grub2: bring back build of aros-side grub2 tools
[AROS.git] / workbench / libs / mesa / src / gallium / drivers / softpipe / sp_tex_sample.c
blob90766f4119cc974b9c0eff49331ea56fd8e768c1
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc. All rights reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 **************************************************************************/
29 /**
30 * Texture sampling
32 * Authors:
33 * Brian Paul
34 * Keith Whitwell
37 #include "pipe/p_context.h"
38 #include "pipe/p_defines.h"
39 #include "pipe/p_shader_tokens.h"
40 #include "util/u_math.h"
41 #include "util/u_memory.h"
42 #include "sp_quad.h" /* only for #define QUAD_* tokens */
43 #include "sp_tex_sample.h"
44 #include "sp_tex_tile_cache.h"
47 /** Set to one to help debug texture sampling */
48 #define DEBUG_TEX 0
52 * Return fractional part of 'f'. Used for computing interpolation weights.
53 * Need to be careful with negative values.
54 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
55 * of improperly weighted linear-filtered textures.
56 * The tests/texwrap.c demo is a good test.
58 static INLINE float
59 frac(float f)
61 return f - floorf(f);
66 /**
67 * Linear interpolation macro
69 static INLINE float
70 lerp(float a, float v0, float v1)
72 return v0 + a * (v1 - v0);
76 /**
77 * Do 2D/bilinear interpolation of float values.
78 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
79 * a and b are the horizontal and vertical interpolants.
80 * It's important that this function is inlined when compiled with
81 * optimization! If we find that's not true on some systems, convert
82 * to a macro.
84 static INLINE float
85 lerp_2d(float a, float b,
86 float v00, float v10, float v01, float v11)
88 const float temp0 = lerp(a, v00, v10);
89 const float temp1 = lerp(a, v01, v11);
90 return lerp(b, temp0, temp1);
94 /**
95 * As above, but 3D interpolation of 8 values.
97 static INLINE float
98 lerp_3d(float a, float b, float c,
99 float v000, float v100, float v010, float v110,
100 float v001, float v101, float v011, float v111)
102 const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
103 const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
104 return lerp(c, temp0, temp1);
110 * Compute coord % size for repeat wrap modes.
111 * Note that if coord is negative, coord % size doesn't give the right
112 * value. To avoid that problem we add a large multiple of the size
113 * (rather than using a conditional).
115 static INLINE int
116 repeat(int coord, unsigned size)
118 return (coord + size * 1024) % size;
123 * Apply texture coord wrapping mode and return integer texture indexes
124 * for a vector of four texcoords (S or T or P).
125 * \param wrapMode PIPE_TEX_WRAP_x
126 * \param s the incoming texcoords
127 * \param size the texture image size
128 * \param icoord returns the integer texcoords
129 * \return integer texture index
131 static void
132 wrap_nearest_repeat(const float s[4], unsigned size, int icoord[4])
134 uint ch;
135 /* s limited to [0,1) */
136 /* i limited to [0,size-1] */
137 for (ch = 0; ch < 4; ch++) {
138 int i = util_ifloor(s[ch] * size);
139 icoord[ch] = repeat(i, size);
144 static void
145 wrap_nearest_clamp(const float s[4], unsigned size, int icoord[4])
147 uint ch;
148 /* s limited to [0,1] */
149 /* i limited to [0,size-1] */
150 for (ch = 0; ch < 4; ch++) {
151 if (s[ch] <= 0.0F)
152 icoord[ch] = 0;
153 else if (s[ch] >= 1.0F)
154 icoord[ch] = size - 1;
155 else
156 icoord[ch] = util_ifloor(s[ch] * size);
161 static void
162 wrap_nearest_clamp_to_edge(const float s[4], unsigned size, int icoord[4])
164 uint ch;
165 /* s limited to [min,max] */
166 /* i limited to [0, size-1] */
167 const float min = 1.0F / (2.0F * size);
168 const float max = 1.0F - min;
169 for (ch = 0; ch < 4; ch++) {
170 if (s[ch] < min)
171 icoord[ch] = 0;
172 else if (s[ch] > max)
173 icoord[ch] = size - 1;
174 else
175 icoord[ch] = util_ifloor(s[ch] * size);
180 static void
181 wrap_nearest_clamp_to_border(const float s[4], unsigned size, int icoord[4])
183 uint ch;
184 /* s limited to [min,max] */
185 /* i limited to [-1, size] */
186 const float min = -1.0F / (2.0F * size);
187 const float max = 1.0F - min;
188 for (ch = 0; ch < 4; ch++) {
189 if (s[ch] <= min)
190 icoord[ch] = -1;
191 else if (s[ch] >= max)
192 icoord[ch] = size;
193 else
194 icoord[ch] = util_ifloor(s[ch] * size);
199 static void
200 wrap_nearest_mirror_repeat(const float s[4], unsigned size, int icoord[4])
202 uint ch;
203 const float min = 1.0F / (2.0F * size);
204 const float max = 1.0F - min;
205 for (ch = 0; ch < 4; ch++) {
206 const int flr = util_ifloor(s[ch]);
207 float u = frac(s[ch]);
208 if (flr & 1)
209 u = 1.0F - u;
210 if (u < min)
211 icoord[ch] = 0;
212 else if (u > max)
213 icoord[ch] = size - 1;
214 else
215 icoord[ch] = util_ifloor(u * size);
220 static void
221 wrap_nearest_mirror_clamp(const float s[4], unsigned size, int icoord[4])
223 uint ch;
224 for (ch = 0; ch < 4; ch++) {
225 /* s limited to [0,1] */
226 /* i limited to [0,size-1] */
227 const float u = fabsf(s[ch]);
228 if (u <= 0.0F)
229 icoord[ch] = 0;
230 else if (u >= 1.0F)
231 icoord[ch] = size - 1;
232 else
233 icoord[ch] = util_ifloor(u * size);
238 static void
239 wrap_nearest_mirror_clamp_to_edge(const float s[4], unsigned size,
240 int icoord[4])
242 uint ch;
243 /* s limited to [min,max] */
244 /* i limited to [0, size-1] */
245 const float min = 1.0F / (2.0F * size);
246 const float max = 1.0F - min;
247 for (ch = 0; ch < 4; ch++) {
248 const float u = fabsf(s[ch]);
249 if (u < min)
250 icoord[ch] = 0;
251 else if (u > max)
252 icoord[ch] = size - 1;
253 else
254 icoord[ch] = util_ifloor(u * size);
259 static void
260 wrap_nearest_mirror_clamp_to_border(const float s[4], unsigned size,
261 int icoord[4])
263 uint ch;
264 /* s limited to [min,max] */
265 /* i limited to [0, size-1] */
266 const float min = -1.0F / (2.0F * size);
267 const float max = 1.0F - min;
268 for (ch = 0; ch < 4; ch++) {
269 const float u = fabsf(s[ch]);
270 if (u < min)
271 icoord[ch] = -1;
272 else if (u > max)
273 icoord[ch] = size;
274 else
275 icoord[ch] = util_ifloor(u * size);
281 * Used to compute texel locations for linear sampling for four texcoords.
282 * \param wrapMode PIPE_TEX_WRAP_x
283 * \param s the texcoords
284 * \param size the texture image size
285 * \param icoord0 returns first texture indexes
286 * \param icoord1 returns second texture indexes (usually icoord0 + 1)
287 * \param w returns blend factor/weight between texture indexes
288 * \param icoord returns the computed integer texture coords
290 static void
291 wrap_linear_repeat(const float s[4], unsigned size,
292 int icoord0[4], int icoord1[4], float w[4])
294 uint ch;
295 for (ch = 0; ch < 4; ch++) {
296 float u = s[ch] * size - 0.5F;
297 icoord0[ch] = repeat(util_ifloor(u), size);
298 icoord1[ch] = repeat(icoord0[ch] + 1, size);
299 w[ch] = frac(u);
304 static void
305 wrap_linear_clamp(const float s[4], unsigned size,
306 int icoord0[4], int icoord1[4], float w[4])
308 uint ch;
309 for (ch = 0; ch < 4; ch++) {
310 float u = CLAMP(s[ch], 0.0F, 1.0F);
311 u = u * size - 0.5f;
312 icoord0[ch] = util_ifloor(u);
313 icoord1[ch] = icoord0[ch] + 1;
314 w[ch] = frac(u);
319 static void
320 wrap_linear_clamp_to_edge(const float s[4], unsigned size,
321 int icoord0[4], int icoord1[4], float w[4])
323 uint ch;
324 for (ch = 0; ch < 4; ch++) {
325 float u = CLAMP(s[ch], 0.0F, 1.0F);
326 u = u * size - 0.5f;
327 icoord0[ch] = util_ifloor(u);
328 icoord1[ch] = icoord0[ch] + 1;
329 if (icoord0[ch] < 0)
330 icoord0[ch] = 0;
331 if (icoord1[ch] >= (int) size)
332 icoord1[ch] = size - 1;
333 w[ch] = frac(u);
338 static void
339 wrap_linear_clamp_to_border(const float s[4], unsigned size,
340 int icoord0[4], int icoord1[4], float w[4])
342 const float min = -1.0F / (2.0F * size);
343 const float max = 1.0F - min;
344 uint ch;
345 for (ch = 0; ch < 4; ch++) {
346 float u = CLAMP(s[ch], min, max);
347 u = u * size - 0.5f;
348 icoord0[ch] = util_ifloor(u);
349 icoord1[ch] = icoord0[ch] + 1;
350 w[ch] = frac(u);
355 static void
356 wrap_linear_mirror_repeat(const float s[4], unsigned size,
357 int icoord0[4], int icoord1[4], float w[4])
359 uint ch;
360 for (ch = 0; ch < 4; ch++) {
361 const int flr = util_ifloor(s[ch]);
362 float u = frac(s[ch]);
363 if (flr & 1)
364 u = 1.0F - u;
365 u = u * size - 0.5F;
366 icoord0[ch] = util_ifloor(u);
367 icoord1[ch] = icoord0[ch] + 1;
368 if (icoord0[ch] < 0)
369 icoord0[ch] = 0;
370 if (icoord1[ch] >= (int) size)
371 icoord1[ch] = size - 1;
372 w[ch] = frac(u);
377 static void
378 wrap_linear_mirror_clamp(const float s[4], unsigned size,
379 int icoord0[4], int icoord1[4], float w[4])
381 uint ch;
382 for (ch = 0; ch < 4; ch++) {
383 float u = fabsf(s[ch]);
384 if (u >= 1.0F)
385 u = (float) size;
386 else
387 u *= size;
388 u -= 0.5F;
389 icoord0[ch] = util_ifloor(u);
390 icoord1[ch] = icoord0[ch] + 1;
391 w[ch] = frac(u);
396 static void
397 wrap_linear_mirror_clamp_to_edge(const float s[4], unsigned size,
398 int icoord0[4], int icoord1[4], float w[4])
400 uint ch;
401 for (ch = 0; ch < 4; ch++) {
402 float u = fabsf(s[ch]);
403 if (u >= 1.0F)
404 u = (float) size;
405 else
406 u *= size;
407 u -= 0.5F;
408 icoord0[ch] = util_ifloor(u);
409 icoord1[ch] = icoord0[ch] + 1;
410 if (icoord0[ch] < 0)
411 icoord0[ch] = 0;
412 if (icoord1[ch] >= (int) size)
413 icoord1[ch] = size - 1;
414 w[ch] = frac(u);
419 static void
420 wrap_linear_mirror_clamp_to_border(const float s[4], unsigned size,
421 int icoord0[4], int icoord1[4], float w[4])
423 const float min = -1.0F / (2.0F * size);
424 const float max = 1.0F - min;
425 uint ch;
426 for (ch = 0; ch < 4; ch++) {
427 float u = fabsf(s[ch]);
428 if (u <= min)
429 u = min * size;
430 else if (u >= max)
431 u = max * size;
432 else
433 u *= size;
434 u -= 0.5F;
435 icoord0[ch] = util_ifloor(u);
436 icoord1[ch] = icoord0[ch] + 1;
437 w[ch] = frac(u);
443 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
445 static void
446 wrap_nearest_unorm_clamp(const float s[4], unsigned size, int icoord[4])
448 uint ch;
449 for (ch = 0; ch < 4; ch++) {
450 int i = util_ifloor(s[ch]);
451 icoord[ch]= CLAMP(i, 0, (int) size-1);
457 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
459 static void
460 wrap_nearest_unorm_clamp_to_border(const float s[4], unsigned size,
461 int icoord[4])
463 uint ch;
464 for (ch = 0; ch < 4; ch++) {
465 icoord[ch]= util_ifloor( CLAMP(s[ch], -0.5F, (float) size + 0.5F) );
471 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
473 static void
474 wrap_nearest_unorm_clamp_to_edge(const float s[4], unsigned size,
475 int icoord[4])
477 uint ch;
478 for (ch = 0; ch < 4; ch++) {
479 icoord[ch]= util_ifloor( CLAMP(s[ch], 0.5F, (float) size - 0.5F) );
485 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
487 static void
488 wrap_linear_unorm_clamp(const float s[4], unsigned size,
489 int icoord0[4], int icoord1[4], float w[4])
491 uint ch;
492 for (ch = 0; ch < 4; ch++) {
493 /* Not exactly what the spec says, but it matches NVIDIA output */
494 float u = CLAMP(s[ch] - 0.5F, 0.0f, (float) size - 1.0f);
495 icoord0[ch] = util_ifloor(u);
496 icoord1[ch] = icoord0[ch] + 1;
497 w[ch] = frac(u);
503 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
505 static void
506 wrap_linear_unorm_clamp_to_border(const float s[4], unsigned size,
507 int icoord0[4], int icoord1[4], float w[4])
509 uint ch;
510 for (ch = 0; ch < 4; ch++) {
511 float u = CLAMP(s[ch], -0.5F, (float) size + 0.5F);
512 u -= 0.5F;
513 icoord0[ch] = util_ifloor(u);
514 icoord1[ch] = icoord0[ch] + 1;
515 if (icoord1[ch] > (int) size - 1)
516 icoord1[ch] = size - 1;
517 w[ch] = frac(u);
523 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
525 static void
526 wrap_linear_unorm_clamp_to_edge(const float s[4], unsigned size,
527 int icoord0[4], int icoord1[4], float w[4])
529 uint ch;
530 for (ch = 0; ch < 4; ch++) {
531 float u = CLAMP(s[ch], +0.5F, (float) size - 0.5F);
532 u -= 0.5F;
533 icoord0[ch] = util_ifloor(u);
534 icoord1[ch] = icoord0[ch] + 1;
535 if (icoord1[ch] > (int) size - 1)
536 icoord1[ch] = size - 1;
537 w[ch] = frac(u);
543 * Do coordinate to array index conversion. For array textures.
545 static INLINE void
546 wrap_array_layer(const float coord[4], unsigned size, int layer[4])
548 uint ch;
549 for (ch = 0; ch < 4; ch++) {
550 int c = util_ifloor(coord[ch] + 0.5F);
551 layer[ch] = CLAMP(c, 0, size - 1);
557 * Examine the quad's texture coordinates to compute the partial
558 * derivatives w.r.t X and Y, then compute lambda (level of detail).
560 static float
561 compute_lambda_1d(const struct sp_sampler_variant *samp,
562 const float s[QUAD_SIZE],
563 const float t[QUAD_SIZE],
564 const float p[QUAD_SIZE])
566 const struct pipe_resource *texture = samp->view->texture;
567 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
568 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
569 float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
571 return util_fast_log2(rho);
575 static float
576 compute_lambda_2d(const struct sp_sampler_variant *samp,
577 const float s[QUAD_SIZE],
578 const float t[QUAD_SIZE],
579 const float p[QUAD_SIZE])
581 const struct pipe_resource *texture = samp->view->texture;
582 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
583 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
584 float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
585 float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
586 float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
587 float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, samp->view->u.tex.first_level);
588 float rho = MAX2(maxx, maxy);
590 return util_fast_log2(rho);
594 static float
595 compute_lambda_3d(const struct sp_sampler_variant *samp,
596 const float s[QUAD_SIZE],
597 const float t[QUAD_SIZE],
598 const float p[QUAD_SIZE])
600 const struct pipe_resource *texture = samp->view->texture;
601 float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
602 float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
603 float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
604 float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
605 float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
606 float dpdy = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]);
607 float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
608 float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, samp->view->u.tex.first_level);
609 float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, samp->view->u.tex.first_level);
610 float rho;
612 rho = MAX2(maxx, maxy);
613 rho = MAX2(rho, maxz);
615 return util_fast_log2(rho);
620 * Compute lambda for a vertex texture sampler.
621 * Since there aren't derivatives to use, just return 0.
623 static float
624 compute_lambda_vert(const struct sp_sampler_variant *samp,
625 const float s[QUAD_SIZE],
626 const float t[QUAD_SIZE],
627 const float p[QUAD_SIZE])
629 return 0.0f;
635 * Get a texel from a texture, using the texture tile cache.
637 * \param addr the template tex address containing cube, z, face info.
638 * \param x the x coord of texel within 2D image
639 * \param y the y coord of texel within 2D image
640 * \param rgba the quad to put the texel/color into
642 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
643 * sp_get_cached_tile_tex() function. Also, get 4 texels instead of 1...
649 static INLINE const float *
650 get_texel_2d_no_border(const struct sp_sampler_variant *samp,
651 union tex_tile_address addr, int x, int y)
653 const struct softpipe_tex_cached_tile *tile;
655 addr.bits.x = x / TILE_SIZE;
656 addr.bits.y = y / TILE_SIZE;
657 y %= TILE_SIZE;
658 x %= TILE_SIZE;
660 tile = sp_get_cached_tile_tex(samp->cache, addr);
662 return &tile->data.color[y][x][0];
666 static INLINE const float *
667 get_texel_2d(const struct sp_sampler_variant *samp,
668 union tex_tile_address addr, int x, int y)
670 const struct pipe_resource *texture = samp->view->texture;
671 unsigned level = addr.bits.level;
673 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
674 y < 0 || y >= (int) u_minify(texture->height0, level)) {
675 return samp->sampler->border_color;
677 else {
678 return get_texel_2d_no_border( samp, addr, x, y );
683 /* Gather a quad of adjacent texels within a tile:
685 static INLINE void
686 get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_variant *samp,
687 union tex_tile_address addr,
688 unsigned x, unsigned y,
689 const float *out[4])
691 const struct softpipe_tex_cached_tile *tile;
693 addr.bits.x = x / TILE_SIZE;
694 addr.bits.y = y / TILE_SIZE;
695 y %= TILE_SIZE;
696 x %= TILE_SIZE;
698 tile = sp_get_cached_tile_tex(samp->cache, addr);
700 out[0] = &tile->data.color[y ][x ][0];
701 out[1] = &tile->data.color[y ][x+1][0];
702 out[2] = &tile->data.color[y+1][x ][0];
703 out[3] = &tile->data.color[y+1][x+1][0];
707 /* Gather a quad of potentially non-adjacent texels:
709 static INLINE void
710 get_texel_quad_2d_no_border(const struct sp_sampler_variant *samp,
711 union tex_tile_address addr,
712 int x0, int y0,
713 int x1, int y1,
714 const float *out[4])
716 out[0] = get_texel_2d_no_border( samp, addr, x0, y0 );
717 out[1] = get_texel_2d_no_border( samp, addr, x1, y0 );
718 out[2] = get_texel_2d_no_border( samp, addr, x0, y1 );
719 out[3] = get_texel_2d_no_border( samp, addr, x1, y1 );
722 /* Can involve a lot of unnecessary checks for border color:
724 static INLINE void
725 get_texel_quad_2d(const struct sp_sampler_variant *samp,
726 union tex_tile_address addr,
727 int x0, int y0,
728 int x1, int y1,
729 const float *out[4])
731 out[0] = get_texel_2d( samp, addr, x0, y0 );
732 out[1] = get_texel_2d( samp, addr, x1, y0 );
733 out[3] = get_texel_2d( samp, addr, x1, y1 );
734 out[2] = get_texel_2d( samp, addr, x0, y1 );
739 /* 3d variants:
741 static INLINE const float *
742 get_texel_3d_no_border(const struct sp_sampler_variant *samp,
743 union tex_tile_address addr, int x, int y, int z)
745 const struct softpipe_tex_cached_tile *tile;
747 addr.bits.x = x / TILE_SIZE;
748 addr.bits.y = y / TILE_SIZE;
749 addr.bits.z = z;
750 y %= TILE_SIZE;
751 x %= TILE_SIZE;
753 tile = sp_get_cached_tile_tex(samp->cache, addr);
755 return &tile->data.color[y][x][0];
759 static INLINE const float *
760 get_texel_3d(const struct sp_sampler_variant *samp,
761 union tex_tile_address addr, int x, int y, int z)
763 const struct pipe_resource *texture = samp->view->texture;
764 unsigned level = addr.bits.level;
766 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
767 y < 0 || y >= (int) u_minify(texture->height0, level) ||
768 z < 0 || z >= (int) u_minify(texture->depth0, level)) {
769 return samp->sampler->border_color;
771 else {
772 return get_texel_3d_no_border( samp, addr, x, y, z );
777 /* Get texel pointer for 1D array texture */
778 static INLINE const float *
779 get_texel_1d_array(const struct sp_sampler_variant *samp,
780 union tex_tile_address addr, int x, int y)
782 const struct pipe_resource *texture = samp->view->texture;
783 unsigned level = addr.bits.level;
785 if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
786 return samp->sampler->border_color;
788 else {
789 return get_texel_2d_no_border(samp, addr, x, y);
794 /* Get texel pointer for 2D array texture */
795 static INLINE const float *
796 get_texel_2d_array(const struct sp_sampler_variant *samp,
797 union tex_tile_address addr, int x, int y, int layer)
799 const struct pipe_resource *texture = samp->view->texture;
800 unsigned level = addr.bits.level;
802 assert(layer < texture->array_size);
804 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
805 y < 0 || y >= (int) u_minify(texture->height0, level)) {
806 return samp->sampler->border_color;
808 else {
809 return get_texel_3d_no_border(samp, addr, x, y, layer);
815 * Given the logbase2 of a mipmap's base level size and a mipmap level,
816 * return the size (in texels) of that mipmap level.
817 * For example, if level[0].width = 256 then base_pot will be 8.
818 * If level = 2, then we'll return 64 (the width at level=2).
819 * Return 1 if level > base_pot.
821 static INLINE unsigned
822 pot_level_size(unsigned base_pot, unsigned level)
824 return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
828 static void
829 print_sample(const char *function, float rgba[NUM_CHANNELS][QUAD_SIZE])
831 debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
832 function,
833 rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
834 rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
835 rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
836 rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
840 /* Some image-filter fastpaths:
842 static INLINE void
843 img_filter_2d_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler,
844 const float s[QUAD_SIZE],
845 const float t[QUAD_SIZE],
846 const float p[QUAD_SIZE],
847 const float c0[QUAD_SIZE],
848 enum tgsi_sampler_control control,
849 float rgba[NUM_CHANNELS][QUAD_SIZE])
851 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
852 unsigned j;
853 unsigned level = samp->level;
854 unsigned xpot = pot_level_size(samp->xpot, level);
855 unsigned ypot = pot_level_size(samp->ypot, level);
856 unsigned xmax = (xpot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, xpot) - 1; */
857 unsigned ymax = (ypot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, ypot) - 1; */
858 union tex_tile_address addr;
860 addr.value = 0;
861 addr.bits.level = samp->level;
863 for (j = 0; j < QUAD_SIZE; j++) {
864 int c;
866 float u = s[j] * xpot - 0.5F;
867 float v = t[j] * ypot - 0.5F;
869 int uflr = util_ifloor(u);
870 int vflr = util_ifloor(v);
872 float xw = u - (float)uflr;
873 float yw = v - (float)vflr;
875 int x0 = uflr & (xpot - 1);
876 int y0 = vflr & (ypot - 1);
878 const float *tx[4];
880 /* Can we fetch all four at once:
882 if (x0 < xmax && y0 < ymax) {
883 get_texel_quad_2d_no_border_single_tile(samp, addr, x0, y0, tx);
885 else {
886 unsigned x1 = (x0 + 1) & (xpot - 1);
887 unsigned y1 = (y0 + 1) & (ypot - 1);
888 get_texel_quad_2d_no_border(samp, addr, x0, y0, x1, y1, tx);
891 /* interpolate R, G, B, A */
892 for (c = 0; c < 4; c++) {
893 rgba[c][j] = lerp_2d(xw, yw,
894 tx[0][c], tx[1][c],
895 tx[2][c], tx[3][c]);
899 if (DEBUG_TEX) {
900 print_sample(__FUNCTION__, rgba);
905 static INLINE void
906 img_filter_2d_nearest_repeat_POT(struct tgsi_sampler *tgsi_sampler,
907 const float s[QUAD_SIZE],
908 const float t[QUAD_SIZE],
909 const float p[QUAD_SIZE],
910 const float c0[QUAD_SIZE],
911 enum tgsi_sampler_control control,
912 float rgba[NUM_CHANNELS][QUAD_SIZE])
914 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
915 unsigned j;
916 unsigned level = samp->level;
917 unsigned xpot = pot_level_size(samp->xpot, level);
918 unsigned ypot = pot_level_size(samp->ypot, level);
919 union tex_tile_address addr;
921 addr.value = 0;
922 addr.bits.level = samp->level;
924 for (j = 0; j < QUAD_SIZE; j++) {
925 int c;
927 float u = s[j] * xpot;
928 float v = t[j] * ypot;
930 int uflr = util_ifloor(u);
931 int vflr = util_ifloor(v);
933 int x0 = uflr & (xpot - 1);
934 int y0 = vflr & (ypot - 1);
936 const float *out = get_texel_2d_no_border(samp, addr, x0, y0);
938 for (c = 0; c < 4; c++) {
939 rgba[c][j] = out[c];
943 if (DEBUG_TEX) {
944 print_sample(__FUNCTION__, rgba);
949 static INLINE void
950 img_filter_2d_nearest_clamp_POT(struct tgsi_sampler *tgsi_sampler,
951 const float s[QUAD_SIZE],
952 const float t[QUAD_SIZE],
953 const float p[QUAD_SIZE],
954 const float c0[QUAD_SIZE],
955 enum tgsi_sampler_control control,
956 float rgba[NUM_CHANNELS][QUAD_SIZE])
958 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
959 unsigned j;
960 unsigned level = samp->level;
961 unsigned xpot = pot_level_size(samp->xpot, level);
962 unsigned ypot = pot_level_size(samp->ypot, level);
963 union tex_tile_address addr;
965 addr.value = 0;
966 addr.bits.level = samp->level;
968 for (j = 0; j < QUAD_SIZE; j++) {
969 int c;
971 float u = s[j] * xpot;
972 float v = t[j] * ypot;
974 int x0, y0;
975 const float *out;
977 x0 = util_ifloor(u);
978 if (x0 < 0)
979 x0 = 0;
980 else if (x0 > xpot - 1)
981 x0 = xpot - 1;
983 y0 = util_ifloor(v);
984 if (y0 < 0)
985 y0 = 0;
986 else if (y0 > ypot - 1)
987 y0 = ypot - 1;
989 out = get_texel_2d_no_border(samp, addr, x0, y0);
991 for (c = 0; c < 4; c++) {
992 rgba[c][j] = out[c];
996 if (DEBUG_TEX) {
997 print_sample(__FUNCTION__, rgba);
1002 static void
1003 img_filter_1d_nearest(struct tgsi_sampler *tgsi_sampler,
1004 const float s[QUAD_SIZE],
1005 const float t[QUAD_SIZE],
1006 const float p[QUAD_SIZE],
1007 const float c0[QUAD_SIZE],
1008 enum tgsi_sampler_control control,
1009 float rgba[NUM_CHANNELS][QUAD_SIZE])
1011 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1012 const struct pipe_resource *texture = samp->view->texture;
1013 unsigned level0, j;
1014 int width;
1015 int x[4];
1016 union tex_tile_address addr;
1018 level0 = samp->level;
1019 width = u_minify(texture->width0, level0);
1021 assert(width > 0);
1023 addr.value = 0;
1024 addr.bits.level = samp->level;
1026 samp->nearest_texcoord_s(s, width, x);
1028 for (j = 0; j < QUAD_SIZE; j++) {
1029 const float *out = get_texel_2d(samp, addr, x[j], 0);
1030 int c;
1031 for (c = 0; c < 4; c++) {
1032 rgba[c][j] = out[c];
1036 if (DEBUG_TEX) {
1037 print_sample(__FUNCTION__, rgba);
1042 static void
1043 img_filter_1d_array_nearest(struct tgsi_sampler *tgsi_sampler,
1044 const float s[QUAD_SIZE],
1045 const float t[QUAD_SIZE],
1046 const float p[QUAD_SIZE],
1047 const float c0[QUAD_SIZE],
1048 enum tgsi_sampler_control control,
1049 float rgba[NUM_CHANNELS][QUAD_SIZE])
1051 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1052 const struct pipe_resource *texture = samp->view->texture;
1053 unsigned level0, j;
1054 int width;
1055 int x[4], layer[4];
1056 union tex_tile_address addr;
1058 level0 = samp->level;
1059 width = u_minify(texture->width0, level0);
1061 assert(width > 0);
1063 addr.value = 0;
1064 addr.bits.level = samp->level;
1066 samp->nearest_texcoord_s(s, width, x);
1067 wrap_array_layer(t, texture->array_size, layer);
1069 for (j = 0; j < QUAD_SIZE; j++) {
1070 const float *out = get_texel_1d_array(samp, addr, x[j], layer[j]);
1071 int c;
1072 for (c = 0; c < 4; c++) {
1073 rgba[c][j] = out[c];
1077 if (DEBUG_TEX) {
1078 print_sample(__FUNCTION__, rgba);
1083 static void
1084 img_filter_2d_nearest(struct tgsi_sampler *tgsi_sampler,
1085 const float s[QUAD_SIZE],
1086 const float t[QUAD_SIZE],
1087 const float p[QUAD_SIZE],
1088 const float c0[QUAD_SIZE],
1089 enum tgsi_sampler_control control,
1090 float rgba[NUM_CHANNELS][QUAD_SIZE])
1092 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1093 const struct pipe_resource *texture = samp->view->texture;
1094 unsigned level0, j;
1095 int width, height;
1096 int x[4], y[4];
1097 union tex_tile_address addr;
1100 level0 = samp->level;
1101 width = u_minify(texture->width0, level0);
1102 height = u_minify(texture->height0, level0);
1104 assert(width > 0);
1105 assert(height > 0);
1107 addr.value = 0;
1108 addr.bits.level = samp->level;
1110 samp->nearest_texcoord_s(s, width, x);
1111 samp->nearest_texcoord_t(t, height, y);
1113 for (j = 0; j < QUAD_SIZE; j++) {
1114 const float *out = get_texel_2d(samp, addr, x[j], y[j]);
1115 int c;
1116 for (c = 0; c < 4; c++) {
1117 rgba[c][j] = out[c];
1121 if (DEBUG_TEX) {
1122 print_sample(__FUNCTION__, rgba);
1127 static void
1128 img_filter_2d_array_nearest(struct tgsi_sampler *tgsi_sampler,
1129 const float s[QUAD_SIZE],
1130 const float t[QUAD_SIZE],
1131 const float p[QUAD_SIZE],
1132 const float c0[QUAD_SIZE],
1133 enum tgsi_sampler_control control,
1134 float rgba[NUM_CHANNELS][QUAD_SIZE])
1136 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1137 const struct pipe_resource *texture = samp->view->texture;
1138 unsigned level0, j;
1139 int width, height;
1140 int x[4], y[4], layer[4];
1141 union tex_tile_address addr;
1143 level0 = samp->level;
1144 width = u_minify(texture->width0, level0);
1145 height = u_minify(texture->height0, level0);
1147 assert(width > 0);
1148 assert(height > 0);
1150 addr.value = 0;
1151 addr.bits.level = samp->level;
1153 samp->nearest_texcoord_s(s, width, x);
1154 samp->nearest_texcoord_t(t, height, y);
1155 wrap_array_layer(p, texture->array_size, layer);
1157 for (j = 0; j < QUAD_SIZE; j++) {
1158 const float *out = get_texel_2d_array(samp, addr, x[j], y[j], layer[j]);
1159 int c;
1160 for (c = 0; c < 4; c++) {
1161 rgba[c][j] = out[c];
1165 if (DEBUG_TEX) {
1166 print_sample(__FUNCTION__, rgba);
1171 static INLINE union tex_tile_address
1172 face(union tex_tile_address addr, unsigned face )
1174 addr.bits.face = face;
1175 return addr;
1179 static void
1180 img_filter_cube_nearest(struct tgsi_sampler *tgsi_sampler,
1181 const float s[QUAD_SIZE],
1182 const float t[QUAD_SIZE],
1183 const float p[QUAD_SIZE],
1184 const float c0[QUAD_SIZE],
1185 enum tgsi_sampler_control control,
1186 float rgba[NUM_CHANNELS][QUAD_SIZE])
1188 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1189 const struct pipe_resource *texture = samp->view->texture;
1190 const unsigned *faces = samp->faces; /* zero when not cube-mapping */
1191 unsigned level0, j;
1192 int width, height;
1193 int x[4], y[4];
1194 union tex_tile_address addr;
1196 level0 = samp->level;
1197 width = u_minify(texture->width0, level0);
1198 height = u_minify(texture->height0, level0);
1200 assert(width > 0);
1201 assert(height > 0);
1203 addr.value = 0;
1204 addr.bits.level = samp->level;
1206 samp->nearest_texcoord_s(s, width, x);
1207 samp->nearest_texcoord_t(t, height, y);
1209 for (j = 0; j < QUAD_SIZE; j++) {
1210 const float *out = get_texel_2d(samp, face(addr, faces[j]), x[j], y[j]);
1211 int c;
1212 for (c = 0; c < 4; c++) {
1213 rgba[c][j] = out[c];
1217 if (DEBUG_TEX) {
1218 print_sample(__FUNCTION__, rgba);
1223 static void
1224 img_filter_3d_nearest(struct tgsi_sampler *tgsi_sampler,
1225 const float s[QUAD_SIZE],
1226 const float t[QUAD_SIZE],
1227 const float p[QUAD_SIZE],
1228 const float c0[QUAD_SIZE],
1229 enum tgsi_sampler_control control,
1230 float rgba[NUM_CHANNELS][QUAD_SIZE])
1232 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1233 const struct pipe_resource *texture = samp->view->texture;
1234 unsigned level0, j;
1235 int width, height, depth;
1236 int x[4], y[4], z[4];
1237 union tex_tile_address addr;
1239 level0 = samp->level;
1240 width = u_minify(texture->width0, level0);
1241 height = u_minify(texture->height0, level0);
1242 depth = u_minify(texture->depth0, level0);
1244 assert(width > 0);
1245 assert(height > 0);
1246 assert(depth > 0);
1248 samp->nearest_texcoord_s(s, width, x);
1249 samp->nearest_texcoord_t(t, height, y);
1250 samp->nearest_texcoord_p(p, depth, z);
1252 addr.value = 0;
1253 addr.bits.level = samp->level;
1255 for (j = 0; j < QUAD_SIZE; j++) {
1256 const float *out = get_texel_3d(samp, addr, x[j], y[j], z[j]);
1257 int c;
1258 for (c = 0; c < 4; c++) {
1259 rgba[c][j] = out[c];
1265 static void
1266 img_filter_1d_linear(struct tgsi_sampler *tgsi_sampler,
1267 const float s[QUAD_SIZE],
1268 const float t[QUAD_SIZE],
1269 const float p[QUAD_SIZE],
1270 const float c0[QUAD_SIZE],
1271 enum tgsi_sampler_control control,
1272 float rgba[NUM_CHANNELS][QUAD_SIZE])
1274 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1275 const struct pipe_resource *texture = samp->view->texture;
1276 unsigned level0, j;
1277 int width;
1278 int x0[4], x1[4];
1279 float xw[4]; /* weights */
1280 union tex_tile_address addr;
1282 level0 = samp->level;
1283 width = u_minify(texture->width0, level0);
1285 assert(width > 0);
1287 addr.value = 0;
1288 addr.bits.level = samp->level;
1290 samp->linear_texcoord_s(s, width, x0, x1, xw);
1292 for (j = 0; j < QUAD_SIZE; j++) {
1293 const float *tx0 = get_texel_2d(samp, addr, x0[j], 0);
1294 const float *tx1 = get_texel_2d(samp, addr, x1[j], 0);
1295 int c;
1297 /* interpolate R, G, B, A */
1298 for (c = 0; c < 4; c++) {
1299 rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]);
1305 static void
1306 img_filter_1d_array_linear(struct tgsi_sampler *tgsi_sampler,
1307 const float s[QUAD_SIZE],
1308 const float t[QUAD_SIZE],
1309 const float p[QUAD_SIZE],
1310 const float c0[QUAD_SIZE],
1311 enum tgsi_sampler_control control,
1312 float rgba[NUM_CHANNELS][QUAD_SIZE])
1314 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1315 const struct pipe_resource *texture = samp->view->texture;
1316 unsigned level0, j;
1317 int width;
1318 int x0[4], x1[4], layer[4];
1319 float xw[4]; /* weights */
1320 union tex_tile_address addr;
1322 level0 = samp->level;
1323 width = u_minify(texture->width0, level0);
1325 assert(width > 0);
1327 addr.value = 0;
1328 addr.bits.level = samp->level;
1330 samp->linear_texcoord_s(s, width, x0, x1, xw);
1331 wrap_array_layer(t, texture->array_size, layer);
1333 for (j = 0; j < QUAD_SIZE; j++) {
1334 const float *tx0 = get_texel_1d_array(samp, addr, x0[j], layer[j]);
1335 const float *tx1 = get_texel_1d_array(samp, addr, x1[j], layer[j]);
1336 int c;
1338 /* interpolate R, G, B, A */
1339 for (c = 0; c < 4; c++) {
1340 rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]);
1346 static void
1347 img_filter_2d_linear(struct tgsi_sampler *tgsi_sampler,
1348 const float s[QUAD_SIZE],
1349 const float t[QUAD_SIZE],
1350 const float p[QUAD_SIZE],
1351 const float c0[QUAD_SIZE],
1352 enum tgsi_sampler_control control,
1353 float rgba[NUM_CHANNELS][QUAD_SIZE])
1355 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1356 const struct pipe_resource *texture = samp->view->texture;
1357 unsigned level0, j;
1358 int width, height;
1359 int x0[4], y0[4], x1[4], y1[4];
1360 float xw[4], yw[4]; /* weights */
1361 union tex_tile_address addr;
1363 level0 = samp->level;
1364 width = u_minify(texture->width0, level0);
1365 height = u_minify(texture->height0, level0);
1367 assert(width > 0);
1368 assert(height > 0);
1370 addr.value = 0;
1371 addr.bits.level = samp->level;
1373 samp->linear_texcoord_s(s, width, x0, x1, xw);
1374 samp->linear_texcoord_t(t, height, y0, y1, yw);
1376 for (j = 0; j < QUAD_SIZE; j++) {
1377 const float *tx0 = get_texel_2d(samp, addr, x0[j], y0[j]);
1378 const float *tx1 = get_texel_2d(samp, addr, x1[j], y0[j]);
1379 const float *tx2 = get_texel_2d(samp, addr, x0[j], y1[j]);
1380 const float *tx3 = get_texel_2d(samp, addr, x1[j], y1[j]);
1381 int c;
1383 /* interpolate R, G, B, A */
1384 for (c = 0; c < 4; c++) {
1385 rgba[c][j] = lerp_2d(xw[j], yw[j],
1386 tx0[c], tx1[c],
1387 tx2[c], tx3[c]);
1393 static void
1394 img_filter_2d_array_linear(struct tgsi_sampler *tgsi_sampler,
1395 const float s[QUAD_SIZE],
1396 const float t[QUAD_SIZE],
1397 const float p[QUAD_SIZE],
1398 const float c0[QUAD_SIZE],
1399 enum tgsi_sampler_control control,
1400 float rgba[NUM_CHANNELS][QUAD_SIZE])
1402 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1403 const struct pipe_resource *texture = samp->view->texture;
1404 unsigned level0, j;
1405 int width, height;
1406 int x0[4], y0[4], x1[4], y1[4], layer[4];
1407 float xw[4], yw[4]; /* weights */
1408 union tex_tile_address addr;
1410 level0 = samp->level;
1411 width = u_minify(texture->width0, level0);
1412 height = u_minify(texture->height0, level0);
1414 assert(width > 0);
1415 assert(height > 0);
1417 addr.value = 0;
1418 addr.bits.level = samp->level;
1420 samp->linear_texcoord_s(s, width, x0, x1, xw);
1421 samp->linear_texcoord_t(t, height, y0, y1, yw);
1422 wrap_array_layer(p, texture->array_size, layer);
1424 for (j = 0; j < QUAD_SIZE; j++) {
1425 const float *tx0 = get_texel_2d_array(samp, addr, x0[j], y0[j], layer[j]);
1426 const float *tx1 = get_texel_2d_array(samp, addr, x1[j], y0[j], layer[j]);
1427 const float *tx2 = get_texel_2d_array(samp, addr, x0[j], y1[j], layer[j]);
1428 const float *tx3 = get_texel_2d_array(samp, addr, x1[j], y1[j], layer[j]);
1429 int c;
1431 /* interpolate R, G, B, A */
1432 for (c = 0; c < 4; c++) {
1433 rgba[c][j] = lerp_2d(xw[j], yw[j],
1434 tx0[c], tx1[c],
1435 tx2[c], tx3[c]);
1441 static void
1442 img_filter_cube_linear(struct tgsi_sampler *tgsi_sampler,
1443 const float s[QUAD_SIZE],
1444 const float t[QUAD_SIZE],
1445 const float p[QUAD_SIZE],
1446 const float c0[QUAD_SIZE],
1447 enum tgsi_sampler_control control,
1448 float rgba[NUM_CHANNELS][QUAD_SIZE])
1450 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1451 const struct pipe_resource *texture = samp->view->texture;
1452 const unsigned *faces = samp->faces; /* zero when not cube-mapping */
1453 unsigned level0, j;
1454 int width, height;
1455 int x0[4], y0[4], x1[4], y1[4];
1456 float xw[4], yw[4]; /* weights */
1457 union tex_tile_address addr;
1459 level0 = samp->level;
1460 width = u_minify(texture->width0, level0);
1461 height = u_minify(texture->height0, level0);
1463 assert(width > 0);
1464 assert(height > 0);
1466 addr.value = 0;
1467 addr.bits.level = samp->level;
1469 samp->linear_texcoord_s(s, width, x0, x1, xw);
1470 samp->linear_texcoord_t(t, height, y0, y1, yw);
1472 for (j = 0; j < QUAD_SIZE; j++) {
1473 union tex_tile_address addrj = face(addr, faces[j]);
1474 const float *tx0 = get_texel_2d(samp, addrj, x0[j], y0[j]);
1475 const float *tx1 = get_texel_2d(samp, addrj, x1[j], y0[j]);
1476 const float *tx2 = get_texel_2d(samp, addrj, x0[j], y1[j]);
1477 const float *tx3 = get_texel_2d(samp, addrj, x1[j], y1[j]);
1478 int c;
1480 /* interpolate R, G, B, A */
1481 for (c = 0; c < 4; c++) {
1482 rgba[c][j] = lerp_2d(xw[j], yw[j],
1483 tx0[c], tx1[c],
1484 tx2[c], tx3[c]);
1490 static void
1491 img_filter_3d_linear(struct tgsi_sampler *tgsi_sampler,
1492 const float s[QUAD_SIZE],
1493 const float t[QUAD_SIZE],
1494 const float p[QUAD_SIZE],
1495 const float c0[QUAD_SIZE],
1496 enum tgsi_sampler_control control,
1497 float rgba[NUM_CHANNELS][QUAD_SIZE])
1499 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1500 const struct pipe_resource *texture = samp->view->texture;
1501 unsigned level0, j;
1502 int width, height, depth;
1503 int x0[4], x1[4], y0[4], y1[4], z0[4], z1[4];
1504 float xw[4], yw[4], zw[4]; /* interpolation weights */
1505 union tex_tile_address addr;
1507 level0 = samp->level;
1508 width = u_minify(texture->width0, level0);
1509 height = u_minify(texture->height0, level0);
1510 depth = u_minify(texture->depth0, level0);
1512 addr.value = 0;
1513 addr.bits.level = level0;
1515 assert(width > 0);
1516 assert(height > 0);
1517 assert(depth > 0);
1519 samp->linear_texcoord_s(s, width, x0, x1, xw);
1520 samp->linear_texcoord_t(t, height, y0, y1, yw);
1521 samp->linear_texcoord_p(p, depth, z0, z1, zw);
1523 for (j = 0; j < QUAD_SIZE; j++) {
1524 int c;
1526 const float *tx00 = get_texel_3d(samp, addr, x0[j], y0[j], z0[j]);
1527 const float *tx01 = get_texel_3d(samp, addr, x1[j], y0[j], z0[j]);
1528 const float *tx02 = get_texel_3d(samp, addr, x0[j], y1[j], z0[j]);
1529 const float *tx03 = get_texel_3d(samp, addr, x1[j], y1[j], z0[j]);
1531 const float *tx10 = get_texel_3d(samp, addr, x0[j], y0[j], z1[j]);
1532 const float *tx11 = get_texel_3d(samp, addr, x1[j], y0[j], z1[j]);
1533 const float *tx12 = get_texel_3d(samp, addr, x0[j], y1[j], z1[j]);
1534 const float *tx13 = get_texel_3d(samp, addr, x1[j], y1[j], z1[j]);
1536 /* interpolate R, G, B, A */
1537 for (c = 0; c < 4; c++) {
1538 rgba[c][j] = lerp_3d(xw[j], yw[j], zw[j],
1539 tx00[c], tx01[c],
1540 tx02[c], tx03[c],
1541 tx10[c], tx11[c],
1542 tx12[c], tx13[c]);
1548 /* Calculate level of detail for every fragment.
1549 * Note that lambda has already been biased by global LOD bias.
1551 static INLINE void
1552 compute_lod(const struct pipe_sampler_state *sampler,
1553 const float biased_lambda,
1554 const float lodbias[QUAD_SIZE],
1555 float lod[QUAD_SIZE])
1557 uint i;
1559 for (i = 0; i < QUAD_SIZE; i++) {
1560 lod[i] = biased_lambda + lodbias[i];
1561 lod[i] = CLAMP(lod[i], sampler->min_lod, sampler->max_lod);
1566 static void
1567 mip_filter_linear(struct tgsi_sampler *tgsi_sampler,
1568 const float s[QUAD_SIZE],
1569 const float t[QUAD_SIZE],
1570 const float p[QUAD_SIZE],
1571 const float c0[QUAD_SIZE],
1572 enum tgsi_sampler_control control,
1573 float rgba[NUM_CHANNELS][QUAD_SIZE])
1575 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1576 const struct pipe_resource *texture = samp->view->texture;
1577 int level0;
1578 float lambda;
1579 float lod[QUAD_SIZE];
1581 if (control == tgsi_sampler_lod_bias) {
1582 lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1583 compute_lod(samp->sampler, lambda, c0, lod);
1584 } else {
1585 assert(control == tgsi_sampler_lod_explicit);
1587 memcpy(lod, c0, sizeof(lod));
1590 /* XXX: Take into account all lod values.
1592 lambda = lod[0];
1593 level0 = samp->view->u.tex.first_level + (int)lambda;
1595 if (lambda < 0.0) {
1596 samp->level = samp->view->u.tex.first_level;
1597 samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1599 else if (level0 >= texture->last_level) {
1600 samp->level = texture->last_level;
1601 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1603 else {
1604 float levelBlend = frac(lambda);
1605 float rgba0[4][4];
1606 float rgba1[4][4];
1607 int c,j;
1609 samp->level = level0;
1610 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0);
1612 samp->level = level0+1;
1613 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1);
1615 for (j = 0; j < QUAD_SIZE; j++) {
1616 for (c = 0; c < 4; c++) {
1617 rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
1622 if (DEBUG_TEX) {
1623 print_sample(__FUNCTION__, rgba);
1629 * Compute nearest mipmap level from texcoords.
1630 * Then sample the texture level for four elements of a quad.
1631 * \param c0 the LOD bias factors, or absolute LODs (depending on control)
1633 static void
1634 mip_filter_nearest(struct tgsi_sampler *tgsi_sampler,
1635 const float s[QUAD_SIZE],
1636 const float t[QUAD_SIZE],
1637 const float p[QUAD_SIZE],
1638 const float c0[QUAD_SIZE],
1639 enum tgsi_sampler_control control,
1640 float rgba[NUM_CHANNELS][QUAD_SIZE])
1642 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1643 const struct pipe_resource *texture = samp->view->texture;
1644 float lambda;
1645 float lod[QUAD_SIZE];
1647 if (control == tgsi_sampler_lod_bias) {
1648 lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1649 compute_lod(samp->sampler, lambda, c0, lod);
1650 } else {
1651 assert(control == tgsi_sampler_lod_explicit);
1653 memcpy(lod, c0, sizeof(lod));
1656 /* XXX: Take into account all lod values.
1658 lambda = lod[0];
1660 if (lambda < 0.0) {
1661 samp->level = samp->view->u.tex.first_level;
1662 samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1664 else {
1665 samp->level = samp->view->u.tex.first_level + (int)(lambda + 0.5) ;
1666 samp->level = MIN2(samp->level, (int)texture->last_level);
1667 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1670 if (DEBUG_TEX) {
1671 print_sample(__FUNCTION__, rgba);
1676 static void
1677 mip_filter_none(struct tgsi_sampler *tgsi_sampler,
1678 const float s[QUAD_SIZE],
1679 const float t[QUAD_SIZE],
1680 const float p[QUAD_SIZE],
1681 const float c0[QUAD_SIZE],
1682 enum tgsi_sampler_control control,
1683 float rgba[NUM_CHANNELS][QUAD_SIZE])
1685 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1686 float lambda;
1687 float lod[QUAD_SIZE];
1689 if (control == tgsi_sampler_lod_bias) {
1690 lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
1691 compute_lod(samp->sampler, lambda, c0, lod);
1692 } else {
1693 assert(control == tgsi_sampler_lod_explicit);
1695 memcpy(lod, c0, sizeof(lod));
1698 /* XXX: Take into account all lod values.
1700 lambda = lod[0];
1702 samp->level = samp->view->u.tex.first_level;
1703 if (lambda < 0.0) {
1704 samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1706 else {
1707 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
1712 /* For anisotropic filtering */
1713 #define WEIGHT_LUT_SIZE 1024
1715 static float *weightLut = NULL;
1718 * Creates the look-up table used to speed-up EWA sampling
1720 static void
1721 create_filter_table(void)
1723 unsigned i;
1724 if (!weightLut) {
1725 weightLut = (float *) malloc(WEIGHT_LUT_SIZE * sizeof(float));
1727 for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
1728 float alpha = 2;
1729 float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
1730 float weight = (float) exp(-alpha * r2);
1731 weightLut[i] = weight;
1738 * Elliptical weighted average (EWA) filter for producing high quality
1739 * anisotropic filtered results.
1740 * Based on the Higher Quality Elliptical Weighted Avarage Filter
1741 * published by Paul S. Heckbert in his Master's Thesis
1742 * "Fundamentals of Texture Mapping and Image Warping" (1989)
1744 static void
1745 img_filter_2d_ewa(struct tgsi_sampler *tgsi_sampler,
1746 const float s[QUAD_SIZE],
1747 const float t[QUAD_SIZE],
1748 const float p[QUAD_SIZE],
1749 const float c0[QUAD_SIZE],
1750 enum tgsi_sampler_control control,
1751 const float dudx, const float dvdx,
1752 const float dudy, const float dvdy,
1753 float rgba[NUM_CHANNELS][QUAD_SIZE])
1755 const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1756 const struct pipe_resource *texture = samp->view->texture;
1758 unsigned level0 = samp->level > 0 ? samp->level : 0;
1759 float scaling = 1.0 / (1 << level0);
1760 int width = u_minify(texture->width0, level0);
1761 int height = u_minify(texture->height0, level0);
1763 float ux = dudx * scaling;
1764 float vx = dvdx * scaling;
1765 float uy = dudy * scaling;
1766 float vy = dvdy * scaling;
1768 /* compute ellipse coefficients to bound the region:
1769 * A*x*x + B*x*y + C*y*y = F.
1771 float A = vx*vx+vy*vy+1;
1772 float B = -2*(ux*vx+uy*vy);
1773 float C = ux*ux+uy*uy+1;
1774 float F = A*C-B*B/4.0;
1776 /* check if it is an ellipse */
1777 /* ASSERT(F > 0.0); */
1779 /* Compute the ellipse's (u,v) bounding box in texture space */
1780 float d = -B*B+4.0*C*A;
1781 float box_u = 2.0 / d * sqrt(d*C*F); /* box_u -> half of bbox with */
1782 float box_v = 2.0 / d * sqrt(A*d*F); /* box_v -> half of bbox height */
1784 float rgba_temp[NUM_CHANNELS][QUAD_SIZE];
1785 float s_buffer[QUAD_SIZE];
1786 float t_buffer[QUAD_SIZE];
1787 float weight_buffer[QUAD_SIZE];
1788 unsigned buffer_next;
1789 int j;
1790 float den;// = 0.0F;
1791 float ddq;
1792 float U;// = u0 - tex_u;
1793 int v;
1795 /* Scale ellipse formula to directly index the Filter Lookup Table.
1796 * i.e. scale so that F = WEIGHT_LUT_SIZE-1
1798 double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
1799 A *= formScale;
1800 B *= formScale;
1801 C *= formScale;
1802 /* F *= formScale; */ /* no need to scale F as we don't use it below here */
1804 /* For each quad, the du and dx values are the same and so the ellipse is
1805 * also the same. Note that texel/image access can only be performed using
1806 * a quad, i.e. it is not possible to get the pixel value for a single
1807 * tex coord. In order to have a better performance, the access is buffered
1808 * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is full,
1809 * then the pixel values are read from the image.
1811 ddq = 2 * A;
1813 for (j = 0; j < QUAD_SIZE; j++) {
1814 /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
1815 * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
1816 * value, q, is less than F, we're inside the ellipse
1818 float tex_u=-0.5 + s[j] * texture->width0 * scaling;
1819 float tex_v=-0.5 + t[j] * texture->height0 * scaling;
1821 int u0 = floor(tex_u - box_u);
1822 int u1 = ceil (tex_u + box_u);
1823 int v0 = floor(tex_v - box_v);
1824 int v1 = ceil (tex_v + box_v);
1826 float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
1827 buffer_next = 0;
1828 den = 0;
1829 U = u0 - tex_u;
1830 for (v = v0; v <= v1; ++v) {
1831 float V = v - tex_v;
1832 float dq = A * (2 * U + 1) + B * V;
1833 float q = (C * V + B * U) * V + A * U * U;
1835 int u;
1836 for (u = u0; u <= u1; ++u) {
1837 /* Note that the ellipse has been pre-scaled so F = WEIGHT_LUT_SIZE - 1 */
1838 if (q < WEIGHT_LUT_SIZE) {
1839 /* as a LUT is used, q must never be negative;
1840 * should not happen, though
1842 const int qClamped = q >= 0.0F ? q : 0;
1843 float weight = weightLut[qClamped];
1845 weight_buffer[buffer_next] = weight;
1846 s_buffer[buffer_next] = u / ((float) width);
1847 t_buffer[buffer_next] = v / ((float) height);
1849 buffer_next++;
1850 if (buffer_next == QUAD_SIZE) {
1851 /* 4 texel coords are in the buffer -> read it now */
1852 int jj;
1853 /* it is assumed that samp->min_img_filter is set to
1854 * img_filter_2d_nearest or one of the
1855 * accelerated img_filter_2d_nearest_XXX functions.
1857 samp->min_img_filter(tgsi_sampler, s_buffer, t_buffer, p, NULL,
1858 tgsi_sampler_lod_bias, rgba_temp);
1859 for (jj = 0; jj < buffer_next; jj++) {
1860 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
1861 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
1862 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
1863 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
1866 buffer_next = 0;
1869 den += weight;
1871 q += dq;
1872 dq += ddq;
1876 /* if the tex coord buffer contains unread values, we will read them now.
1877 * Note that in most cases we have to read more pixel values than required,
1878 * however, as the img_filter_2d_nearest function(s) does not have a count
1879 * parameter, we need to read the whole quad and ignore the unused values
1881 if (buffer_next > 0) {
1882 int jj;
1883 /* it is assumed that samp->min_img_filter is set to
1884 * img_filter_2d_nearest or one of the
1885 * accelerated img_filter_2d_nearest_XXX functions.
1887 samp->min_img_filter(tgsi_sampler, s_buffer, t_buffer, p, NULL,
1888 tgsi_sampler_lod_bias, rgba_temp);
1889 for (jj = 0; jj < buffer_next; jj++) {
1890 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
1891 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
1892 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
1893 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
1897 if (den <= 0.0F) {
1898 /* Reaching this place would mean
1899 * that no pixels intersected the ellipse.
1900 * This should never happen because
1901 * the filter we use always
1902 * intersects at least one pixel.
1905 /*rgba[0]=0;
1906 rgba[1]=0;
1907 rgba[2]=0;
1908 rgba[3]=0;*/
1909 /* not enough pixels in resampling, resort to direct interpolation */
1910 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba_temp);
1911 den = 1;
1912 num[0] = rgba_temp[0][j];
1913 num[1] = rgba_temp[1][j];
1914 num[2] = rgba_temp[2][j];
1915 num[3] = rgba_temp[3][j];
1918 rgba[0][j] = num[0] / den;
1919 rgba[1][j] = num[1] / den;
1920 rgba[2][j] = num[2] / den;
1921 rgba[3][j] = num[3] / den;
1927 * Sample 2D texture using an anisotropic filter.
1929 static void
1930 mip_filter_linear_aniso(struct tgsi_sampler *tgsi_sampler,
1931 const float s[QUAD_SIZE],
1932 const float t[QUAD_SIZE],
1933 const float p[QUAD_SIZE],
1934 const float c0[QUAD_SIZE],
1935 enum tgsi_sampler_control control,
1936 float rgba[NUM_CHANNELS][QUAD_SIZE])
1938 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
1939 const struct pipe_resource *texture = samp->view->texture;
1940 int level0;
1941 float lambda;
1942 float lod[QUAD_SIZE];
1944 float s_to_u = u_minify(texture->width0, samp->view->u.tex.first_level);
1945 float t_to_v = u_minify(texture->height0, samp->view->u.tex.first_level);
1946 float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
1947 float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
1948 float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
1949 float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
1951 if (control == tgsi_sampler_lod_bias) {
1952 /* note: instead of working with Px and Py, we will use the
1953 * squared length instead, to avoid sqrt.
1955 float Px2 = dudx * dudx + dvdx * dvdx;
1956 float Py2 = dudy * dudy + dvdy * dvdy;
1958 float Pmax2;
1959 float Pmin2;
1960 float e;
1961 const float maxEccentricity = samp->sampler->max_anisotropy * samp->sampler->max_anisotropy;
1963 if (Px2 < Py2) {
1964 Pmax2 = Py2;
1965 Pmin2 = Px2;
1967 else {
1968 Pmax2 = Px2;
1969 Pmin2 = Py2;
1972 /* if the eccentricity of the ellipse is too big, scale up the shorter
1973 * of the two vectors to limit the maximum amount of work per pixel
1975 e = Pmax2 / Pmin2;
1976 if (e > maxEccentricity) {
1977 /* float s=e / maxEccentricity;
1978 minor[0] *= s;
1979 minor[1] *= s;
1980 Pmin2 *= s; */
1981 Pmin2 = Pmax2 / maxEccentricity;
1984 /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
1985 * this since 0.5*log(x) = log(sqrt(x))
1987 lambda = 0.5 * util_fast_log2(Pmin2) + samp->sampler->lod_bias;
1988 compute_lod(samp->sampler, lambda, c0, lod);
1990 else {
1991 assert(control == tgsi_sampler_lod_explicit);
1993 memcpy(lod, c0, sizeof(lod));
1996 /* XXX: Take into account all lod values.
1998 lambda = lod[0];
1999 level0 = samp->view->u.tex.first_level + (int)lambda;
2001 /* If the ellipse covers the whole image, we can
2002 * simply return the average of the whole image.
2004 if (level0 >= texture->last_level) {
2005 samp->level = texture->last_level;
2006 samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
2008 else {
2009 /* don't bother interpolating between multiple LODs; it doesn't
2010 * seem to be worth the extra running time.
2012 samp->level = level0;
2013 img_filter_2d_ewa(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias,
2014 dudx, dvdx, dudy, dvdy, rgba);
2017 if (DEBUG_TEX) {
2018 print_sample(__FUNCTION__, rgba);
2025 * Specialized version of mip_filter_linear with hard-wired calls to
2026 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2028 static void
2029 mip_filter_linear_2d_linear_repeat_POT(
2030 struct tgsi_sampler *tgsi_sampler,
2031 const float s[QUAD_SIZE],
2032 const float t[QUAD_SIZE],
2033 const float p[QUAD_SIZE],
2034 const float c0[QUAD_SIZE],
2035 enum tgsi_sampler_control control,
2036 float rgba[NUM_CHANNELS][QUAD_SIZE])
2038 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2039 const struct pipe_resource *texture = samp->view->texture;
2040 int level0;
2041 float lambda;
2042 float lod[QUAD_SIZE];
2044 if (control == tgsi_sampler_lod_bias) {
2045 lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
2046 compute_lod(samp->sampler, lambda, c0, lod);
2047 } else {
2048 assert(control == tgsi_sampler_lod_explicit);
2050 memcpy(lod, c0, sizeof(lod));
2053 /* XXX: Take into account all lod values.
2055 lambda = lod[0];
2056 level0 = samp->view->u.tex.first_level + (int)lambda;
2058 /* Catches both negative and large values of level0:
2060 if ((unsigned)level0 >= texture->last_level) {
2061 if (level0 < 0)
2062 samp->level = samp->view->u.tex.first_level;
2063 else
2064 samp->level = texture->last_level;
2066 img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
2068 else {
2069 float levelBlend = frac(lambda);
2070 float rgba0[4][4];
2071 float rgba1[4][4];
2072 int c,j;
2074 samp->level = level0;
2075 img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0);
2077 samp->level = level0+1;
2078 img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1);
2080 for (j = 0; j < QUAD_SIZE; j++) {
2081 for (c = 0; c < 4; c++) {
2082 rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
2087 if (DEBUG_TEX) {
2088 print_sample(__FUNCTION__, rgba);
2095 * Do shadow/depth comparisons.
2097 static void
2098 sample_compare(struct tgsi_sampler *tgsi_sampler,
2099 const float s[QUAD_SIZE],
2100 const float t[QUAD_SIZE],
2101 const float p[QUAD_SIZE],
2102 const float c0[QUAD_SIZE],
2103 enum tgsi_sampler_control control,
2104 float rgba[NUM_CHANNELS][QUAD_SIZE])
2106 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2107 const struct pipe_sampler_state *sampler = samp->sampler;
2108 int j, k0, k1, k2, k3;
2109 float val;
2110 float pc0, pc1, pc2, pc3;
2112 samp->mip_filter(tgsi_sampler, s, t, p, c0, control, rgba);
2115 * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2116 * When we sampled the depth texture, the depth value was put into all
2117 * RGBA channels. We look at the red channel here.
2120 pc0 = CLAMP(p[0], 0.0F, 1.0F);
2121 pc1 = CLAMP(p[1], 0.0F, 1.0F);
2122 pc2 = CLAMP(p[2], 0.0F, 1.0F);
2123 pc3 = CLAMP(p[3], 0.0F, 1.0F);
2125 /* compare four texcoords vs. four texture samples */
2126 switch (sampler->compare_func) {
2127 case PIPE_FUNC_LESS:
2128 k0 = pc0 < rgba[0][0];
2129 k1 = pc1 < rgba[0][1];
2130 k2 = pc2 < rgba[0][2];
2131 k3 = pc3 < rgba[0][3];
2132 break;
2133 case PIPE_FUNC_LEQUAL:
2134 k0 = pc0 <= rgba[0][0];
2135 k1 = pc1 <= rgba[0][1];
2136 k2 = pc2 <= rgba[0][2];
2137 k3 = pc3 <= rgba[0][3];
2138 break;
2139 case PIPE_FUNC_GREATER:
2140 k0 = pc0 > rgba[0][0];
2141 k1 = pc1 > rgba[0][1];
2142 k2 = pc2 > rgba[0][2];
2143 k3 = pc3 > rgba[0][3];
2144 break;
2145 case PIPE_FUNC_GEQUAL:
2146 k0 = pc0 >= rgba[0][0];
2147 k1 = pc1 >= rgba[0][1];
2148 k2 = pc2 >= rgba[0][2];
2149 k3 = pc3 >= rgba[0][3];
2150 break;
2151 case PIPE_FUNC_EQUAL:
2152 k0 = pc0 == rgba[0][0];
2153 k1 = pc1 == rgba[0][1];
2154 k2 = pc2 == rgba[0][2];
2155 k3 = pc3 == rgba[0][3];
2156 break;
2157 case PIPE_FUNC_NOTEQUAL:
2158 k0 = pc0 != rgba[0][0];
2159 k1 = pc1 != rgba[0][1];
2160 k2 = pc2 != rgba[0][2];
2161 k3 = pc3 != rgba[0][3];
2162 break;
2163 case PIPE_FUNC_ALWAYS:
2164 k0 = k1 = k2 = k3 = 1;
2165 break;
2166 case PIPE_FUNC_NEVER:
2167 k0 = k1 = k2 = k3 = 0;
2168 break;
2169 default:
2170 k0 = k1 = k2 = k3 = 0;
2171 assert(0);
2172 break;
2175 /* convert four pass/fail values to an intensity in [0,1] */
2176 val = 0.25F * (k0 + k1 + k2 + k3);
2178 /* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
2179 for (j = 0; j < 4; j++) {
2180 rgba[0][j] = rgba[1][j] = rgba[2][j] = val;
2181 rgba[3][j] = 1.0F;
2187 * Use 3D texcoords to choose a cube face, then sample the 2D cube faces.
2188 * Put face info into the sampler faces[] array.
2190 static void
2191 sample_cube(struct tgsi_sampler *tgsi_sampler,
2192 const float s[QUAD_SIZE],
2193 const float t[QUAD_SIZE],
2194 const float p[QUAD_SIZE],
2195 const float c0[QUAD_SIZE],
2196 enum tgsi_sampler_control control,
2197 float rgba[NUM_CHANNELS][QUAD_SIZE])
2199 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2200 unsigned j;
2201 float ssss[4], tttt[4];
2204 major axis
2205 direction target sc tc ma
2206 ---------- ------------------------------- --- --- ---
2207 +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
2208 -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
2209 +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
2210 -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
2211 +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
2212 -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
2215 /* Choose the cube face and compute new s/t coords for the 2D face.
2217 * Use the same cube face for all four pixels in the quad.
2219 * This isn't ideal, but if we want to use a different cube face
2220 * per pixel in the quad, we'd have to also compute the per-face
2221 * LOD here too. That's because the four post-face-selection
2222 * texcoords are no longer related to each other (they're
2223 * per-face!) so we can't use subtraction to compute the partial
2224 * deriviates to compute the LOD. Doing so (near cube edges
2225 * anyway) gives us pretty much random values.
2228 /* use the average of the four pixel's texcoords to choose the face */
2229 const float rx = 0.25 * (s[0] + s[1] + s[2] + s[3]);
2230 const float ry = 0.25 * (t[0] + t[1] + t[2] + t[3]);
2231 const float rz = 0.25 * (p[0] + p[1] + p[2] + p[3]);
2232 const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
2234 if (arx >= ary && arx >= arz) {
2235 float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
2236 uint face = (rx >= 0.0F) ? PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
2237 for (j = 0; j < QUAD_SIZE; j++) {
2238 const float ima = -0.5F / fabsf(s[j]);
2239 ssss[j] = sign * p[j] * ima + 0.5F;
2240 tttt[j] = t[j] * ima + 0.5F;
2241 samp->faces[j] = face;
2244 else if (ary >= arx && ary >= arz) {
2245 float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
2246 uint face = (ry >= 0.0F) ? PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
2247 for (j = 0; j < QUAD_SIZE; j++) {
2248 const float ima = -0.5F / fabsf(t[j]);
2249 ssss[j] = -s[j] * ima + 0.5F;
2250 tttt[j] = sign * -p[j] * ima + 0.5F;
2251 samp->faces[j] = face;
2254 else {
2255 float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
2256 uint face = (rz >= 0.0F) ? PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
2257 for (j = 0; j < QUAD_SIZE; j++) {
2258 const float ima = -0.5 / fabsf(p[j]);
2259 ssss[j] = sign * -s[j] * ima + 0.5F;
2260 tttt[j] = t[j] * ima + 0.5F;
2261 samp->faces[j] = face;
2266 /* In our little pipeline, the compare stage is next. If compare
2267 * is not active, this will point somewhere deeper into the
2268 * pipeline, eg. to mip_filter or even img_filter.
2270 samp->compare(tgsi_sampler, ssss, tttt, NULL, c0, control, rgba);
2274 static void
2275 sample_swizzle(struct tgsi_sampler *tgsi_sampler,
2276 const float s[QUAD_SIZE],
2277 const float t[QUAD_SIZE],
2278 const float p[QUAD_SIZE],
2279 const float c0[QUAD_SIZE],
2280 enum tgsi_sampler_control control,
2281 float rgba[NUM_CHANNELS][QUAD_SIZE])
2283 struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
2284 float rgba_temp[NUM_CHANNELS][QUAD_SIZE];
2285 const unsigned swizzle_r = samp->key.bits.swizzle_r;
2286 const unsigned swizzle_g = samp->key.bits.swizzle_g;
2287 const unsigned swizzle_b = samp->key.bits.swizzle_b;
2288 const unsigned swizzle_a = samp->key.bits.swizzle_a;
2289 unsigned j;
2291 samp->sample_target(tgsi_sampler, s, t, p, c0, control, rgba_temp);
2293 switch (swizzle_r) {
2294 case PIPE_SWIZZLE_ZERO:
2295 for (j = 0; j < 4; j++)
2296 rgba[0][j] = 0.0f;
2297 break;
2298 case PIPE_SWIZZLE_ONE:
2299 for (j = 0; j < 4; j++)
2300 rgba[0][j] = 1.0f;
2301 break;
2302 default:
2303 assert(swizzle_r < 4);
2304 for (j = 0; j < 4; j++)
2305 rgba[0][j] = rgba_temp[swizzle_r][j];
2308 switch (swizzle_g) {
2309 case PIPE_SWIZZLE_ZERO:
2310 for (j = 0; j < 4; j++)
2311 rgba[1][j] = 0.0f;
2312 break;
2313 case PIPE_SWIZZLE_ONE:
2314 for (j = 0; j < 4; j++)
2315 rgba[1][j] = 1.0f;
2316 break;
2317 default:
2318 assert(swizzle_g < 4);
2319 for (j = 0; j < 4; j++)
2320 rgba[1][j] = rgba_temp[swizzle_g][j];
2323 switch (swizzle_b) {
2324 case PIPE_SWIZZLE_ZERO:
2325 for (j = 0; j < 4; j++)
2326 rgba[2][j] = 0.0f;
2327 break;
2328 case PIPE_SWIZZLE_ONE:
2329 for (j = 0; j < 4; j++)
2330 rgba[2][j] = 1.0f;
2331 break;
2332 default:
2333 assert(swizzle_b < 4);
2334 for (j = 0; j < 4; j++)
2335 rgba[2][j] = rgba_temp[swizzle_b][j];
2338 switch (swizzle_a) {
2339 case PIPE_SWIZZLE_ZERO:
2340 for (j = 0; j < 4; j++)
2341 rgba[3][j] = 0.0f;
2342 break;
2343 case PIPE_SWIZZLE_ONE:
2344 for (j = 0; j < 4; j++)
2345 rgba[3][j] = 1.0f;
2346 break;
2347 default:
2348 assert(swizzle_a < 4);
2349 for (j = 0; j < 4; j++)
2350 rgba[3][j] = rgba_temp[swizzle_a][j];
2355 static wrap_nearest_func
2356 get_nearest_unorm_wrap(unsigned mode)
2358 switch (mode) {
2359 case PIPE_TEX_WRAP_CLAMP:
2360 return wrap_nearest_unorm_clamp;
2361 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2362 return wrap_nearest_unorm_clamp_to_edge;
2363 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2364 return wrap_nearest_unorm_clamp_to_border;
2365 default:
2366 assert(0);
2367 return wrap_nearest_unorm_clamp;
2372 static wrap_nearest_func
2373 get_nearest_wrap(unsigned mode)
2375 switch (mode) {
2376 case PIPE_TEX_WRAP_REPEAT:
2377 return wrap_nearest_repeat;
2378 case PIPE_TEX_WRAP_CLAMP:
2379 return wrap_nearest_clamp;
2380 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2381 return wrap_nearest_clamp_to_edge;
2382 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2383 return wrap_nearest_clamp_to_border;
2384 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2385 return wrap_nearest_mirror_repeat;
2386 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2387 return wrap_nearest_mirror_clamp;
2388 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2389 return wrap_nearest_mirror_clamp_to_edge;
2390 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2391 return wrap_nearest_mirror_clamp_to_border;
2392 default:
2393 assert(0);
2394 return wrap_nearest_repeat;
2399 static wrap_linear_func
2400 get_linear_unorm_wrap(unsigned mode)
2402 switch (mode) {
2403 case PIPE_TEX_WRAP_CLAMP:
2404 return wrap_linear_unorm_clamp;
2405 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2406 return wrap_linear_unorm_clamp_to_edge;
2407 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2408 return wrap_linear_unorm_clamp_to_border;
2409 default:
2410 assert(0);
2411 return wrap_linear_unorm_clamp;
2416 static wrap_linear_func
2417 get_linear_wrap(unsigned mode)
2419 switch (mode) {
2420 case PIPE_TEX_WRAP_REPEAT:
2421 return wrap_linear_repeat;
2422 case PIPE_TEX_WRAP_CLAMP:
2423 return wrap_linear_clamp;
2424 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2425 return wrap_linear_clamp_to_edge;
2426 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2427 return wrap_linear_clamp_to_border;
2428 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2429 return wrap_linear_mirror_repeat;
2430 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2431 return wrap_linear_mirror_clamp;
2432 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2433 return wrap_linear_mirror_clamp_to_edge;
2434 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2435 return wrap_linear_mirror_clamp_to_border;
2436 default:
2437 assert(0);
2438 return wrap_linear_repeat;
2443 static compute_lambda_func
2444 get_lambda_func(const union sp_sampler_key key)
2446 if (key.bits.processor == TGSI_PROCESSOR_VERTEX)
2447 return compute_lambda_vert;
2449 switch (key.bits.target) {
2450 case PIPE_TEXTURE_1D:
2451 case PIPE_TEXTURE_1D_ARRAY:
2452 return compute_lambda_1d;
2453 case PIPE_TEXTURE_2D:
2454 case PIPE_TEXTURE_2D_ARRAY:
2455 case PIPE_TEXTURE_RECT:
2456 case PIPE_TEXTURE_CUBE:
2457 return compute_lambda_2d;
2458 case PIPE_TEXTURE_3D:
2459 return compute_lambda_3d;
2460 default:
2461 assert(0);
2462 return compute_lambda_1d;
2467 static filter_func
2468 get_img_filter(const union sp_sampler_key key,
2469 unsigned filter,
2470 const struct pipe_sampler_state *sampler)
2472 switch (key.bits.target) {
2473 case PIPE_TEXTURE_1D:
2474 if (filter == PIPE_TEX_FILTER_NEAREST)
2475 return img_filter_1d_nearest;
2476 else
2477 return img_filter_1d_linear;
2478 break;
2479 case PIPE_TEXTURE_1D_ARRAY:
2480 if (filter == PIPE_TEX_FILTER_NEAREST)
2481 return img_filter_1d_array_nearest;
2482 else
2483 return img_filter_1d_array_linear;
2484 break;
2485 case PIPE_TEXTURE_2D:
2486 case PIPE_TEXTURE_RECT:
2487 /* Try for fast path:
2489 if (key.bits.is_pot &&
2490 sampler->wrap_s == sampler->wrap_t &&
2491 sampler->normalized_coords)
2493 switch (sampler->wrap_s) {
2494 case PIPE_TEX_WRAP_REPEAT:
2495 switch (filter) {
2496 case PIPE_TEX_FILTER_NEAREST:
2497 return img_filter_2d_nearest_repeat_POT;
2498 case PIPE_TEX_FILTER_LINEAR:
2499 return img_filter_2d_linear_repeat_POT;
2500 default:
2501 break;
2503 break;
2504 case PIPE_TEX_WRAP_CLAMP:
2505 switch (filter) {
2506 case PIPE_TEX_FILTER_NEAREST:
2507 return img_filter_2d_nearest_clamp_POT;
2508 default:
2509 break;
2513 /* Otherwise use default versions:
2515 if (filter == PIPE_TEX_FILTER_NEAREST)
2516 return img_filter_2d_nearest;
2517 else
2518 return img_filter_2d_linear;
2519 break;
2520 case PIPE_TEXTURE_2D_ARRAY:
2521 if (filter == PIPE_TEX_FILTER_NEAREST)
2522 return img_filter_2d_array_nearest;
2523 else
2524 return img_filter_2d_array_linear;
2525 break;
2526 case PIPE_TEXTURE_CUBE:
2527 if (filter == PIPE_TEX_FILTER_NEAREST)
2528 return img_filter_cube_nearest;
2529 else
2530 return img_filter_cube_linear;
2531 break;
2532 case PIPE_TEXTURE_3D:
2533 if (filter == PIPE_TEX_FILTER_NEAREST)
2534 return img_filter_3d_nearest;
2535 else
2536 return img_filter_3d_linear;
2537 break;
2538 default:
2539 assert(0);
2540 return img_filter_1d_nearest;
2546 * Bind the given texture object and texture cache to the sampler variant.
2548 void
2549 sp_sampler_variant_bind_view( struct sp_sampler_variant *samp,
2550 struct softpipe_tex_tile_cache *tex_cache,
2551 const struct pipe_sampler_view *view )
2553 const struct pipe_resource *texture = view->texture;
2555 samp->view = view;
2556 samp->cache = tex_cache;
2557 samp->xpot = util_logbase2( texture->width0 );
2558 samp->ypot = util_logbase2( texture->height0 );
2559 samp->level = view->u.tex.first_level;
2563 void
2564 sp_sampler_variant_destroy( struct sp_sampler_variant *samp )
2566 FREE(samp);
2571 * Create a sampler variant for a given set of non-orthogonal state.
2573 struct sp_sampler_variant *
2574 sp_create_sampler_variant( const struct pipe_sampler_state *sampler,
2575 const union sp_sampler_key key )
2577 struct sp_sampler_variant *samp = CALLOC_STRUCT(sp_sampler_variant);
2578 if (!samp)
2579 return NULL;
2581 samp->sampler = sampler;
2582 samp->key = key;
2584 /* Note that (for instance) linear_texcoord_s and
2585 * nearest_texcoord_s may be active at the same time, if the
2586 * sampler min_img_filter differs from its mag_img_filter.
2588 if (sampler->normalized_coords) {
2589 samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
2590 samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
2591 samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
2593 samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
2594 samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
2595 samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
2597 else {
2598 samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
2599 samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
2600 samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
2602 samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
2603 samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
2604 samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
2607 samp->compute_lambda = get_lambda_func( key );
2609 samp->min_img_filter = get_img_filter(key, sampler->min_img_filter, sampler);
2610 samp->mag_img_filter = get_img_filter(key, sampler->mag_img_filter, sampler);
2612 switch (sampler->min_mip_filter) {
2613 case PIPE_TEX_MIPFILTER_NONE:
2614 if (sampler->min_img_filter == sampler->mag_img_filter)
2615 samp->mip_filter = samp->min_img_filter;
2616 else
2617 samp->mip_filter = mip_filter_none;
2618 break;
2620 case PIPE_TEX_MIPFILTER_NEAREST:
2621 samp->mip_filter = mip_filter_nearest;
2622 break;
2624 case PIPE_TEX_MIPFILTER_LINEAR:
2625 if (key.bits.is_pot &&
2626 sampler->min_img_filter == sampler->mag_img_filter &&
2627 sampler->normalized_coords &&
2628 sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
2629 sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
2630 sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
2631 samp->mip_filter = mip_filter_linear_2d_linear_repeat_POT;
2633 else {
2634 samp->mip_filter = mip_filter_linear;
2637 /* Anisotropic filtering extension. */
2638 if (sampler->max_anisotropy > 1) {
2639 samp->mip_filter = mip_filter_linear_aniso;
2641 /* Override min_img_filter:
2642 * min_img_filter needs to be set to NEAREST since we need to access
2643 * each texture pixel as it is and weight it later; using linear
2644 * filters will have incorrect results.
2645 * By setting the filter to NEAREST here, we can avoid calling the
2646 * generic img_filter_2d_nearest in the anisotropic filter function,
2647 * making it possible to use one of the accelerated implementations
2649 samp->min_img_filter = get_img_filter(key, PIPE_TEX_FILTER_NEAREST, sampler);
2651 /* on first access create the lookup table containing the filter weights. */
2652 if (!weightLut) {
2653 create_filter_table();
2657 break;
2660 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
2661 samp->compare = sample_compare;
2663 else {
2664 /* Skip compare operation by promoting the mip_filter function
2665 * pointer:
2667 samp->compare = samp->mip_filter;
2670 if (key.bits.target == PIPE_TEXTURE_CUBE) {
2671 samp->sample_target = sample_cube;
2673 else {
2674 samp->faces[0] = 0;
2675 samp->faces[1] = 0;
2676 samp->faces[2] = 0;
2677 samp->faces[3] = 0;
2679 /* Skip cube face determination by promoting the compare
2680 * function pointer:
2682 samp->sample_target = samp->compare;
2685 if (key.bits.swizzle_r != PIPE_SWIZZLE_RED ||
2686 key.bits.swizzle_g != PIPE_SWIZZLE_GREEN ||
2687 key.bits.swizzle_b != PIPE_SWIZZLE_BLUE ||
2688 key.bits.swizzle_a != PIPE_SWIZZLE_ALPHA) {
2689 samp->base.get_samples = sample_swizzle;
2691 else {
2692 samp->base.get_samples = samp->sample_target;
2695 return samp;