sse2_movd(p->func, data, tmp);
180 break;
181 case 2:
182 x86_movzx16(p->func, tmp, src);
183 sse2_movd(p->func, data, tmp);
184 break;
185 case 3:
186 x86_movzx8(p->func, tmp, x86_make_disp(src, 2));
187 x86_shl_imm(p->func, tmp, 16);
188 x86_mov16(p->func, tmp, src);
189 sse2_movd(p->func, data, tmp);
190 break;
191 case 4:
192 sse2_movd(p->func, data, src);
193 break;
194 case 6:
195 sse2_movd(p->func, data, src);
196 x86_movzx16(p->func, tmp, x86_make_disp(src, 4));
197 sse2_movd(p->func, tmpXMM, tmp);
198 sse2_punpckldq(p->func, data, tmpXMM);
199 break;
200 case 8:
201 sse2_movq(p->func, data, src);
202 break;
203 case 12:
204 sse2_movq(p->func, data, src);
205 sse2_movd(p->func, tmpXMM, x86_make_disp(src, 8));
206 sse2_punpcklqdq(p->func, data, tmpXMM);
207 break;
208 case 16:
209 sse2_movdqu(p->func, data, src);
210 break;
211 default:
212 return FALSE;
214 return TRUE;
217 /* this value can be passed for the out_chans argument */
218 #define CHANNELS_0001 5
220 /* this function will load #chans float values, and will
221 * pad the register with zeroes at least up to out_chans.
223 * If out_chans is set to CHANNELS_0001, then the fourth
224 * value will be padded with 1. Only pass this value if
225 * chans < 4 or results are undefined.
227 static void emit_load_float32( struct translate_sse *p,
228 struct x86_reg data,
229 struct x86_reg arg0,
230 unsigned out_chans,
231 unsigned chans)
233 switch(chans)
235 case 1:
236 /* a 0 0 0
237 * a 0 0 1
239 sse_movss(p->func, data, arg0);
240 if(out_chans == CHANNELS_0001)
241 sse_orps(p->func, data, get_const(p, CONST_IDENTITY) );
242 break;
243 case 2:
244 /* 0 0 0 1
245 * a b 0 1
247 if(out_chans == CHANNELS_0001)
248 sse_shufps(p->func, data, get_const(p, CONST_IDENTITY), SHUF(X, Y, Z, W) );
249 else if(out_chans > 2)
250 sse_movlhps(p->func, data, get_const(p, CONST_IDENTITY) );
251 sse_movlps(p->func, data, arg0);
252 break;
253 case 3:
254 /* Have to jump through some hoops:
256 * c 0 0 0
257 * c 0 0 1 if out_chans == CHANNELS_0001
258 * 0 0 c 0/1
259 * a b c 0/1
261 sse_movss(p->func, data, x86_make_disp(arg0, 8));
262 if(out_chans == CHANNELS_0001)
263 sse_shufps(p->func, data, get_const(p, CONST_IDENTITY), SHUF(X,Y,Z,W) );
264 sse_shufps(p->func, data, data, SHUF(Y,Z,X,W) );
265 sse_movlps(p->func, data, arg0);
266 break;
267 case 4:
268 sse_movups(p->func, data, arg0);
269 break;
273 /* this function behaves like emit_load_float32, but loads
274 64-bit floating point numbers, converting them to 32-bit
275 ones */
276 static void emit_load_float64to32( struct translate_sse *p,
277 struct x86_reg data,
278 struct x86_reg arg0,
279 unsigned out_chans,
280 unsigned chans)
282 struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1);
283 switch(chans)
285 case 1:
286 sse2_movsd(p->func, data, arg0);
287 if(out_chans > 1)
288 sse2_cvtpd2ps(p->func, data, data);
289 else
290 sse2_cvtsd2ss(p->func, data, data);
291 if(out_chans == CHANNELS_0001)
292 sse_shufps(p->func, data, get_const(p, CONST_IDENTITY), SHUF(X, Y, Z, W) );
293 break;
294 case 2:
295 sse2_movupd(p->func, data, arg0);
296 sse2_cvtpd2ps(p->func, data, data);
297 if(out_chans == CHANNELS_0001)
298 sse_shufps(p->func, data, get_const(p, CONST_IDENTITY), SHUF(X, Y, Z, W) );
299 else if(out_chans > 2)
300 sse_movlhps(p->func, data, get_const(p, CONST_IDENTITY) );
301 break;
302 case 3:
303 sse2_movupd(p->func, data, arg0);
304 sse2_cvtpd2ps(p->func, data, data);
305 sse2_movsd(p->func, tmpXMM, x86_make_disp(arg0, 16));
306 if(out_chans > 3)
307 sse2_cvtpd2ps(p->func, tmpXMM, tmpXMM);
308 else
309 sse2_cvtsd2ss(p->func, tmpXMM, tmpXMM);
310 sse_movlhps(p->func, data, tmpXMM);
311 if(out_chans == CHANNELS_0001)
312 sse_orps(p->func, data, get_const(p, CONST_IDENTITY) );
313 break;
314 case 4:
315 sse2_movupd(p->func, data, arg0);
316 sse2_cvtpd2ps(p->func, data, data);
317 sse2_movupd(p->func, tmpXMM, x86_make_disp(arg0, 16));
318 sse2_cvtpd2ps(p->func, tmpXMM, tmpXMM);
319 sse_movlhps(p->func, data, tmpXMM);
320 break;
324 static void emit_mov64(struct translate_sse *p, struct x86_reg dst_gpr, struct x86_reg dst_xmm, struct x86_reg src_gpr, struct x86_reg src_xmm)
326 if(x86_target(p->func) != X86_32)
327 x64_mov64(p->func, dst_gpr, src_gpr);
328 else
330 /* TODO: when/on which CPUs is SSE2 actually better than SSE? */
331 if(x86_target_caps(p->func) & X86_SSE2)
332 sse2_movq(p->func, dst_xmm, src_xmm);
333 else
334 sse_movlps(p->func, dst_xmm, src_xmm);
338 static void emit_load64(struct translate_sse *p, struct x86_reg dst_gpr, struct x86_reg dst_xmm, struct x86_reg src)
340 emit_mov64(p, dst_gpr, dst_xmm, src, src);
343 static void emit_store64(struct translate_sse *p, struct x86_reg dst, struct x86_reg src_gpr, struct x86_reg src_xmm)
345 emit_mov64(p, dst, dst, src_gpr, src_xmm);
348 static void emit_mov128(struct translate_sse *p, struct x86_reg dst, struct x86_reg src)
350 if(x86_target_caps(p->func) & X86_SSE2)
351 sse2_movdqu(p->func, dst, src);
352 else
353 sse_movups(p->func, dst, src);
356 /* TODO: this uses unaligned accesses liberally, which is great on Nehalem,
357 * but may or may not be good on older processors
358 * TODO: may perhaps want to use non-temporal stores here if possible
360 static void emit_memcpy(struct translate_sse *p, struct x86_reg dst, struct x86_reg src, unsigned size)
362 struct x86_reg dataXMM = x86_make_reg(file_XMM, 0);
363 struct x86_reg dataXMM2 = x86_make_reg(file_XMM, 1);
364 struct x86_reg dataGPR = p->tmp_EAX;
365 struct x86_reg dataGPR2 = p->tmp2_EDX;
367 if(size < 8)
369 switch (size)
371 case 1:
372 x86_mov8(p->func, dataGPR, src);
373 x86_mov8(p->func, dst, dataGPR);
374 break;
375 case 2:
376 x86_mov16(p->func, dataGPR, src);
377 x86_mov16(p->func, dst, dataGPR);
378 break;
379 case 3:
380 x86_mov16(p->func, dataGPR, src);
381 x86_mov8(p->func, dataGPR2, x86_make_disp(src, 2));
382 x86_mov16(p->func, dst, dataGPR);
383 x86_mov8(p->func, x86_make_disp(dst, 2), dataGPR2);
384 break;
385 case 4:
386 x86_mov(p->func, dataGPR, src);
387 x86_mov(p->func, dst, dataGPR);
388 break;
389 case 6:
390 x86_mov(p->func, dataGPR, src);
391 x86_mov16(p->func, dataGPR2, x86_make_disp(src, 4));
392 x86_mov(p->func, dst, dataGPR);
393 x86_mov16(p->func, x86_make_disp(dst, 4), dataGPR2);
394 break;
397 else if(!(x86_target_caps(p->func) & X86_SSE))
399 unsigned i = 0;
400 assert((size & 3) == 0);
401 for(i = 0; i < size; i += 4)
403 x86_mov(p->func, dataGPR, x86_make_disp(src, i));
404 x86_mov(p->func, x86_make_disp(dst, i), dataGPR);
407 else
409 switch(size)
411 case 8:
412 emit_load64(p, dataGPR, dataXMM, src);
413 emit_store64(p, dst, dataGPR, dataXMM);
414 break;
415 case 12:
416 emit_load64(p, dataGPR2, dataXMM, src);
417 x86_mov(p->func, dataGPR, x86_make_disp(src, 8));
418 emit_store64(p, dst, dataGPR2, dataXMM);
419 x86_mov(p->func, x86_make_disp(dst, 8), dataGPR);
420 break;
421 case 16:
422 emit_mov128(p, dataXMM, src);
423 emit_mov128(p, dst, dataXMM);
424 break;
425 case 24:
426 emit_mov128(p, dataXMM, src);
427 emit_load64(p, dataGPR, dataXMM2, x86_make_disp(src, 16));
428 emit_mov128(p, dst, dataXMM);
429 emit_store64(p, x86_make_disp(dst, 16), dataGPR, dataXMM2);
430 break;
431 case 32:
432 emit_mov128(p, dataXMM, src);
433 emit_mov128(p, dataXMM2, x86_make_disp(src, 16));
434 emit_mov128(p, dst, dataXMM);
435 emit_mov128(p, x86_make_disp(dst, 16), dataXMM2);
436 break;
437 default:
438 assert(0);
443 static boolean translate_attr_convert( struct translate_sse *p,
444 const struct translate_element *a,
445 struct x86_reg src,
446 struct x86_reg dst)
449 const struct util_format_description* input_desc = util_format_description(a->input_format);
450 const struct util_format_description* output_desc = util_format_description(a->output_format);
451 unsigned i;
452 boolean id_swizzle = TRUE;
453 unsigned swizzle[4] = {UTIL_FORMAT_SWIZZLE_NONE, UTIL_FORMAT_SWIZZLE_NONE, UTIL_FORMAT_SWIZZLE_NONE, UTIL_FORMAT_SWIZZLE_NONE};
454 unsigned needed_chans = 0;
455 unsigned imms[2] = {0, 0x3f800000};
457 if(a->output_format == PIPE_FORMAT_NONE || a->input_format == PIPE_FORMAT_NONE)
458 return FALSE;
460 if(input_desc->channel[0].size & 7)
461 return FALSE;
463 if(input_desc->colorspace != output_desc->colorspace)
464 return FALSE;
466 for(i = 1; i < input_desc->nr_channels; ++i)
468 if(memcmp(&input_desc->channel[i], &input_desc->channel[0], sizeof(input_desc->channel[0])))
469 return FALSE;
472 for(i = 1; i < output_desc->nr_channels; ++i)
474 if(memcmp(&output_desc->channel[i], &output_desc->channel[0], sizeof(output_desc->channel[0])))
475 return FALSE;
478 for(i = 0; i < output_desc->nr_channels; ++i)
480 if(output_desc->swizzle[i] < 4)
481 swizzle[output_desc->swizzle[i]] = input_desc->swizzle[i];
484 if((x86_target_caps(p->func) & X86_SSE) && (0
485 || a->output_format == PIPE_FORMAT_R32_FLOAT
486 || a->output_format == PIPE_FORMAT_R32G32_FLOAT
487 || a->output_format == PIPE_FORMAT_R32G32B32_FLOAT
488 || a->output_format == PIPE_FORMAT_R32G32B32A32_FLOAT))
490 struct x86_reg dataXMM = x86_make_reg(file_XMM, 0);
492 for(i = 0; i < output_desc->nr_channels; ++i)
494 if(swizzle[i] == UTIL_FORMAT_SWIZZLE_0 && i >= input_desc->nr_channels)
495 swizzle[i] = i;
498 for(i = 0; i < output_desc->nr_channels; ++i)
500 if(swizzle[i] < 4)
501 needed_chans = MAX2(needed_chans, swizzle[i] + 1);
502 if(swizzle[i] < UTIL_FORMAT_SWIZZLE_0 && swizzle[i] != i)
503 id_swizzle = FALSE;
506 if(needed_chans > 0)
508 switch(input_desc->channel[0].type)
510 case UTIL_FORMAT_TYPE_UNSIGNED:
511 if(!(x86_target_caps(p->func) & X86_SSE2))
512 return FALSE;
513 emit_load_sse2(p, dataXMM, src, input_desc->channel[0].size * input_desc->nr_channels >> 3);
515 /* TODO: add support for SSE4.1 pmovzx */
516 switch(input_desc->channel[0].size)
518 case 8:
519 /* TODO: this may be inefficient due to get_identity() being used both as a float and integer register */
520 sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY));
521 sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY));
522 break;
523 case 16:
524 sse2_punpcklwd(p->func, dataXMM, get_const(p, CONST_IDENTITY));
525 break;
526 case 32: /* we lose precision here */
527 sse2_psrld_imm(p->func, dataXMM, 1);
528 break;
529 default:
530 return FALSE;
532 sse2_cvtdq2ps(p->func, dataXMM, dataXMM);
533 if(input_desc->channel[0].normalized)
535 struct x86_reg factor;
536 switch(input_desc->channel[0].size)
538 case 8:
539 factor = get_const(p, CONST_INV_255);
540 break;
541 case 16:
542 factor = get_const(p, CONST_INV_65535);
543 break;
544 case 32:
545 factor = get_const(p, CONST_INV_2147483647);
546 break;
547 default:
548 assert(0);
549 factor.disp = 0;
550 factor.file = 0;
551 factor.idx = 0;
552 factor.mod = 0;
553 break;
555 sse_mulps(p->func, dataXMM, factor);
557 else if(input_desc->channel[0].size == 32)
558 sse_addps(p->func, dataXMM, dataXMM); /* compensate for the bit we threw away to fit u32 into s32 */
559 break;
560 case UTIL_FORMAT_TYPE_SIGNED:
561 if(!(x86_target_caps(p->func) & X86_SSE2))
562 return FALSE;
563 emit_load_sse2(p, dataXMM, src, input_desc->channel[0].size * input_desc->nr_channels >> 3);
565 /* TODO: add support for SSE4.1 pmovsx */
566 switch(input_desc->channel[0].size)
568 case 8:
569 sse2_punpcklbw(p->func, dataXMM, dataXMM);
570 sse2_punpcklbw(p->func, dataXMM, dataXMM);
571 sse2_psrad_imm(p->func, dataXMM, 24);
572 break;
573 case 16:
574 sse2_punpcklwd(p->func, dataXMM, dataXMM);
575 sse2_psrad_imm(p->func, dataXMM, 16);
576 break;
577 case 32: /* we lose precision here */
578 break;
579 default:
580 return FALSE;
582 sse2_cvtdq2ps(p->func, dataXMM, dataXMM);
583 if(input_desc->channel[0].normalized)
585 struct x86_reg factor;
586 switch(input_desc->channel[0].size)
588 case 8:
589 factor = get_const(p, CONST_INV_127);
590 break;
591 case 16:
592 factor = get_const(p, CONST_INV_32767);
593 break;
594 case 32:
595 factor = get_const(p, CONST_INV_2147483647);
596 break;
597 default:
598 assert(0);
599 factor.disp = 0;
600 factor.file = 0;
601 factor.idx = 0;
602 factor.mod = 0;
603 break;
605 sse_mulps(p->func, dataXMM, factor);
607 break;
609 break;
610 case UTIL_FORMAT_TYPE_FLOAT:
611 if(input_desc->channel[0].size != 32 && input_desc->channel[0].size != 64)
612 return FALSE;
613 if(swizzle[3] == UTIL_FORMAT_SWIZZLE_1 && input_desc->nr_channels <= 3)
615 swizzle[3] = UTIL_FORMAT_SWIZZLE_W;
616 needed_chans = CHANNELS_0001;
618 switch(input_desc->channel[0].size)
620 case 32:
621 emit_load_float32(p, dataXMM, src, needed_chans, input_desc->nr_channels);
622 break;
623 case 64: /* we lose precision here */
624 if(!(x86_target_caps(p->func) & X86_SSE2))
625 return FALSE;
626 emit_load_float64to32(p, dataXMM, src, needed_chans, input_desc->nr_channels);
627 break;
628 default:
629 return FALSE;
631 break;
632 default:
633 return FALSE;
636 if(!id_swizzle)
637 sse_shufps(p->func, dataXMM, dataXMM, SHUF(swizzle[0], swizzle[1], swizzle[2], swizzle[3]) );
640 if(output_desc->nr_channels >= 4
641 && swizzle[0] < UTIL_FORMAT_SWIZZLE_0
642 && swizzle[1] < UTIL_FORMAT_SWIZZLE_0
643 && swizzle[2] < UTIL_FORMAT_SWIZZLE_0
644 && swizzle[3] < UTIL_FORMAT_SWIZZLE_0
646 sse_movups(p->func, dst, dataXMM);
647 else
649 if(output_desc->nr_channels >= 2
650 && swizzle[0] < UTIL_FORMAT_SWIZZLE_0
651 && swizzle[1] < UTIL_FORMAT_SWIZZLE_0)
652 sse_movlps(p->func, dst, dataXMM);
653 else
655 if(swizzle[0] < UTIL_FORMAT_SWIZZLE_0)
656 sse_movss(p->func, dst, dataXMM);
657 else
658 x86_mov_imm(p->func, dst, imms[swizzle[0] - UTIL_FORMAT_SWIZZLE_0]);
660 if(output_desc->nr_channels >= 2)
662 if(swizzle[1] < UTIL_FORMAT_SWIZZLE_0)
664 sse_shufps(p->func, dataXMM, dataXMM, SHUF(1, 1, 2, 3));
665 sse_movss(p->func, x86_make_disp(dst, 4), dataXMM);
667 else
668 x86_mov_imm(p->func, x86_make_disp(dst, 4), imms[swizzle[1] - UTIL_FORMAT_SWIZZLE_0]);
672 if(output_desc->nr_channels >= 3)
674 if(output_desc->nr_channels >= 4
675 && swizzle[2] < UTIL_FORMAT_SWIZZLE_0
676 && swizzle[3] < UTIL_FORMAT_SWIZZLE_0)
677 sse_movhps(p->func, x86_make_disp(dst, 8), dataXMM);
678 else
680 if(swizzle[2] < UTIL_FORMAT_SWIZZLE_0)
682 sse_shufps(p->func, dataXMM, dataXMM, SHUF(2, 2, 2, 3));
683 sse_movss(p->func, x86_make_disp(dst, 8), dataXMM);
685 else
686 x86_mov_imm(p->func, x86_make_disp(dst, 8), imms[swizzle[2] - UTIL_FORMAT_SWIZZLE_0]);
688 if(output_desc->nr_channels >= 4)
690 if(swizzle[3] < UTIL_FORMAT_SWIZZLE_0)
692 sse_shufps(p->func, dataXMM, dataXMM, SHUF(3, 3, 3, 3));
693 sse_movss(p->func, x86_make_disp(dst, 12), dataXMM);
695 else
696 x86_mov_imm(p->func, x86_make_disp(dst, 12), imms[swizzle[3] - UTIL_FORMAT_SWIZZLE_0]);
701 return TRUE;
703 else if((x86_target_caps(p->func) & X86_SSE2) && input_desc->channel[0].size == 8 && output_desc->channel[0].size == 16
704 && output_desc->channel[0].normalized == input_desc->channel[0].normalized
705 && (0
706 || (input_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED && output_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED)
707 || (input_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED && output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED)
708 || (input_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED && output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED)
711 struct x86_reg dataXMM = x86_make_reg(file_XMM, 0);
712 struct x86_reg tmpXMM = x86_make_reg(file_XMM, 1);
713 struct x86_reg tmp = p->tmp_EAX;
714 unsigned imms[2] = {0, 1};
716 for(i = 0; i < output_desc->nr_channels; ++i)
718 if(swizzle[i] == UTIL_FORMAT_SWIZZLE_0 && i >= input_desc->nr_channels)
719 swizzle[i] = i;
722 for(i = 0; i < output_desc->nr_channels; ++i)
724 if(swizzle[i] < 4)
725 needed_chans = MAX2(needed_chans, swizzle[i] + 1);
726 if(swizzle[i] < UTIL_FORMAT_SWIZZLE_0 && swizzle[i] != i)
727 id_swizzle = FALSE;
730 if(needed_chans > 0)
732 emit_load_sse2(p, dataXMM, src, input_desc->channel[0].size * input_desc->nr_channels >> 3);
734 switch(input_desc->channel[0].type)
736 case UTIL_FORMAT_TYPE_UNSIGNED:
737 if(input_desc->channel[0].normalized)
739 sse2_punpcklbw(p->func, dataXMM, dataXMM);
740 if(output_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED)
741 sse2_psrlw_imm(p->func, dataXMM, 1);
743 else
744 sse2_punpcklbw(p->func, dataXMM, get_const(p, CONST_IDENTITY));
745 break;
746 case UTIL_FORMAT_TYPE_SIGNED:
747 if(input_desc->channel[0].normalized)
749 sse2_movq(p->func, tmpXMM, get_const(p, CONST_IDENTITY));
750 sse2_punpcklbw(p->func, tmpXMM, dataXMM);
751 sse2_psllw_imm(p->func, dataXMM, 9);
752 sse2_psrlw_imm(p->func, dataXMM, 8);
753 sse2_por(p->func, tmpXMM, dataXMM);
754 sse2_psrlw_imm(p->func, dataXMM, 7);
755 sse2_por(p->func, tmpXMM, dataXMM);
757 struct x86_reg t = dataXMM;
758 dataXMM = tmpXMM;
759 tmpXMM = t;
762 else
764 sse2_punpcklbw(p->func, dataXMM, dataXMM);
765 sse2_psraw_imm(p->func, dataXMM, 8);
767 break;
768 default:
769 assert(0);
772 if(output_desc->channel[0].normalized)
773 imms[1] = (output_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED) ? 0xffff : 0x7ffff;
775 if(!id_swizzle)
776 sse2_pshuflw(p->func, dataXMM, dataXMM, (swizzle[0] & 3) | ((swizzle[1] & 3) << 2) | ((swizzle[2] & 3) << 4) | ((swizzle[3] & 3) << 6));
779 if(output_desc->nr_channels >= 4
780 && swizzle[0] < UTIL_FORMAT_SWIZZLE_0
781 && swizzle[1] < UTIL_FORMAT_SWIZZLE_0
782 && swizzle[2] < UTIL_FORMAT_SWIZZLE_0
783 && swizzle[3] < UTIL_FORMAT_SWIZZLE_0
785 sse2_movq(p->func, dst, dataXMM);
786 else
788 if(swizzle[0] < UTIL_FORMAT_SWIZZLE_0)
790 if(output_desc->nr_channels >= 2 && swizzle[1] < UTIL_FORMAT_SWIZZLE_0)
791 sse2_movd(p->func, dst, dataXMM);
792 else
794 sse2_movd(p->func, tmp, dataXMM);
795 x86_mov16(p->func, dst, tmp);
796 if(output_desc->nr_channels >= 2)
797 x86_mov16_imm(p->func, x86_make_disp(dst, 2), imms[swizzle[1] - UTIL_FORMAT_SWIZZLE_0]);
800 else
802 if(output_desc->nr_channels >= 2 && swizzle[1] >= UTIL_FORMAT_SWIZZLE_0)
803 x86_mov_imm(p->func, dst, (imms[swizzle[1] - UTIL_FORMAT_SWIZZLE_0] << 16) | imms[swizzle[0] - UTIL_FORMAT_SWIZZLE_0]);
804 else
806 x86_mov16_imm(p->func, dst, imms[swizzle[0] - UTIL_FORMAT_SWIZZLE_0]);
807 if(output_desc->nr_channels >= 2)
809 sse2_movd(p->func, tmp, dataXMM);
810 x86_shr_imm(p->func, tmp, 16);
811 x86_mov16(p->func, x86_make_disp(dst, 2), tmp);
816 if(output_desc->nr_channels >= 3)
818 if(swizzle[2] < UTIL_FORMAT_SWIZZLE_0)
820 if(output_desc->nr_channels >= 4 && swizzle[3] < UTIL_FORMAT_SWIZZLE_0)
822 sse2_psrlq_imm(p->func, dataXMM, 32);
823 sse2_movd(p->func, x86_make_disp(dst, 4), dataXMM);
825 else
827 sse2_psrlq_imm(p->func, dataXMM, 32);
828 sse2_movd(p->func, tmp, dataXMM);
829 x86_mov16(p->func, x86_make_disp(dst, 4), tmp);
830 if(output_desc->nr_channels >= 4)
832 x86_mov16_imm(p->func, x86_make_disp(dst, 6), imms[swizzle[3] - UTIL_FORMAT_SWIZZLE_0]);
836 else
838 if(output_desc->nr_channels >= 4 && swizzle[3] >= UTIL_FORMAT_SWIZZLE_0)
839 x86_mov_imm(p->func, x86_make_disp(dst, 4), (imms[swizzle[3] - UTIL_FORMAT_SWIZZLE_0] << 16) | imms[swizzle[2] - UTIL_FORMAT_SWIZZLE_0]);
840 else
842 x86_mov16_imm(p->func, x86_make_disp(dst, 4), imms[swizzle[2] - UTIL_FORMAT_SWIZZLE_0]);
844 if(output_desc->nr_channels >= 4)
846 sse2_psrlq_imm(p->func, dataXMM, 48);
847 sse2_movd(p->func, tmp, dataXMM);
848 x86_mov16(p->func, x86_make_disp(dst, 6), tmp);
854 return TRUE;
856 else if(!memcmp(&output_desc->channel[0], &input_desc->channel[0], sizeof(output_desc->channel[0])))
858 struct x86_reg tmp = p->tmp_EAX;
859 unsigned i;
860 if(input_desc->channel[0].size == 8 && input_desc->nr_channels == 4 && output_desc->nr_channels == 4
861 && swizzle[0] == UTIL_FORMAT_SWIZZLE_W
862 && swizzle[1] == UTIL_FORMAT_SWIZZLE_Z
863 && swizzle[2] == UTIL_FORMAT_SWIZZLE_Y
864 && swizzle[3] == UTIL_FORMAT_SWIZZLE_X)
866 /* TODO: support movbe */
867 x86_mov(p->func, tmp, src);
868 x86_bswap(p->func, tmp);
869 x86_mov(p->func, dst, tmp);
870 return TRUE;
873 for(i = 0; i < output_desc->nr_channels; ++i)
875 switch(output_desc->channel[0].size)
877 case 8:
878 if(swizzle[i] >= UTIL_FORMAT_SWIZZLE_0)
880 unsigned v = 0;
881 if(swizzle[i] == UTIL_FORMAT_SWIZZLE_1)
883 switch(output_desc->channel[0].type)
885 case UTIL_FORMAT_TYPE_UNSIGNED:
886 v = output_desc->channel[0].normalized ? 0xff : 1;
887 break;
888 case UTIL_FORMAT_TYPE_SIGNED:
889 v = output_desc->channel[0].normalized ? 0x7f : 1;
890 break;
891 default:
892 return FALSE;
895 x86_mov8_imm(p->func, x86_make_disp(dst, i * 1), v);
897 else
899 x86_mov8(p->func, tmp, x86_make_disp(src, swizzle[i] * 1));
900 x86_mov8(p->func, x86_make_disp(dst, i * 1), tmp);
902 break;
903 case 16:
904 if(swizzle[i] >= UTIL_FORMAT_SWIZZLE_0)
906 unsigned v = 0;
907 if(swizzle[i] == UTIL_FORMAT_SWIZZLE_1)
909 switch(output_desc->channel[1].type)
911 case UTIL_FORMAT_TYPE_UNSIGNED:
912 v = output_desc->channel[1].normalized ? 0xffff : 1;
913 break;
914 case UTIL_FORMAT_TYPE_SIGNED:
915 v = output_desc->channel[1].normalized ? 0x7fff : 1;
916 break;
917 case UTIL_FORMAT_TYPE_FLOAT:
918 v = 0x3c00;
919 break;
920 default:
921 return FALSE;
924 x86_mov16_imm(p->func, x86_make_disp(dst, i * 2), v);
926 else if(swizzle[i] == UTIL_FORMAT_SWIZZLE_0)
927 x86_mov16_imm(p->func, x86_make_disp(dst, i * 2), 0);
928 else
930 x86_mov16(p->func, tmp, x86_make_disp(src, swizzle[i] * 2));
931 x86_mov16(p->func, x86_make_disp(dst, i * 2), tmp);
933 break;
934 case 32:
935 if(swizzle[i] >= UTIL_FORMAT_SWIZZLE_0)
937 unsigned v = 0;
938 if(swizzle[i] == UTIL_FORMAT_SWIZZLE_1)
940 switch(output_desc->channel[1].type)
942 case UTIL_FORMAT_TYPE_UNSIGNED:
943 v = output_desc->channel[1].normalized ? 0xffffffff : 1;
944 break;
945 case UTIL_FORMAT_TYPE_SIGNED:
946 v = output_desc->channel[1].normalized ? 0x7fffffff : 1;
947 break;
948 case UTIL_FORMAT_TYPE_FLOAT:
949 v = 0x3f800000;
950 break;
951 default:
952 return FALSE;
955 x86_mov_imm(p->func, x86_make_disp(dst, i * 4), v);
957 else
959 x86_mov(p->func, tmp, x86_make_disp(src, swizzle[i] * 4));
960 x86_mov(p->func, x86_make_disp(dst, i * 4), tmp);
962 break;
963 case 64:
964 if(swizzle[i] >= UTIL_FORMAT_SWIZZLE_0)
966 unsigned l = 0;
967 unsigned h = 0;
968 if(swizzle[i] == UTIL_FORMAT_SWIZZLE_1)
970 switch(output_desc->channel[1].type)
972 case UTIL_FORMAT_TYPE_UNSIGNED:
973 h = output_desc->channel[1].normalized ? 0xffffffff : 0;
974 l = output_desc->channel[1].normalized ? 0xffffffff : 1;
975 break;
976 case UTIL_FORMAT_TYPE_SIGNED:
977 h = output_desc->channel[1].normalized ? 0x7fffffff : 0;
978 l = output_desc->channel[1].normalized ? 0xffffffff : 1;
979 break;
980 case UTIL_FORMAT_TYPE_FLOAT:
981 h = 0x3ff00000;
982 l = 0;
983 break;
984 default:
985 return FALSE;
988 x86_mov_imm(p->func, x86_make_disp(dst, i * 8), l);
989 x86_mov_imm(p->func, x86_make_disp(dst, i * 8 + 4), h);
991 else
993 if(x86_target_caps(p->func) & X86_SSE)
995 struct x86_reg tmpXMM = x86_make_reg(file_XMM, 0);
996 emit_load64(p, tmp, tmpXMM, x86_make_disp(src, swizzle[i] * 8));
997 emit_store64(p, x86_make_disp(dst, i * 8), tmp, tmpXMM);
999 else
1001 x86_mov(p->func, tmp, x86_make_disp(src, swizzle[i] * 8));
1002 x86_mov(p->func, x86_make_disp(dst, i * 8), tmp);
1003 x86_mov(p->func, tmp, x86_make_disp(src, swizzle[i] * 8 + 4));
1004 x86_mov(p->func, x86_make_disp(dst, i * 8 + 4), tmp);
1007 break;
1008 default:
1009 return FALSE;
1012 return TRUE;
1014 /* special case for draw's EMIT_4UB (RGBA) and EMIT_4UB_BGRA */
1015 else if((x86_target_caps(p->func) & X86_SSE2) &&
1016 a->input_format == PIPE_FORMAT_R32G32B32A32_FLOAT && (0
1017 || a->output_format == PIPE_FORMAT_B8G8R8A8_UNORM
1018 || a->output_format == PIPE_FORMAT_R8G8B8A8_UNORM
1021 struct x86_reg dataXMM = x86_make_reg(file_XMM, 0);
1023 /* load */
1024 sse_movups(p->func, dataXMM, src);
1026 if (a->output_format == PIPE_FORMAT_B8G8R8A8_UNORM)
1027 sse_shufps(p->func, dataXMM, dataXMM, SHUF(2,1,0,3));
1029 /* scale by 255.0 */
1030 sse_mulps(p->func, dataXMM, get_const(p, CONST_255));
1032 /* pack and emit */
1033 sse2_cvtps2dq(p->func, dataXMM, dataXMM);
1034 sse2_packssdw(p->func, dataXMM, dataXMM);
1035 sse2_packuswb(p->func, dataXMM, dataXMM);
1036 sse2_movd(p->func, dst, dataXMM);
1038 return TRUE;
1041 return FALSE;
1044 static boolean translate_attr( struct translate_sse *p,
1045 const struct translate_element *a,
1046 struct x86_reg src,
1047 struct x86_reg dst)
1049 if(a->input_format == a->output_format)
1051 emit_memcpy(p, dst, src, util_format_get_stride(a->input_format, 1));
1052 return TRUE;
1055 return translate_attr_convert(p, a, src, dst);
1058 static boolean init_inputs( struct translate_sse *p,
1059 unsigned index_size )
1061 unsigned i;
1062 struct x86_reg instance_id = x86_make_disp(p->machine_EDI,
1063 get_offset(p, &p->instance_id));
1065 for (i = 0; i < p->nr_buffer_variants; i++) {
1066 struct translate_buffer_variant *variant = &p->buffer_variant[i];
1067 struct translate_buffer *buffer = &p->buffer[variant->buffer_index];
1069 if (!index_size || variant->instance_divisor) {
1070 struct x86_reg buf_max_index = x86_make_disp(p->machine_EDI,
1071 get_offset(p, &buffer->max_index));
1072 struct x86_reg buf_stride = x86_make_disp(p->machine_EDI,
1073 get_offset(p, &buffer->stride));
1074 struct x86_reg buf_ptr = x86_make_disp(p->machine_EDI,
1075 get_offset(p, &variant->ptr));
1076 struct x86_reg buf_base_ptr = x86_make_disp(p->machine_EDI,
1077 get_offset(p, &buffer->base_ptr));
1078 struct x86_reg elt = p->idx_ESI;
1079 struct x86_reg tmp_EAX = p->tmp_EAX;
1081 /* Calculate pointer to first attrib:
1082 * base_ptr + stride * index, where index depends on instance divisor
1084 if (variant->instance_divisor) {
1085 /* Our index is instance ID divided by instance divisor.
1087 x86_mov(p->func, tmp_EAX, instance_id);
1089 if (variant->instance_divisor != 1) {
1090 struct x86_reg tmp_EDX = p->tmp2_EDX;
1091 struct x86_reg tmp_ECX = p->src_ECX;
1093 /* TODO: Add x86_shr() to rtasm and use it whenever
1094 * instance divisor is power of two.
1097 x86_xor(p->func, tmp_EDX, tmp_EDX);
1098 x86_mov_reg_imm(p->func, tmp_ECX, variant->instance_divisor);
1099 x86_div(p->func, tmp_ECX); /* EAX = EDX:EAX / ECX */
1102 /* XXX we need to clamp the index here too, but to a
1103 * per-array max value, not the draw->pt.max_index value
1104 * that's being given to us via translate->set_buffer().
1106 } else {
1107 x86_mov(p->func, tmp_EAX, elt);
1109 /* Clamp to max_index
1111 x86_cmp(p->func, tmp_EAX, buf_max_index);
1112 x86_cmovcc(p->func, tmp_EAX, buf_max_index, cc_AE);
1115 x86_imul(p->func, tmp_EAX, buf_stride);
1116 x64_rexw(p->func);
1117 x86_add(p->func, tmp_EAX, buf_base_ptr);
1119 x86_cmp(p->func, p->count_EBP, p->tmp_EAX);
1121 /* In the linear case, keep the buffer pointer instead of the
1122 * index number.
1124 if (!index_size && p->nr_buffer_variants == 1)
1126 x64_rexw(p->func);
1127 x86_mov(p->func, elt, tmp_EAX);
1129 else
1131 x64_rexw(p->func);
1132 x86_mov(p->func, buf_ptr, tmp_EAX);
1137 return TRUE;
1141 static struct x86_reg get_buffer_ptr( struct translate_sse *p,
1142 unsigned index_size,
1143 unsigned var_idx,
1144 struct x86_reg elt )
1146 if (var_idx == ELEMENT_BUFFER_INSTANCE_ID) {
1147 return x86_make_disp(p->machine_EDI,
1148 get_offset(p, &p->instance_id));
1150 if (!index_size && p->nr_buffer_variants == 1) {
1151 return p->idx_ESI;
1153 else if (!index_size || p->buffer_variant[var_idx].instance_divisor) {
1154 struct x86_reg ptr = p->src_ECX;
1155 struct x86_reg buf_ptr =
1156 x86_make_disp(p->machine_EDI,
1157 get_offset(p, &p->buffer_variant[var_idx].ptr));
1159 x64_rexw(p->func);
1160 x86_mov(p->func, ptr, buf_ptr);
1161 return ptr;
1163 else {
1164 struct x86_reg ptr = p->src_ECX;
1165 const struct translate_buffer_variant *variant = &p->buffer_variant[var_idx];
1167 struct x86_reg buf_stride =
1168 x86_make_disp(p->machine_EDI,
1169 get_offset(p, &p->buffer[variant->buffer_index].stride));
1171 struct x86_reg buf_base_ptr =
1172 x86_make_disp(p->machine_EDI,
1173 get_offset(p, &p->buffer[variant->buffer_index].base_ptr));
1175 struct x86_reg buf_max_index =
1176 x86_make_disp(p->machine_EDI,
1177 get_offset(p, &p->buffer[variant->buffer_index].max_index));
1181 /* Calculate pointer to current attrib:
1183 switch(index_size)
1185 case 1:
1186 x86_movzx8(p->func, ptr, elt);
1187 break;
1188 case 2:
1189 x86_movzx16(p->func, ptr, elt);
1190 break;
1191 case 4:
1192 x86_mov(p->func, ptr, elt);
1193 break;
1196 /* Clamp to max_index
1198 x86_cmp(p->func, ptr, buf_max_index);
1199 x86_cmovcc(p->func, ptr, buf_max_index, cc_AE);
1201 x86_imul(p->func, ptr, buf_stride);
1202 x64_rexw(p->func);
1203 x86_add(p->func, ptr, buf_base_ptr);
1204 return ptr;
1210 static boolean incr_inputs( struct translate_sse *p,
1211 unsigned index_size )
1213 if (!index_size && p->nr_buffer_variants == 1) {
1214 struct x86_reg stride = x86_make_disp(p->machine_EDI,
1215 get_offset(p, &p->buffer[0].stride));
1217 if (p->buffer_variant[0].instance_divisor == 0) {
1218 x64_rexw(p->func);
1219 x86_add(p->func, p->idx_ESI, stride);
1220 sse_prefetchnta(p->func, x86_make_disp(p->idx_ESI, 192));
1223 else if (!index_size) {
1224 unsigned i;
1226 /* Is this worthwhile??
1228 for (i = 0; i < p->nr_buffer_variants; i++) {
1229 struct translate_buffer_variant *variant = &p->buffer_variant[i];
1230 struct x86_reg buf_ptr = x86_make_disp(p->machine_EDI,
1231 get_offset(p, &variant->ptr));
1232 struct x86_reg buf_stride = x86_make_disp(p->machine_EDI,
1233 get_offset(p, &p->buffer[variant->buffer_index].stride));
1235 if (variant->instance_divisor == 0) {
1236 x86_mov(p->func, p->tmp_EAX, buf_stride);
1237 x64_rexw(p->func);
1238 x86_add(p->func, p->tmp_EAX, buf_ptr);
1239 if (i == 0) sse_prefetchnta(p->func, x86_make_disp(p->tmp_EAX, 192));
1240 x64_rexw(p->func);
1241 x86_mov(p->func, buf_ptr, p->tmp_EAX);
1245 else {
1246 x64_rexw(p->func);
1247 x86_lea(p->func, p->idx_ESI, x86_make_disp(p->idx_ESI, index_size));
1250 return TRUE;
1254 /* Build run( struct translate *machine,
1255 * unsigned start,
1256 * unsigned count,
1257 * void *output_buffer )
1258 * or
1259 * run_elts( struct translate *machine,
1260 * unsigned *elts,
1261 * unsigned count,
1262 * void *output_buffer )
1264 * Lots of hardcoding
1266 * EAX -- pointer to current output vertex
1267 * ECX -- pointer to current attribute
1270 static boolean build_vertex_emit( struct translate_sse *p,
1271 struct x86_function *func,
1272 unsigned index_size )
1274 int fixup, label;
1275 unsigned j;
1277 memset(p->reg_to_const, 0xff, sizeof(p->reg_to_const));
1278 memset(p->const_to_reg, 0xff, sizeof(p->const_to_reg));
1280 p->tmp_EAX = x86_make_reg(file_REG32, reg_AX);
1281 p->idx_ESI = x86_make_reg(file_REG32, reg_SI);
1282 p->outbuf_EBX = x86_make_reg(file_REG32, reg_BX);
1283 p->machine_EDI = x86_make_reg(file_REG32, reg_DI);
1284 p->count_EBP = x86_make_reg(file_REG32, reg_BP);
1285 p->tmp2_EDX = x86_make_reg(file_REG32, reg_DX);
1286 p->src_ECX = x86_make_reg(file_REG32, reg_CX);
1288 p->func = func;
1290 x86_init_func(p->func);
1292 if(x86_target(p->func) == X86_64_WIN64_ABI)
1294 /* the ABI guarantees a 16-byte aligned 32-byte "shadow space" above the return address */
1295 sse2_movdqa(p->func, x86_make_disp(x86_make_reg(file_REG32, reg_SP), 8), x86_make_reg(file_XMM, 6));
1296 sse2_movdqa(p->func, x86_make_disp(x86_make_reg(file_REG32, reg_SP), 24), x86_make_reg(file_XMM, 7));
1299 x86_push(p->func, p->outbuf_EBX);
1300 x86_push(p->func, p->count_EBP);
1302 /* on non-Win64 x86-64, these are already in the right registers */
1303 if(x86_target(p->func) != X86_64_STD_ABI)
1305 x86_push(p->func, p->machine_EDI);
1306 x86_push(p->func, p->idx_ESI);
1308 x86_mov(p->func, p->machine_EDI, x86_fn_arg(p->func, 1));
1309 x86_mov(p->func, p->idx_ESI, x86_fn_arg(p->func, 2));
1312 x86_mov(p->func, p->count_EBP, x86_fn_arg(p->func, 3));
1314 if(x86_target(p->func) != X86_32)
1315 x64_mov64(p->func, p->outbuf_EBX, x86_fn_arg(p->func, 5));
1316 else
1317 x86_mov(p->func, p->outbuf_EBX, x86_fn_arg(p->func, 5));
1319 /* Load instance ID.
1321 if (p->use_instancing) {
1322 x86_mov(p->func,
1323 p->tmp_EAX,
1324 x86_fn_arg(p->func, 4));
1325 x86_mov(p->func,
1326 x86_make_disp(p->machine_EDI, get_offset(p, &p->instance_id)),
1327 p->tmp_EAX);
1330 /* Get vertex count, compare to zero
1332 x86_xor(p->func, p->tmp_EAX, p->tmp_EAX);
1333 x86_cmp(p->func, p->count_EBP, p->tmp_EAX);
1334 fixup = x86_jcc_forward(p->func, cc_E);
1336 /* always load, needed or not:
1338 init_inputs(p, index_size);
1340 /* Note address for loop jump
1342 label = x86_get_label(p->func);
1344 struct x86_reg elt = !index_size ? p->idx_ESI : x86_deref(p->idx_ESI);
1345 int last_variant = -1;
1346 struct x86_reg vb;
1348 for (j = 0; j < p->translate.key.nr_elements; j++) {
1349 const struct translate_element *a = &p->translate.key.element[j];
1350 unsigned variant = p->element_to_buffer_variant[j];
1352 /* Figure out source pointer address:
1354 if (variant != last_variant) {
1355 last_variant = variant;
1356 vb = get_buffer_ptr(p, index_size, variant, elt);
1359 if (!translate_attr( p, a,
1360 x86_make_disp(vb, a->input_offset),
1361 x86_make_disp(p->outbuf_EBX, a->output_offset)))
1362 return FALSE;
1365 /* Next output vertex:
1367 x64_rexw(p->func);
1368 x86_lea(p->func,
1369 p->outbuf_EBX,
1370 x86_make_disp(p->outbuf_EBX,
1371 p->translate.key.output_stride));
1373 /* Incr index
1375 incr_inputs( p, index_size );
1378 /* decr count, loop if not zero
1380 x86_dec(p->func, p->count_EBP);
1381 x86_jcc(p->func, cc_NZ, label);
1383 /* Exit mmx state?
1385 if (p->func->need_emms)
1386 mmx_emms(p->func);
1388 /* Land forward jump here:
1390 x86_fixup_fwd_jump(p->func, fixup);
1392 /* Pop regs and return
1395 if(x86_target(p->func) != X86_64_STD_ABI)
1397 x86_pop(p->func, p->idx_ESI);
1398 x86_pop(p->func, p->machine_EDI);
1401 x86_pop(p->func, p->count_EBP);
1402 x86_pop(p->func, p->outbuf_EBX);
1404 if(x86_target(p->func) == X86_64_WIN64_ABI)
1406 sse2_movdqa(p->func, x86_make_reg(file_XMM, 6), x86_make_disp(x86_make_reg(file_REG32, reg_SP), 8));
1407 sse2_movdqa(p->func, x86_make_reg(file_XMM, 7), x86_make_disp(x86_make_reg(file_REG32, reg_SP), 24));
1409 x86_ret(p->func);
1411 return TRUE;
1420 static void translate_sse_set_buffer( struct translate *translate,
1421 unsigned buf,
1422 const void *ptr,
1423 unsigned stride,
1424 unsigned max_index )
1426 struct translate_sse *p = (struct translate_sse *)translate;
1428 if (buf < p->nr_buffers) {
1429 p->buffer[buf].base_ptr = (char *)ptr;
1430 p->buffer[buf].stride = stride;
1431 p->buffer[buf].max_index = max_index;
1434 if (0) debug_printf("%s %d/%d: %p %d\n",
1435 __FUNCTION__, buf,
1436 p->nr_buffers,
1437 ptr, stride);
1441 static void translate_sse_release( struct translate *translate )
1443 struct translate_sse *p = (struct translate_sse *)translate;
1445 x86_release_func( &p->linear_func );
1446 x86_release_func( &p->elt_func );
1448 os_free_aligned(p);
1452 struct translate *translate_sse2_create( const struct translate_key *key )
1454 struct translate_sse *p = NULL;
1455 unsigned i;
1457 /* this is misnamed, it actually refers to whether rtasm is enabled or not */
1458 if (!rtasm_cpu_has_sse())
1459 goto fail;
1461 p = os_malloc_aligned(sizeof(struct translate_sse), 16);
1462 if (p == NULL)
1463 goto fail;
1464 memset(p, 0, sizeof(*p));
1465 memcpy(p->consts, consts, sizeof(consts));
1467 p->translate.key = *key;
1468 p->translate.release = translate_sse_release;
1469 p->translate.set_buffer = translate_sse_set_buffer;
1471 for (i = 0; i < key->nr_elements; i++) {
1472 if (key->element[i].type == TRANSLATE_ELEMENT_NORMAL) {
1473 unsigned j;
1475 p->nr_buffers = MAX2(p->nr_buffers, key->element[i].input_buffer + 1);
1477 if (key->element[i].instance_divisor) {
1478 p->use_instancing = TRUE;
1482 * Map vertex element to vertex buffer variant.
1484 for (j = 0; j < p->nr_buffer_variants; j++) {
1485 if (p->buffer_variant[j].buffer_index == key->element[i].input_buffer &&
1486 p->buffer_variant[j].instance_divisor == key->element[i].instance_divisor) {
1487 break;
1490 if (j == p->nr_buffer_variants) {
1491 p->buffer_variant[j].buffer_index = key->element[i].input_buffer;
1492 p->buffer_variant[j].instance_divisor = key->element[i].instance_divisor;
1493 p->nr_buffer_variants++;
1495 p->element_to_buffer_variant[i] = j;
1496 } else {
1497 assert(key->element[i].type == TRANSLATE_ELEMENT_INSTANCE_ID);
1499 p->element_to_buffer_variant[i] = ELEMENT_BUFFER_INSTANCE_ID;
1503 if (0) debug_printf("nr_buffers: %d\n", p->nr_buffers);
1505 if (!build_vertex_emit(p, &p->linear_func, 0))
1506 goto fail;
1508 if (!build_vertex_emit(p, &p->elt_func, 4))
1509 goto fail;
1511 if (!build_vertex_emit(p, &p->elt16_func, 2))
1512 goto fail;
1514 if (!build_vertex_emit(p, &p->elt8_func, 1))
1515 goto fail;
1517 p->translate.run = (run_func) x86_get_func(&p->linear_func);
1518 if (p->translate.run == NULL)
1519 goto fail;
1521 p->translate.run_elts = (run_elts_func) x86_get_func(&p->elt_func);
1522 if (p->translate.run_elts == NULL)
1523 goto fail;
1525 p->translate.run_elts16 = (run_elts16_func) x86_get_func(&p->elt16_func);
1526 if (p->translate.run_elts16 == NULL)
1527 goto fail;
1529 p->translate.run_elts8 = (run_elts8_func) x86_get_func(&p->elt8_func);
1530 if (p->translate.run_elts8 == NULL)
1531 goto fail;
1533 return &p->translate;
1535 fail:
1536 if (p)
1537 translate_sse_release( &p->translate );
1539 return NULL;
1544 #else
1546 struct translate *translate_sse2_create( const struct translate_key *key )
1548 return NULL;
1551 #endif