grub2: bring back build of aros-side grub2 tools
[AROS.git] / workbench / libs / mesa / src / gallium / drivers / softpipe / sp_setup.c
blob0ce28f4c6ee09d070b8f15f43b26e49165fd0b79
1 /**************************************************************************
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
31 * \author Keith Whitwell <keith@tungstengraphics.com>
32 * \author Brian Paul
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "draw/draw_vertex.h"
42 #include "pipe/p_shader_tokens.h"
43 #include "util/u_math.h"
44 #include "util/u_memory.h"
47 #define DEBUG_VERTS 0
48 #define DEBUG_FRAGS 0
51 /**
52 * Triangle edge info
54 struct edge {
55 float dx; /**< X(v1) - X(v0), used only during setup */
56 float dy; /**< Y(v1) - Y(v0), used only during setup */
57 float dxdy; /**< dx/dy */
58 float sx, sy; /**< first sample point coord */
59 int lines; /**< number of lines on this edge */
63 /**
64 * Max number of quads (2x2 pixel blocks) to process per batch.
65 * This can't be arbitrarily increased since we depend on some 32-bit
66 * bitmasks (two bits per quad).
68 #define MAX_QUADS 16
71 /**
72 * Triangle setup info.
73 * Also used for line drawing (taking some liberties).
75 struct setup_context {
76 struct softpipe_context *softpipe;
78 /* Vertices are just an array of floats making up each attribute in
79 * turn. Currently fixed at 4 floats, but should change in time.
80 * Codegen will help cope with this.
82 const float (*vmax)[4];
83 const float (*vmid)[4];
84 const float (*vmin)[4];
85 const float (*vprovoke)[4];
87 struct edge ebot;
88 struct edge etop;
89 struct edge emaj;
91 float oneoverarea;
92 int facing;
94 float pixel_offset;
96 struct quad_header quad[MAX_QUADS];
97 struct quad_header *quad_ptrs[MAX_QUADS];
98 unsigned count;
100 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
101 struct tgsi_interp_coef posCoef; /* For Z, W */
103 struct {
104 int left[2]; /**< [0] = row0, [1] = row1 */
105 int right[2];
106 int y;
107 } span;
109 #if DEBUG_FRAGS
110 uint numFragsEmitted; /**< per primitive */
111 uint numFragsWritten; /**< per primitive */
112 #endif
114 unsigned cull_face; /* which faces cull */
115 unsigned nr_vertex_attrs;
125 * Clip setup->quad against the scissor/surface bounds.
127 static INLINE void
128 quad_clip(struct setup_context *setup, struct quad_header *quad)
130 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
131 const int minx = (int) cliprect->minx;
132 const int maxx = (int) cliprect->maxx;
133 const int miny = (int) cliprect->miny;
134 const int maxy = (int) cliprect->maxy;
136 if (quad->input.x0 >= maxx ||
137 quad->input.y0 >= maxy ||
138 quad->input.x0 + 1 < minx ||
139 quad->input.y0 + 1 < miny) {
140 /* totally clipped */
141 quad->inout.mask = 0x0;
142 return;
144 if (quad->input.x0 < minx)
145 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
146 if (quad->input.y0 < miny)
147 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
148 if (quad->input.x0 == maxx - 1)
149 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
150 if (quad->input.y0 == maxy - 1)
151 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
156 * Emit a quad (pass to next stage) with clipping.
158 static INLINE void
159 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
161 quad_clip( setup, quad );
163 if (quad->inout.mask) {
164 struct softpipe_context *sp = setup->softpipe;
166 sp->quad.first->run( sp->quad.first, &quad, 1 );
173 * Given an X or Y coordinate, return the block/quad coordinate that it
174 * belongs to.
176 static INLINE int
177 block(int x)
179 return x & ~(2-1);
183 static INLINE int
184 block_x(int x)
186 return x & ~(16-1);
191 * Render a horizontal span of quads
193 static void
194 flush_spans(struct setup_context *setup)
196 const int step = MAX_QUADS;
197 const int xleft0 = setup->span.left[0];
198 const int xleft1 = setup->span.left[1];
199 const int xright0 = setup->span.right[0];
200 const int xright1 = setup->span.right[1];
201 struct quad_stage *pipe = setup->softpipe->quad.first;
203 const int minleft = block_x(MIN2(xleft0, xleft1));
204 const int maxright = MAX2(xright0, xright1);
205 int x;
207 /* process quads in horizontal chunks of 16 */
208 for (x = minleft; x < maxright; x += step) {
209 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
210 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
211 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
212 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
213 unsigned lx = x;
214 unsigned q = 0;
216 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
217 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
219 /* These calculations fail when step == 32 and skip_right == 0.
221 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
222 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
224 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
225 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
227 if (mask0 | mask1) {
228 do {
229 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
230 if (quadmask) {
231 setup->quad[q].input.x0 = lx;
232 setup->quad[q].input.y0 = setup->span.y;
233 setup->quad[q].input.facing = setup->facing;
234 setup->quad[q].inout.mask = quadmask;
235 setup->quad_ptrs[q] = &setup->quad[q];
236 q++;
238 mask0 >>= 2;
239 mask1 >>= 2;
240 lx += 2;
241 } while (mask0 | mask1);
243 pipe->run( pipe, setup->quad_ptrs, q );
248 setup->span.y = 0;
249 setup->span.right[0] = 0;
250 setup->span.right[1] = 0;
251 setup->span.left[0] = 1000000; /* greater than right[0] */
252 setup->span.left[1] = 1000000; /* greater than right[1] */
256 #if DEBUG_VERTS
257 static void
258 print_vertex(const struct setup_context *setup,
259 const float (*v)[4])
261 int i;
262 debug_printf(" Vertex: (%p)\n", (void *) v);
263 for (i = 0; i < setup->nr_vertex_attrs; i++) {
264 debug_printf(" %d: %f %f %f %f\n", i,
265 v[i][0], v[i][1], v[i][2], v[i][3]);
266 if (util_is_inf_or_nan(v[i][0])) {
267 debug_printf(" NaN!\n");
271 #endif
275 * Sort the vertices from top to bottom order, setting up the triangle
276 * edge fields (ebot, emaj, etop).
277 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
279 static boolean
280 setup_sort_vertices(struct setup_context *setup,
281 float det,
282 const float (*v0)[4],
283 const float (*v1)[4],
284 const float (*v2)[4])
286 if (setup->softpipe->rasterizer->flatshade_first)
287 setup->vprovoke = v0;
288 else
289 setup->vprovoke = v2;
291 /* determine bottom to top order of vertices */
293 float y0 = v0[0][1];
294 float y1 = v1[0][1];
295 float y2 = v2[0][1];
296 if (y0 <= y1) {
297 if (y1 <= y2) {
298 /* y0<=y1<=y2 */
299 setup->vmin = v0;
300 setup->vmid = v1;
301 setup->vmax = v2;
303 else if (y2 <= y0) {
304 /* y2<=y0<=y1 */
305 setup->vmin = v2;
306 setup->vmid = v0;
307 setup->vmax = v1;
309 else {
310 /* y0<=y2<=y1 */
311 setup->vmin = v0;
312 setup->vmid = v2;
313 setup->vmax = v1;
316 else {
317 if (y0 <= y2) {
318 /* y1<=y0<=y2 */
319 setup->vmin = v1;
320 setup->vmid = v0;
321 setup->vmax = v2;
323 else if (y2 <= y1) {
324 /* y2<=y1<=y0 */
325 setup->vmin = v2;
326 setup->vmid = v1;
327 setup->vmax = v0;
329 else {
330 /* y1<=y2<=y0 */
331 setup->vmin = v1;
332 setup->vmid = v2;
333 setup->vmax = v0;
338 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
339 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
340 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
341 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
342 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
343 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
346 * Compute triangle's area. Use 1/area to compute partial
347 * derivatives of attributes later.
349 * The area will be the same as prim->det, but the sign may be
350 * different depending on how the vertices get sorted above.
352 * To determine whether the primitive is front or back facing we
353 * use the prim->det value because its sign is correct.
356 const float area = (setup->emaj.dx * setup->ebot.dy -
357 setup->ebot.dx * setup->emaj.dy);
359 setup->oneoverarea = 1.0f / area;
362 debug_printf("%s one-over-area %f area %f det %f\n",
363 __FUNCTION__, setup->oneoverarea, area, det );
365 if (util_is_inf_or_nan(setup->oneoverarea))
366 return FALSE;
369 /* We need to know if this is a front or back-facing triangle for:
370 * - the GLSL gl_FrontFacing fragment attribute (bool)
371 * - two-sided stencil test
372 * 0 = front-facing, 1 = back-facing
374 setup->facing =
375 ((det < 0.0) ^
376 (setup->softpipe->rasterizer->front_ccw));
379 unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
381 if (face & setup->cull_face)
382 return FALSE;
386 /* Prepare pixel offset for rasterisation:
387 * - pixel center (0.5, 0.5) for GL, or
388 * - assume (0.0, 0.0) for other APIs.
390 if (setup->softpipe->rasterizer->gl_rasterization_rules) {
391 setup->pixel_offset = 0.5f;
392 } else {
393 setup->pixel_offset = 0.0f;
396 return TRUE;
400 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
401 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
402 * Some combinations of coordinates produce invalid results,
403 * but this behaviour is acceptable.
405 static void
406 tri_apply_cylindrical_wrap(float v0,
407 float v1,
408 float v2,
409 uint cylindrical_wrap,
410 float output[3])
412 if (cylindrical_wrap) {
413 float delta;
415 delta = v1 - v0;
416 if (delta > 0.5f) {
417 v0 += 1.0f;
419 else if (delta < -0.5f) {
420 v1 += 1.0f;
423 delta = v2 - v1;
424 if (delta > 0.5f) {
425 v1 += 1.0f;
427 else if (delta < -0.5f) {
428 v2 += 1.0f;
431 delta = v0 - v2;
432 if (delta > 0.5f) {
433 v2 += 1.0f;
435 else if (delta < -0.5f) {
436 v0 += 1.0f;
440 output[0] = v0;
441 output[1] = v1;
442 output[2] = v2;
447 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
448 * The value value comes from vertex[slot][i].
449 * The result will be put into setup->coef[slot].a0[i].
450 * \param slot which attribute slot
451 * \param i which component of the slot (0..3)
453 static void
454 const_coeff(struct setup_context *setup,
455 struct tgsi_interp_coef *coef,
456 uint vertSlot, uint i)
458 assert(i <= 3);
460 coef->dadx[i] = 0;
461 coef->dady[i] = 0;
463 /* need provoking vertex info!
465 coef->a0[i] = setup->vprovoke[vertSlot][i];
470 * Compute a0, dadx and dady for a linearly interpolated coefficient,
471 * for a triangle.
472 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
474 static void
475 tri_linear_coeff(struct setup_context *setup,
476 struct tgsi_interp_coef *coef,
477 uint i,
478 const float v[3])
480 float botda = v[1] - v[0];
481 float majda = v[2] - v[0];
482 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
483 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
484 float dadx = a * setup->oneoverarea;
485 float dady = b * setup->oneoverarea;
487 assert(i <= 3);
489 coef->dadx[i] = dadx;
490 coef->dady[i] = dady;
492 /* calculate a0 as the value which would be sampled for the
493 * fragment at (0,0), taking into account that we want to sample at
494 * pixel centers, in other words (pixel_offset, pixel_offset).
496 * this is neat but unfortunately not a good way to do things for
497 * triangles with very large values of dadx or dady as it will
498 * result in the subtraction and re-addition from a0 of a very
499 * large number, which means we'll end up loosing a lot of the
500 * fractional bits and precision from a0. the way to fix this is
501 * to define a0 as the sample at a pixel center somewhere near vmin
502 * instead - i'll switch to this later.
504 coef->a0[i] = (v[0] -
505 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
506 dady * (setup->vmin[0][1] - setup->pixel_offset)));
509 debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
510 slot, "xyzw"[i],
511 setup->coef[slot].a0[i],
512 setup->coef[slot].dadx[i],
513 setup->coef[slot].dady[i]);
519 * Compute a0, dadx and dady for a perspective-corrected interpolant,
520 * for a triangle.
521 * We basically multiply the vertex value by 1/w before computing
522 * the plane coefficients (a0, dadx, dady).
523 * Later, when we compute the value at a particular fragment position we'll
524 * divide the interpolated value by the interpolated W at that fragment.
525 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
527 static void
528 tri_persp_coeff(struct setup_context *setup,
529 struct tgsi_interp_coef *coef,
530 uint i,
531 const float v[3])
533 /* premultiply by 1/w (v[0][3] is always W):
535 float mina = v[0] * setup->vmin[0][3];
536 float mida = v[1] * setup->vmid[0][3];
537 float maxa = v[2] * setup->vmax[0][3];
538 float botda = mida - mina;
539 float majda = maxa - mina;
540 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
541 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
542 float dadx = a * setup->oneoverarea;
543 float dady = b * setup->oneoverarea;
546 debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
547 setup->vmin[vertSlot][i],
548 setup->vmid[vertSlot][i],
549 setup->vmax[vertSlot][i]
552 assert(i <= 3);
554 coef->dadx[i] = dadx;
555 coef->dady[i] = dady;
556 coef->a0[i] = (mina -
557 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
558 dady * (setup->vmin[0][1] - setup->pixel_offset)));
563 * Special coefficient setup for gl_FragCoord.
564 * X and Y are trivial, though Y may have to be inverted for OpenGL.
565 * Z and W are copied from posCoef which should have already been computed.
566 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
568 static void
569 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
571 struct sp_fragment_shader* spfs = setup->softpipe->fs;
572 /*X*/
573 setup->coef[slot].a0[0] = spfs->pixel_center_integer ? 0.0 : 0.5;
574 setup->coef[slot].dadx[0] = 1.0;
575 setup->coef[slot].dady[0] = 0.0;
576 /*Y*/
577 setup->coef[slot].a0[1] =
578 (spfs->origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
579 + (spfs->pixel_center_integer ? 0.0 : 0.5);
580 setup->coef[slot].dadx[1] = 0.0;
581 setup->coef[slot].dady[1] = spfs->origin_lower_left ? -1.0 : 1.0;
582 /*Z*/
583 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
584 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
585 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
586 /*W*/
587 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
588 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
589 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
595 * Compute the setup->coef[] array dadx, dady, a0 values.
596 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
598 static void
599 setup_tri_coefficients(struct setup_context *setup)
601 struct softpipe_context *softpipe = setup->softpipe;
602 const struct sp_fragment_shader *spfs = softpipe->fs;
603 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
604 uint fragSlot;
605 float v[3];
607 /* z and w are done by linear interpolation:
609 v[0] = setup->vmin[0][2];
610 v[1] = setup->vmid[0][2];
611 v[2] = setup->vmax[0][2];
612 tri_linear_coeff(setup, &setup->posCoef, 2, v);
614 v[0] = setup->vmin[0][3];
615 v[1] = setup->vmid[0][3];
616 v[2] = setup->vmax[0][3];
617 tri_linear_coeff(setup, &setup->posCoef, 3, v);
619 /* setup interpolation for all the remaining attributes:
621 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
622 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
623 uint j;
625 switch (vinfo->attrib[fragSlot].interp_mode) {
626 case INTERP_CONSTANT:
627 for (j = 0; j < NUM_CHANNELS; j++)
628 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
629 break;
630 case INTERP_LINEAR:
631 for (j = 0; j < NUM_CHANNELS; j++) {
632 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
633 setup->vmid[vertSlot][j],
634 setup->vmax[vertSlot][j],
635 spfs->info.input_cylindrical_wrap[fragSlot] & (1 << j),
637 tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
639 break;
640 case INTERP_PERSPECTIVE:
641 for (j = 0; j < NUM_CHANNELS; j++) {
642 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
643 setup->vmid[vertSlot][j],
644 setup->vmax[vertSlot][j],
645 spfs->info.input_cylindrical_wrap[fragSlot] & (1 << j),
647 tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
649 break;
650 case INTERP_POS:
651 setup_fragcoord_coeff(setup, fragSlot);
652 break;
653 default:
654 assert(0);
657 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
658 /* convert 0 to 1.0 and 1 to -1.0 */
659 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
660 setup->coef[fragSlot].dadx[0] = 0.0;
661 setup->coef[fragSlot].dady[0] = 0.0;
667 static void
668 setup_tri_edges(struct setup_context *setup)
670 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
671 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
673 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
674 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
675 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
677 setup->emaj.sy = ceilf(vmin_y);
678 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
679 setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
680 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
682 setup->etop.sy = ceilf(vmid_y);
683 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
684 setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
685 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
687 setup->ebot.sy = ceilf(vmin_y);
688 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
689 setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
690 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
695 * Render the upper or lower half of a triangle.
696 * Scissoring/cliprect is applied here too.
698 static void
699 subtriangle(struct setup_context *setup,
700 struct edge *eleft,
701 struct edge *eright,
702 int lines)
704 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
705 const int minx = (int) cliprect->minx;
706 const int maxx = (int) cliprect->maxx;
707 const int miny = (int) cliprect->miny;
708 const int maxy = (int) cliprect->maxy;
709 int y, start_y, finish_y;
710 int sy = (int)eleft->sy;
712 assert((int)eleft->sy == (int) eright->sy);
713 assert(lines >= 0);
715 /* clip top/bottom */
716 start_y = sy;
717 if (start_y < miny)
718 start_y = miny;
720 finish_y = sy + lines;
721 if (finish_y > maxy)
722 finish_y = maxy;
724 start_y -= sy;
725 finish_y -= sy;
728 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
731 for (y = start_y; y < finish_y; y++) {
733 /* avoid accumulating adds as floats don't have the precision to
734 * accurately iterate large triangle edges that way. luckily we
735 * can just multiply these days.
737 * this is all drowned out by the attribute interpolation anyway.
739 int left = (int)(eleft->sx + y * eleft->dxdy);
740 int right = (int)(eright->sx + y * eright->dxdy);
742 /* clip left/right */
743 if (left < minx)
744 left = minx;
745 if (right > maxx)
746 right = maxx;
748 if (left < right) {
749 int _y = sy + y;
750 if (block(_y) != setup->span.y) {
751 flush_spans(setup);
752 setup->span.y = block(_y);
755 setup->span.left[_y&1] = left;
756 setup->span.right[_y&1] = right;
761 /* save the values so that emaj can be restarted:
763 eleft->sx += lines * eleft->dxdy;
764 eright->sx += lines * eright->dxdy;
765 eleft->sy += lines;
766 eright->sy += lines;
771 * Recalculate prim's determinant. This is needed as we don't have
772 * get this information through the vbuf_render interface & we must
773 * calculate it here.
775 static float
776 calc_det(const float (*v0)[4],
777 const float (*v1)[4],
778 const float (*v2)[4])
780 /* edge vectors e = v0 - v2, f = v1 - v2 */
781 const float ex = v0[0][0] - v2[0][0];
782 const float ey = v0[0][1] - v2[0][1];
783 const float fx = v1[0][0] - v2[0][0];
784 const float fy = v1[0][1] - v2[0][1];
786 /* det = cross(e,f).z */
787 return ex * fy - ey * fx;
792 * Do setup for triangle rasterization, then render the triangle.
794 void
795 sp_setup_tri(struct setup_context *setup,
796 const float (*v0)[4],
797 const float (*v1)[4],
798 const float (*v2)[4])
800 float det;
802 #if DEBUG_VERTS
803 debug_printf("Setup triangle:\n");
804 print_vertex(setup, v0);
805 print_vertex(setup, v1);
806 print_vertex(setup, v2);
807 #endif
809 if (setup->softpipe->no_rast)
810 return;
812 det = calc_det(v0, v1, v2);
814 debug_printf("%s\n", __FUNCTION__ );
817 #if DEBUG_FRAGS
818 setup->numFragsEmitted = 0;
819 setup->numFragsWritten = 0;
820 #endif
822 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
823 return;
825 setup_tri_coefficients( setup );
826 setup_tri_edges( setup );
828 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
830 setup->span.y = 0;
831 setup->span.right[0] = 0;
832 setup->span.right[1] = 0;
833 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
835 /* init_constant_attribs( setup ); */
837 if (setup->oneoverarea < 0.0) {
838 /* emaj on left:
840 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
841 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
843 else {
844 /* emaj on right:
846 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
847 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
850 flush_spans( setup );
852 #if DEBUG_FRAGS
853 printf("Tri: %u frags emitted, %u written\n",
854 setup->numFragsEmitted,
855 setup->numFragsWritten);
856 #endif
860 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
861 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
863 static void
864 line_apply_cylindrical_wrap(float v0,
865 float v1,
866 uint cylindrical_wrap,
867 float output[2])
869 if (cylindrical_wrap) {
870 float delta;
872 delta = v1 - v0;
873 if (delta > 0.5f) {
874 v0 += 1.0f;
876 else if (delta < -0.5f) {
877 v1 += 1.0f;
881 output[0] = v0;
882 output[1] = v1;
887 * Compute a0, dadx and dady for a linearly interpolated coefficient,
888 * for a line.
889 * v[0] and v[1] are vmin and vmax, respectively.
891 static void
892 line_linear_coeff(const struct setup_context *setup,
893 struct tgsi_interp_coef *coef,
894 uint i,
895 const float v[2])
897 const float da = v[1] - v[0];
898 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
899 const float dady = da * setup->emaj.dy * setup->oneoverarea;
900 coef->dadx[i] = dadx;
901 coef->dady[i] = dady;
902 coef->a0[i] = (v[0] -
903 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
904 dady * (setup->vmin[0][1] - setup->pixel_offset)));
909 * Compute a0, dadx and dady for a perspective-corrected interpolant,
910 * for a line.
911 * v[0] and v[1] are vmin and vmax, respectively.
913 static void
914 line_persp_coeff(const struct setup_context *setup,
915 struct tgsi_interp_coef *coef,
916 uint i,
917 const float v[2])
919 const float a0 = v[0] * setup->vmin[0][3];
920 const float a1 = v[1] * setup->vmax[0][3];
921 const float da = a1 - a0;
922 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
923 const float dady = da * setup->emaj.dy * setup->oneoverarea;
924 coef->dadx[i] = dadx;
925 coef->dady[i] = dady;
926 coef->a0[i] = (a0 -
927 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
928 dady * (setup->vmin[0][1] - setup->pixel_offset)));
933 * Compute the setup->coef[] array dadx, dady, a0 values.
934 * Must be called after setup->vmin,vmax are initialized.
936 static boolean
937 setup_line_coefficients(struct setup_context *setup,
938 const float (*v0)[4],
939 const float (*v1)[4])
941 struct softpipe_context *softpipe = setup->softpipe;
942 const struct sp_fragment_shader *spfs = softpipe->fs;
943 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
944 uint fragSlot;
945 float area;
946 float v[2];
948 /* use setup->vmin, vmax to point to vertices */
949 if (softpipe->rasterizer->flatshade_first)
950 setup->vprovoke = v0;
951 else
952 setup->vprovoke = v1;
953 setup->vmin = v0;
954 setup->vmax = v1;
956 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
957 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
959 /* NOTE: this is not really area but something proportional to it */
960 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
961 if (area == 0.0f || util_is_inf_or_nan(area))
962 return FALSE;
963 setup->oneoverarea = 1.0f / area;
965 /* z and w are done by linear interpolation:
967 v[0] = setup->vmin[0][2];
968 v[1] = setup->vmax[0][2];
969 line_linear_coeff(setup, &setup->posCoef, 2, v);
971 v[0] = setup->vmin[0][3];
972 v[1] = setup->vmax[0][3];
973 line_linear_coeff(setup, &setup->posCoef, 3, v);
975 /* setup interpolation for all the remaining attributes:
977 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
978 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
979 uint j;
981 switch (vinfo->attrib[fragSlot].interp_mode) {
982 case INTERP_CONSTANT:
983 for (j = 0; j < NUM_CHANNELS; j++)
984 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
985 break;
986 case INTERP_LINEAR:
987 for (j = 0; j < NUM_CHANNELS; j++) {
988 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
989 setup->vmax[vertSlot][j],
990 spfs->info.input_cylindrical_wrap[fragSlot] & (1 << j),
992 line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
994 break;
995 case INTERP_PERSPECTIVE:
996 for (j = 0; j < NUM_CHANNELS; j++) {
997 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
998 setup->vmax[vertSlot][j],
999 spfs->info.input_cylindrical_wrap[fragSlot] & (1 << j),
1001 line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1003 break;
1004 case INTERP_POS:
1005 setup_fragcoord_coeff(setup, fragSlot);
1006 break;
1007 default:
1008 assert(0);
1011 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1012 /* convert 0 to 1.0 and 1 to -1.0 */
1013 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1014 setup->coef[fragSlot].dadx[0] = 0.0;
1015 setup->coef[fragSlot].dady[0] = 0.0;
1018 return TRUE;
1023 * Plot a pixel in a line segment.
1025 static INLINE void
1026 plot(struct setup_context *setup, int x, int y)
1028 const int iy = y & 1;
1029 const int ix = x & 1;
1030 const int quadX = x - ix;
1031 const int quadY = y - iy;
1032 const int mask = (1 << ix) << (2 * iy);
1034 if (quadX != setup->quad[0].input.x0 ||
1035 quadY != setup->quad[0].input.y0)
1037 /* flush prev quad, start new quad */
1039 if (setup->quad[0].input.x0 != -1)
1040 clip_emit_quad( setup, &setup->quad[0] );
1042 setup->quad[0].input.x0 = quadX;
1043 setup->quad[0].input.y0 = quadY;
1044 setup->quad[0].inout.mask = 0x0;
1047 setup->quad[0].inout.mask |= mask;
1052 * Do setup for line rasterization, then render the line.
1053 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
1054 * to handle stippling and wide lines.
1056 void
1057 sp_setup_line(struct setup_context *setup,
1058 const float (*v0)[4],
1059 const float (*v1)[4])
1061 int x0 = (int) v0[0][0];
1062 int x1 = (int) v1[0][0];
1063 int y0 = (int) v0[0][1];
1064 int y1 = (int) v1[0][1];
1065 int dx = x1 - x0;
1066 int dy = y1 - y0;
1067 int xstep, ystep;
1069 #if DEBUG_VERTS
1070 debug_printf("Setup line:\n");
1071 print_vertex(setup, v0);
1072 print_vertex(setup, v1);
1073 #endif
1075 if (setup->softpipe->no_rast)
1076 return;
1078 if (dx == 0 && dy == 0)
1079 return;
1081 if (!setup_line_coefficients(setup, v0, v1))
1082 return;
1084 assert(v0[0][0] < 1.0e9);
1085 assert(v0[0][1] < 1.0e9);
1086 assert(v1[0][0] < 1.0e9);
1087 assert(v1[0][1] < 1.0e9);
1089 if (dx < 0) {
1090 dx = -dx; /* make positive */
1091 xstep = -1;
1093 else {
1094 xstep = 1;
1097 if (dy < 0) {
1098 dy = -dy; /* make positive */
1099 ystep = -1;
1101 else {
1102 ystep = 1;
1105 assert(dx >= 0);
1106 assert(dy >= 0);
1107 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1109 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1110 setup->quad[0].inout.mask = 0x0;
1112 /* XXX temporary: set coverage to 1.0 so the line appears
1113 * if AA mode happens to be enabled.
1115 setup->quad[0].input.coverage[0] =
1116 setup->quad[0].input.coverage[1] =
1117 setup->quad[0].input.coverage[2] =
1118 setup->quad[0].input.coverage[3] = 1.0;
1120 if (dx > dy) {
1121 /*** X-major line ***/
1122 int i;
1123 const int errorInc = dy + dy;
1124 int error = errorInc - dx;
1125 const int errorDec = error - dx;
1127 for (i = 0; i < dx; i++) {
1128 plot(setup, x0, y0);
1130 x0 += xstep;
1131 if (error < 0) {
1132 error += errorInc;
1134 else {
1135 error += errorDec;
1136 y0 += ystep;
1140 else {
1141 /*** Y-major line ***/
1142 int i;
1143 const int errorInc = dx + dx;
1144 int error = errorInc - dy;
1145 const int errorDec = error - dy;
1147 for (i = 0; i < dy; i++) {
1148 plot(setup, x0, y0);
1150 y0 += ystep;
1151 if (error < 0) {
1152 error += errorInc;
1154 else {
1155 error += errorDec;
1156 x0 += xstep;
1161 /* draw final quad */
1162 if (setup->quad[0].inout.mask) {
1163 clip_emit_quad( setup, &setup->quad[0] );
1168 static void
1169 point_persp_coeff(const struct setup_context *setup,
1170 const float (*vert)[4],
1171 struct tgsi_interp_coef *coef,
1172 uint vertSlot, uint i)
1174 assert(i <= 3);
1175 coef->dadx[i] = 0.0F;
1176 coef->dady[i] = 0.0F;
1177 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1182 * Do setup for point rasterization, then render the point.
1183 * Round or square points...
1184 * XXX could optimize a lot for 1-pixel points.
1186 void
1187 sp_setup_point(struct setup_context *setup,
1188 const float (*v0)[4])
1190 struct softpipe_context *softpipe = setup->softpipe;
1191 const struct sp_fragment_shader *spfs = softpipe->fs;
1192 const int sizeAttr = setup->softpipe->psize_slot;
1193 const float size
1194 = sizeAttr > 0 ? v0[sizeAttr][0]
1195 : setup->softpipe->rasterizer->point_size;
1196 const float halfSize = 0.5F * size;
1197 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1198 const float x = v0[0][0]; /* Note: data[0] is always position */
1199 const float y = v0[0][1];
1200 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
1201 uint fragSlot;
1203 #if DEBUG_VERTS
1204 debug_printf("Setup point:\n");
1205 print_vertex(setup, v0);
1206 #endif
1208 if (softpipe->no_rast)
1209 return;
1211 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1213 /* For points, all interpolants are constant-valued.
1214 * However, for point sprites, we'll need to setup texcoords appropriately.
1215 * XXX: which coefficients are the texcoords???
1216 * We may do point sprites as textured quads...
1218 * KW: We don't know which coefficients are texcoords - ultimately
1219 * the choice of what interpolation mode to use for each attribute
1220 * should be determined by the fragment program, using
1221 * per-attribute declaration statements that include interpolation
1222 * mode as a parameter. So either the fragment program will have
1223 * to be adjusted for pointsprite vs normal point behaviour, or
1224 * otherwise a special interpolation mode will have to be defined
1225 * which matches the required behaviour for point sprites. But -
1226 * the latter is not a feature of normal hardware, and as such
1227 * probably should be ruled out on that basis.
1229 setup->vprovoke = v0;
1231 /* setup Z, W */
1232 const_coeff(setup, &setup->posCoef, 0, 2);
1233 const_coeff(setup, &setup->posCoef, 0, 3);
1235 for (fragSlot = 0; fragSlot < spfs->info.num_inputs; fragSlot++) {
1236 const uint vertSlot = vinfo->attrib[fragSlot].src_index;
1237 uint j;
1239 switch (vinfo->attrib[fragSlot].interp_mode) {
1240 case INTERP_CONSTANT:
1241 /* fall-through */
1242 case INTERP_LINEAR:
1243 for (j = 0; j < NUM_CHANNELS; j++)
1244 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1245 break;
1246 case INTERP_PERSPECTIVE:
1247 for (j = 0; j < NUM_CHANNELS; j++)
1248 point_persp_coeff(setup, setup->vprovoke,
1249 &setup->coef[fragSlot], vertSlot, j);
1250 break;
1251 case INTERP_POS:
1252 setup_fragcoord_coeff(setup, fragSlot);
1253 break;
1254 default:
1255 assert(0);
1258 if (spfs->info.input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1259 /* convert 0 to 1.0 and 1 to -1.0 */
1260 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1261 setup->coef[fragSlot].dadx[0] = 0.0;
1262 setup->coef[fragSlot].dady[0] = 0.0;
1267 if (halfSize <= 0.5 && !round) {
1268 /* special case for 1-pixel points */
1269 const int ix = ((int) x) & 1;
1270 const int iy = ((int) y) & 1;
1271 setup->quad[0].input.x0 = (int) x - ix;
1272 setup->quad[0].input.y0 = (int) y - iy;
1273 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1274 clip_emit_quad( setup, &setup->quad[0] );
1276 else {
1277 if (round) {
1278 /* rounded points */
1279 const int ixmin = block((int) (x - halfSize));
1280 const int ixmax = block((int) (x + halfSize));
1281 const int iymin = block((int) (y - halfSize));
1282 const int iymax = block((int) (y + halfSize));
1283 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1284 const float rmax = halfSize + 0.7071F;
1285 const float rmin2 = MAX2(0.0F, rmin * rmin);
1286 const float rmax2 = rmax * rmax;
1287 const float cscale = 1.0F / (rmax2 - rmin2);
1288 int ix, iy;
1290 for (iy = iymin; iy <= iymax; iy += 2) {
1291 for (ix = ixmin; ix <= ixmax; ix += 2) {
1292 float dx, dy, dist2, cover;
1294 setup->quad[0].inout.mask = 0x0;
1296 dx = (ix + 0.5f) - x;
1297 dy = (iy + 0.5f) - y;
1298 dist2 = dx * dx + dy * dy;
1299 if (dist2 <= rmax2) {
1300 cover = 1.0F - (dist2 - rmin2) * cscale;
1301 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1302 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1305 dx = (ix + 1.5f) - x;
1306 dy = (iy + 0.5f) - y;
1307 dist2 = dx * dx + dy * dy;
1308 if (dist2 <= rmax2) {
1309 cover = 1.0F - (dist2 - rmin2) * cscale;
1310 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1311 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1314 dx = (ix + 0.5f) - x;
1315 dy = (iy + 1.5f) - y;
1316 dist2 = dx * dx + dy * dy;
1317 if (dist2 <= rmax2) {
1318 cover = 1.0F - (dist2 - rmin2) * cscale;
1319 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1320 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1323 dx = (ix + 1.5f) - x;
1324 dy = (iy + 1.5f) - y;
1325 dist2 = dx * dx + dy * dy;
1326 if (dist2 <= rmax2) {
1327 cover = 1.0F - (dist2 - rmin2) * cscale;
1328 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1329 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1332 if (setup->quad[0].inout.mask) {
1333 setup->quad[0].input.x0 = ix;
1334 setup->quad[0].input.y0 = iy;
1335 clip_emit_quad( setup, &setup->quad[0] );
1340 else {
1341 /* square points */
1342 const int xmin = (int) (x + 0.75 - halfSize);
1343 const int ymin = (int) (y + 0.25 - halfSize);
1344 const int xmax = xmin + (int) size;
1345 const int ymax = ymin + (int) size;
1346 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1347 const int ixmin = block(xmin);
1348 const int ixmax = block(xmax - 1);
1349 const int iymin = block(ymin);
1350 const int iymax = block(ymax - 1);
1351 int ix, iy;
1354 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1356 for (iy = iymin; iy <= iymax; iy += 2) {
1357 uint rowMask = 0xf;
1358 if (iy < ymin) {
1359 /* above the top edge */
1360 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1362 if (iy + 1 >= ymax) {
1363 /* below the bottom edge */
1364 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1367 for (ix = ixmin; ix <= ixmax; ix += 2) {
1368 uint mask = rowMask;
1370 if (ix < xmin) {
1371 /* fragment is past left edge of point, turn off left bits */
1372 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1374 if (ix + 1 >= xmax) {
1375 /* past the right edge */
1376 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1379 setup->quad[0].inout.mask = mask;
1380 setup->quad[0].input.x0 = ix;
1381 setup->quad[0].input.y0 = iy;
1382 clip_emit_quad( setup, &setup->quad[0] );
1391 * Called by vbuf code just before we start buffering primitives.
1393 void
1394 sp_setup_prepare(struct setup_context *setup)
1396 struct softpipe_context *sp = setup->softpipe;
1398 if (sp->dirty) {
1399 softpipe_update_derived(sp);
1402 /* Note: nr_attrs is only used for debugging (vertex printing) */
1403 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1405 sp->quad.first->begin( sp->quad.first );
1407 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1408 sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1409 sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1410 /* we'll do culling */
1411 setup->cull_face = sp->rasterizer->cull_face;
1413 else {
1414 /* 'draw' will do culling */
1415 setup->cull_face = PIPE_FACE_NONE;
1420 void
1421 sp_setup_destroy_context(struct setup_context *setup)
1423 FREE( setup );
1428 * Create a new primitive setup/render stage.
1430 struct setup_context *
1431 sp_setup_create_context(struct softpipe_context *softpipe)
1433 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1434 unsigned i;
1436 setup->softpipe = softpipe;
1438 for (i = 0; i < MAX_QUADS; i++) {
1439 setup->quad[i].coef = setup->coef;
1440 setup->quad[i].posCoef = &setup->posCoef;
1443 setup->span.left[0] = 1000000; /* greater than right[0] */
1444 setup->span.left[1] = 1000000; /* greater than right[1] */
1446 return setup;