3 * Copyright © 2010 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
33 #include "glsl_types.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
39 * \defgroup IR Intermediate representation nodes
45 #include <aros/debug.h>
48 #define printf(fmt, ...) bug(fmt, ##__VA_ARGS__)
54 * Each concrete class derived from \c ir_instruction has a value in this
55 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
56 * by the constructor. While using type tags is not very C++, it is extremely
57 * convenient. For example, during debugging you can simply inspect
58 * \c ir_instruction::ir_type to find out the actual type of the object.
60 * In addition, it is possible to use a switch-statement based on \c
61 * \c ir_instruction::ir_type to select different behavior for different object
62 * types. For functions that have only slight differences for several object
63 * types, this allows writing very straightforward, readable code.
67 * Zero is unused so that the IR validator can detect cases where
68 * \c ir_instruction::ir_type has not been initialized.
75 ir_type_dereference_array
,
76 ir_type_dereference_record
,
77 ir_type_dereference_variable
,
81 ir_type_function_signature
,
88 ir_type_max
/**< maximum ir_type enum number, for validation */
92 * Base class of all IR instructions
94 class ir_instruction
: public exec_node
{
96 enum ir_node_type ir_type
;
97 const struct glsl_type
*type
;
99 /** ir_print_visitor helper for debugging. */
100 void print(void) const;
102 virtual void accept(ir_visitor
*) = 0;
103 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*) = 0;
104 virtual ir_instruction
*clone(void *mem_ctx
,
105 struct hash_table
*ht
) const = 0;
108 * \name IR instruction downcast functions
110 * These functions either cast the object to a derived class or return
111 * \c NULL if the object's type does not match the specified derived class.
112 * Additional downcast functions will be added as needed.
115 virtual class ir_variable
* as_variable() { return NULL
; }
116 virtual class ir_function
* as_function() { return NULL
; }
117 virtual class ir_dereference
* as_dereference() { return NULL
; }
118 virtual class ir_dereference_array
* as_dereference_array() { return NULL
; }
119 virtual class ir_dereference_variable
*as_dereference_variable() { return NULL
; }
120 virtual class ir_expression
* as_expression() { return NULL
; }
121 virtual class ir_rvalue
* as_rvalue() { return NULL
; }
122 virtual class ir_loop
* as_loop() { return NULL
; }
123 virtual class ir_assignment
* as_assignment() { return NULL
; }
124 virtual class ir_call
* as_call() { return NULL
; }
125 virtual class ir_return
* as_return() { return NULL
; }
126 virtual class ir_if
* as_if() { return NULL
; }
127 virtual class ir_swizzle
* as_swizzle() { return NULL
; }
128 virtual class ir_constant
* as_constant() { return NULL
; }
129 virtual class ir_discard
* as_discard() { return NULL
; }
135 ir_type
= ir_type_unset
;
138 virtual ~ir_instruction() { }
142 class ir_rvalue
: public ir_instruction
{
144 virtual ir_rvalue
*clone(void *mem_ctx
, struct hash_table
*) const = 0;
146 virtual ir_constant
*constant_expression_value() = 0;
148 virtual ir_rvalue
* as_rvalue()
153 ir_rvalue
*as_rvalue_to_saturate();
155 virtual bool is_lvalue()
161 * Get the variable that is ultimately referenced by an r-value
163 virtual ir_variable
*variable_referenced()
170 * If an r-value is a reference to a whole variable, get that variable
173 * Pointer to a variable that is completely dereferenced by the r-value. If
174 * the r-value is not a dereference or the dereference does not access the
175 * entire variable (i.e., it's just one array element, struct field), \c NULL
178 virtual ir_variable
*whole_variable_referenced()
184 * Determine if an r-value has the value zero
186 * The base implementation of this function always returns \c false. The
187 * \c ir_constant class over-rides this function to return \c true \b only
188 * for vector and scalar types that have all elements set to the value
189 * zero (or \c false for booleans).
191 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
193 virtual bool is_zero() const;
196 * Determine if an r-value has the value one
198 * The base implementation of this function always returns \c false. The
199 * \c ir_constant class over-rides this function to return \c true \b only
200 * for vector and scalar types that have all elements set to the value
201 * one (or \c true for booleans).
203 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
205 virtual bool is_one() const;
208 * Determine if an r-value has the value negative one
210 * The base implementation of this function always returns \c false. The
211 * \c ir_constant class over-rides this function to return \c true \b only
212 * for vector and scalar types that have all elements set to the value
213 * negative one. For boolean times, the result is always \c false.
215 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
217 virtual bool is_negative_one() const;
225 * Variable storage classes
227 enum ir_variable_mode
{
228 ir_var_auto
= 0, /**< Function local variables and globals. */
229 ir_var_uniform
, /**< Variable declared as a uniform. */
233 ir_var_const_in
, /**< "in" param that must be a constant expression */
234 ir_var_system_value
, /**< Ex: front-face, instance-id, etc. */
235 ir_var_temporary
/**< Temporary variable generated during compilation. */
238 enum ir_variable_interpolation
{
245 * \brief Layout qualifiers for gl_FragDepth.
247 * The AMD_conservative_depth extension allows gl_FragDepth to be redeclared
248 * with a layout qualifier.
250 enum ir_depth_layout
{
251 ir_depth_layout_none
, /**< No depth layout is specified. */
253 ir_depth_layout_greater
,
254 ir_depth_layout_less
,
255 ir_depth_layout_unchanged
259 * \brief Convert depth layout qualifier to string.
262 depth_layout_string(ir_depth_layout layout
);
265 * Description of built-in state associated with a uniform
267 * \sa ir_variable::state_slots
269 struct ir_state_slot
{
274 class ir_variable
: public ir_instruction
{
276 ir_variable(const struct glsl_type
*, const char *, ir_variable_mode
);
278 virtual ir_variable
*clone(void *mem_ctx
, struct hash_table
*ht
) const;
280 virtual ir_variable
*as_variable()
285 virtual void accept(ir_visitor
*v
)
290 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
294 * Get the string value for the interpolation qualifier
296 * \return The string that would be used in a shader to specify \c
297 * mode will be returned.
299 * This function should only be used on a shader input or output variable.
301 const char *interpolation_string() const;
304 * Calculate the number of slots required to hold this variable
306 * This is used to determine how many uniform or varying locations a variable
307 * occupies. The count is in units of floating point components.
309 unsigned component_slots() const;
312 * Delcared name of the variable
317 * Highest element accessed with a constant expression array index
319 * Not used for non-array variables.
321 unsigned max_array_access
;
324 * Is the variable read-only?
326 * This is set for variables declared as \c const, shader inputs,
329 unsigned read_only
:1;
331 unsigned invariant
:1;
334 * Has this variable been used for reading or writing?
336 * Several GLSL semantic checks require knowledge of whether or not a
337 * variable has been used. For example, it is an error to redeclare a
338 * variable as invariant after it has been used.
343 * Storage class of the variable.
345 * \sa ir_variable_mode
350 * Interpolation mode for shader inputs / outputs
352 * \sa ir_variable_interpolation
354 unsigned interpolation
:2;
357 * Flag that the whole array is assignable
359 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
360 * equality). This flag enables this behavior.
362 unsigned array_lvalue
:1;
365 * \name ARB_fragment_coord_conventions
368 unsigned origin_upper_left
:1;
369 unsigned pixel_center_integer
:1;
373 * \brief Layout qualifier for gl_FragDepth.
375 * This is not equal to \c ir_depth_layout_none if and only if this
376 * variable is \c gl_FragDepth and a layout qualifier is specified.
378 ir_depth_layout depth_layout
;
381 * Was the location explicitly set in the shader?
383 * If the location is explicitly set in the shader, it \b cannot be changed
384 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
387 unsigned explicit_location
:1;
390 * Storage location of the base of this variable
392 * The precise meaning of this field depends on the nature of the variable.
394 * - Vertex shader input: one of the values from \c gl_vert_attrib.
395 * - Vertex shader output: one of the values from \c gl_vert_result.
396 * - Fragment shader input: one of the values from \c gl_frag_attrib.
397 * - Fragment shader output: one of the values from \c gl_frag_result.
398 * - Uniforms: Per-stage uniform slot number.
399 * - Other: This field is not currently used.
401 * If the variable is a uniform, shader input, or shader output, and the
402 * slot has not been assigned, the value will be -1.
407 * Built-in state that backs this uniform
409 * Once set at variable creation, \c state_slots must remain invariant.
410 * This is because, ideally, this array would be shared by all clones of
411 * this variable in the IR tree. In other words, we'd really like for it
412 * to be a fly-weight.
414 * If the variable is not a uniform, \c num_state_slots will be zero and
415 * \c state_slots will be \c NULL.
418 unsigned num_state_slots
; /**< Number of state slots used */
419 ir_state_slot
*state_slots
; /**< State descriptors. */
423 * Emit a warning if this variable is accessed.
425 const char *warn_extension
;
428 * Value assigned in the initializer of a variable declared "const"
430 ir_constant
*constant_value
;
436 * The representation of a function instance; may be the full definition or
437 * simply a prototype.
439 class ir_function_signature
: public ir_instruction
{
440 /* An ir_function_signature will be part of the list of signatures in
444 ir_function_signature(const glsl_type
*return_type
);
446 virtual ir_function_signature
*clone(void *mem_ctx
,
447 struct hash_table
*ht
) const;
448 ir_function_signature
*clone_prototype(void *mem_ctx
,
449 struct hash_table
*ht
) const;
451 virtual void accept(ir_visitor
*v
)
456 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
459 * Get the name of the function for which this is a signature
461 const char *function_name() const;
464 * Get a handle to the function for which this is a signature
466 * There is no setter function, this function returns a \c const pointer,
467 * and \c ir_function_signature::_function is private for a reason. The
468 * only way to make a connection between a function and function signature
469 * is via \c ir_function::add_signature. This helps ensure that certain
470 * invariants (i.e., a function signature is in the list of signatures for
471 * its \c _function) are met.
473 * \sa ir_function::add_signature
475 inline const class ir_function
*function() const
477 return this->_function
;
481 * Check whether the qualifiers match between this signature's parameters
482 * and the supplied parameter list. If not, returns the name of the first
483 * parameter with mismatched qualifiers (for use in error messages).
485 const char *qualifiers_match(exec_list
*params
);
488 * Replace the current parameter list with the given one. This is useful
489 * if the current information came from a prototype, and either has invalid
490 * or missing parameter names.
492 void replace_parameters(exec_list
*new_params
);
495 * Function return type.
497 * \note This discards the optional precision qualifier.
499 const struct glsl_type
*return_type
;
502 * List of ir_variable of function parameters.
504 * This represents the storage. The paramaters passed in a particular
505 * call will be in ir_call::actual_paramaters.
507 struct exec_list parameters
;
509 /** Whether or not this function has a body (which may be empty). */
510 unsigned is_defined
:1;
512 /** Whether or not this function signature is a built-in. */
513 unsigned is_builtin
:1;
515 /** Body of instructions in the function. */
516 struct exec_list body
;
519 /** Function of which this signature is one overload. */
520 class ir_function
*_function
;
522 friend class ir_function
;
527 * Header for tracking multiple overloaded functions with the same name.
528 * Contains a list of ir_function_signatures representing each of the
531 class ir_function
: public ir_instruction
{
533 ir_function(const char *name
);
535 virtual ir_function
*clone(void *mem_ctx
, struct hash_table
*ht
) const;
537 virtual ir_function
*as_function()
542 virtual void accept(ir_visitor
*v
)
547 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
549 void add_signature(ir_function_signature
*sig
)
551 sig
->_function
= this;
552 this->signatures
.push_tail(sig
);
556 * Get an iterator for the set of function signatures
558 exec_list_iterator
iterator()
560 return signatures
.iterator();
564 * Find a signature that matches a set of actual parameters, taking implicit
565 * conversions into account.
567 ir_function_signature
*matching_signature(const exec_list
*actual_param
);
570 * Find a signature that exactly matches a set of actual parameters without
571 * any implicit type conversions.
573 ir_function_signature
*exact_matching_signature(const exec_list
*actual_ps
);
576 * Name of the function.
580 /** Whether or not this function has a signature that isn't a built-in. */
581 bool has_user_signature();
584 * List of ir_function_signature for each overloaded function with this name.
586 struct exec_list signatures
;
589 inline const char *ir_function_signature::function_name() const
591 return this->_function
->name
;
597 * IR instruction representing high-level if-statements
599 class ir_if
: public ir_instruction
{
601 ir_if(ir_rvalue
*condition
)
602 : condition(condition
)
604 ir_type
= ir_type_if
;
607 virtual ir_if
*clone(void *mem_ctx
, struct hash_table
*ht
) const;
609 virtual ir_if
*as_if()
614 virtual void accept(ir_visitor
*v
)
619 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
621 ir_rvalue
*condition
;
622 /** List of ir_instruction for the body of the then branch */
623 exec_list then_instructions
;
624 /** List of ir_instruction for the body of the else branch */
625 exec_list else_instructions
;
630 * IR instruction representing a high-level loop structure.
632 class ir_loop
: public ir_instruction
{
636 virtual ir_loop
*clone(void *mem_ctx
, struct hash_table
*ht
) const;
638 virtual void accept(ir_visitor
*v
)
643 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
645 virtual ir_loop
*as_loop()
651 * Get an iterator for the instructions of the loop body
653 exec_list_iterator
iterator()
655 return body_instructions
.iterator();
658 /** List of ir_instruction that make up the body of the loop. */
659 exec_list body_instructions
;
662 * \name Loop counter and controls
664 * Represents a loop like a FORTRAN \c do-loop.
667 * If \c from and \c to are the same value, the loop will execute once.
670 ir_rvalue
*from
; /** Value of the loop counter on the first
671 * iteration of the loop.
673 ir_rvalue
*to
; /** Value of the loop counter on the last
674 * iteration of the loop.
676 ir_rvalue
*increment
;
677 ir_variable
*counter
;
680 * Comparison operation in the loop terminator.
682 * If any of the loop control fields are non-\c NULL, this field must be
683 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
684 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
691 class ir_assignment
: public ir_instruction
{
693 ir_assignment(ir_rvalue
*lhs
, ir_rvalue
*rhs
, ir_rvalue
*condition
);
696 * Construct an assignment with an explicit write mask
699 * Since a write mask is supplied, the LHS must already be a bare
700 * \c ir_dereference. The cannot be any swizzles in the LHS.
702 ir_assignment(ir_dereference
*lhs
, ir_rvalue
*rhs
, ir_rvalue
*condition
,
703 unsigned write_mask
);
705 virtual ir_assignment
*clone(void *mem_ctx
, struct hash_table
*ht
) const;
707 virtual ir_constant
*constant_expression_value();
709 virtual void accept(ir_visitor
*v
)
714 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
716 virtual ir_assignment
* as_assignment()
722 * Get a whole variable written by an assignment
724 * If the LHS of the assignment writes a whole variable, the variable is
725 * returned. Otherwise \c NULL is returned. Examples of whole-variable
728 * - Assigning to a scalar
729 * - Assigning to all components of a vector
730 * - Whole array (or matrix) assignment
731 * - Whole structure assignment
733 ir_variable
*whole_variable_written();
736 * Set the LHS of an assignment
738 void set_lhs(ir_rvalue
*lhs
);
741 * Left-hand side of the assignment.
743 * This should be treated as read only. If you need to set the LHS of an
744 * assignment, use \c ir_assignment::set_lhs.
749 * Value being assigned
754 * Optional condition for the assignment.
756 ir_rvalue
*condition
;
760 * Component mask written
762 * For non-vector types in the LHS, this field will be zero. For vector
763 * types, a bit will be set for each component that is written. Note that
764 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
766 * A partially-set write mask means that each enabled channel gets
767 * the value from a consecutive channel of the rhs. For example,
768 * to write just .xyw of gl_FrontColor with color:
770 * (assign (constant bool (1)) (xyw)
771 * (var_ref gl_FragColor)
772 * (swiz xyw (var_ref color)))
774 unsigned write_mask
:4;
777 /* Update ir_expression::num_operands() and operator_strs when
778 * updating this list.
780 enum ir_expression_operation
{
789 ir_unop_exp
, /**< Log base e on gentype */
790 ir_unop_log
, /**< Natural log on gentype */
793 ir_unop_f2i
, /**< Float-to-integer conversion. */
794 ir_unop_i2f
, /**< Integer-to-float conversion. */
795 ir_unop_f2b
, /**< Float-to-boolean conversion */
796 ir_unop_b2f
, /**< Boolean-to-float conversion */
797 ir_unop_i2b
, /**< int-to-boolean conversion */
798 ir_unop_b2i
, /**< Boolean-to-int conversion */
799 ir_unop_u2f
, /**< Unsigned-to-float conversion. */
803 * \name Unary floating-point rounding operations.
814 * \name Trigonometric operations.
819 ir_unop_sin_reduced
, /**< Reduced range sin. [-pi, pi] */
820 ir_unop_cos_reduced
, /**< Reduced range cos. [-pi, pi] */
824 * \name Partial derivatives.
834 * A sentinel marking the last of the unary operations.
836 ir_last_unop
= ir_unop_noise
,
844 * Takes one of two combinations of arguments:
849 * Does not take integer types.
854 * \name Binary comparison operators which return a boolean vector.
855 * The type of both operands must be equal.
865 * Returns single boolean for whether all components of operands[0]
866 * equal the components of operands[1].
870 * Returns single boolean for whether any component of operands[0]
871 * is not equal to the corresponding component of operands[1].
877 * \name Bit-wise binary operations.
898 * A sentinel marking the last of the binary operations.
900 ir_last_binop
= ir_binop_pow
,
905 * A sentinel marking the last of all operations.
907 ir_last_opcode
= ir_last_binop
910 class ir_expression
: public ir_rvalue
{
913 * Constructor for unary operation expressions
915 ir_expression(int op
, const struct glsl_type
*type
, ir_rvalue
*);
916 ir_expression(int op
, ir_rvalue
*);
919 * Constructor for binary operation expressions
921 ir_expression(int op
, const struct glsl_type
*type
,
922 ir_rvalue
*, ir_rvalue
*);
923 ir_expression(int op
, ir_rvalue
*op0
, ir_rvalue
*op1
);
926 * Constructor for quad operator expressions
928 ir_expression(int op
, const struct glsl_type
*type
,
929 ir_rvalue
*, ir_rvalue
*, ir_rvalue
*, ir_rvalue
*);
931 virtual ir_expression
*as_expression()
936 virtual ir_expression
*clone(void *mem_ctx
, struct hash_table
*ht
) const;
939 * Attempt to constant-fold the expression
941 * If the expression cannot be constant folded, this method will return
944 virtual ir_constant
*constant_expression_value();
947 * Determine the number of operands used by an expression
949 static unsigned int get_num_operands(ir_expression_operation
);
952 * Determine the number of operands used by an expression
954 unsigned int get_num_operands() const
956 return (this->operation
== ir_quadop_vector
)
957 ? this->type
->vector_elements
: get_num_operands(operation
);
961 * Return a string representing this expression's operator.
963 const char *operator_string();
966 * Return a string representing this expression's operator.
968 static const char *operator_string(ir_expression_operation
);
972 * Do a reverse-lookup to translate the given string into an operator.
974 static ir_expression_operation
get_operator(const char *);
976 virtual void accept(ir_visitor
*v
)
981 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
983 ir_expression_operation operation
;
984 ir_rvalue
*operands
[4];
989 * IR instruction representing a function call
991 class ir_call
: public ir_rvalue
{
993 ir_call(ir_function_signature
*callee
, exec_list
*actual_parameters
)
996 ir_type
= ir_type_call
;
997 assert(callee
->return_type
!= NULL
);
998 type
= callee
->return_type
;
999 actual_parameters
->move_nodes_to(& this->actual_parameters
);
1000 this->use_builtin
= callee
->is_builtin
;
1003 virtual ir_call
*clone(void *mem_ctx
, struct hash_table
*ht
) const;
1005 virtual ir_constant
*constant_expression_value();
1007 virtual ir_call
*as_call()
1012 virtual void accept(ir_visitor
*v
)
1017 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1020 * Get a generic ir_call object when an error occurs
1022 * Any allocation will be performed with 'ctx' as ralloc owner.
1024 static ir_call
*get_error_instruction(void *ctx
);
1027 * Get an iterator for the set of acutal parameters
1029 exec_list_iterator
iterator()
1031 return actual_parameters
.iterator();
1035 * Get the name of the function being called.
1037 const char *callee_name() const
1039 return callee
->function_name();
1043 * Get the function signature bound to this function call
1045 ir_function_signature
*get_callee()
1051 * Set the function call target
1053 void set_callee(ir_function_signature
*sig
);
1056 * Generates an inline version of the function before @ir,
1057 * returning the return value of the function.
1059 ir_rvalue
*generate_inline(ir_instruction
*ir
);
1061 /* List of ir_rvalue of paramaters passed in this call. */
1062 exec_list actual_parameters
;
1064 /** Should this call only bind to a built-in function? */
1071 this->ir_type
= ir_type_call
;
1074 ir_function_signature
*callee
;
1079 * \name Jump-like IR instructions.
1081 * These include \c break, \c continue, \c return, and \c discard.
1084 class ir_jump
: public ir_instruction
{
1088 ir_type
= ir_type_unset
;
1092 class ir_return
: public ir_jump
{
1097 this->ir_type
= ir_type_return
;
1100 ir_return(ir_rvalue
*value
)
1103 this->ir_type
= ir_type_return
;
1106 virtual ir_return
*clone(void *mem_ctx
, struct hash_table
*) const;
1108 virtual ir_return
*as_return()
1113 ir_rvalue
*get_value() const
1118 virtual void accept(ir_visitor
*v
)
1123 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1130 * Jump instructions used inside loops
1132 * These include \c break and \c continue. The \c break within a loop is
1133 * different from the \c break within a switch-statement.
1135 * \sa ir_switch_jump
1137 class ir_loop_jump
: public ir_jump
{
1144 ir_loop_jump(jump_mode mode
)
1146 this->ir_type
= ir_type_loop_jump
;
1151 virtual ir_loop_jump
*clone(void *mem_ctx
, struct hash_table
*) const;
1153 virtual void accept(ir_visitor
*v
)
1158 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1160 bool is_break() const
1162 return mode
== jump_break
;
1165 bool is_continue() const
1167 return mode
== jump_continue
;
1170 /** Mode selector for the jump instruction. */
1171 enum jump_mode mode
;
1173 /** Loop containing this break instruction. */
1178 * IR instruction representing discard statements.
1180 class ir_discard
: public ir_jump
{
1184 this->ir_type
= ir_type_discard
;
1185 this->condition
= NULL
;
1188 ir_discard(ir_rvalue
*cond
)
1190 this->ir_type
= ir_type_discard
;
1191 this->condition
= cond
;
1194 virtual ir_discard
*clone(void *mem_ctx
, struct hash_table
*ht
) const;
1196 virtual void accept(ir_visitor
*v
)
1201 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1203 virtual ir_discard
*as_discard()
1208 ir_rvalue
*condition
;
1214 * Texture sampling opcodes used in ir_texture
1216 enum ir_texture_opcode
{
1217 ir_tex
, /**< Regular texture look-up */
1218 ir_txb
, /**< Texture look-up with LOD bias */
1219 ir_txl
, /**< Texture look-up with explicit LOD */
1220 ir_txd
, /**< Texture look-up with partial derivatvies */
1221 ir_txf
/**< Texel fetch with explicit LOD */
1226 * IR instruction to sample a texture
1228 * The specific form of the IR instruction depends on the \c mode value
1229 * selected from \c ir_texture_opcodes. In the printed IR, these will
1232 * Texel offset (0 or an expression)
1233 * | Projection divisor
1234 * | | Shadow comparitor
1237 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1238 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1239 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1240 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1241 * (txf <type> <sampler> <coordinate> 0 <lod>)
1243 class ir_texture
: public ir_rvalue
{
1245 ir_texture(enum ir_texture_opcode op
)
1246 : op(op
), projector(NULL
), shadow_comparitor(NULL
), offset(NULL
)
1248 this->ir_type
= ir_type_texture
;
1251 virtual ir_texture
*clone(void *mem_ctx
, struct hash_table
*) const;
1253 virtual ir_constant
*constant_expression_value();
1255 virtual void accept(ir_visitor
*v
)
1260 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1263 * Return a string representing the ir_texture_opcode.
1265 const char *opcode_string();
1267 /** Set the sampler and type. */
1268 void set_sampler(ir_dereference
*sampler
, const glsl_type
*type
);
1271 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1273 static ir_texture_opcode
get_opcode(const char *);
1275 enum ir_texture_opcode op
;
1277 /** Sampler to use for the texture access. */
1278 ir_dereference
*sampler
;
1280 /** Texture coordinate to sample */
1281 ir_rvalue
*coordinate
;
1284 * Value used for projective divide.
1286 * If there is no projective divide (the common case), this will be
1287 * \c NULL. Optimization passes should check for this to point to a constant
1288 * of 1.0 and replace that with \c NULL.
1290 ir_rvalue
*projector
;
1293 * Coordinate used for comparison on shadow look-ups.
1295 * If there is no shadow comparison, this will be \c NULL. For the
1296 * \c ir_txf opcode, this *must* be \c NULL.
1298 ir_rvalue
*shadow_comparitor
;
1300 /** Texel offset. */
1304 ir_rvalue
*lod
; /**< Floating point LOD */
1305 ir_rvalue
*bias
; /**< Floating point LOD bias */
1307 ir_rvalue
*dPdx
; /**< Partial derivative of coordinate wrt X */
1308 ir_rvalue
*dPdy
; /**< Partial derivative of coordinate wrt Y */
1314 struct ir_swizzle_mask
{
1321 * Number of components in the swizzle.
1323 unsigned num_components
:3;
1326 * Does the swizzle contain duplicate components?
1328 * L-value swizzles cannot contain duplicate components.
1330 unsigned has_duplicates
:1;
1334 class ir_swizzle
: public ir_rvalue
{
1336 ir_swizzle(ir_rvalue
*, unsigned x
, unsigned y
, unsigned z
, unsigned w
,
1339 ir_swizzle(ir_rvalue
*val
, const unsigned *components
, unsigned count
);
1341 ir_swizzle(ir_rvalue
*val
, ir_swizzle_mask mask
);
1343 virtual ir_swizzle
*clone(void *mem_ctx
, struct hash_table
*) const;
1345 virtual ir_constant
*constant_expression_value();
1347 virtual ir_swizzle
*as_swizzle()
1353 * Construct an ir_swizzle from the textual representation. Can fail.
1355 static ir_swizzle
*create(ir_rvalue
*, const char *, unsigned vector_length
);
1357 virtual void accept(ir_visitor
*v
)
1362 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1366 return val
->is_lvalue() && !mask
.has_duplicates
;
1370 * Get the variable that is ultimately referenced by an r-value
1372 virtual ir_variable
*variable_referenced();
1375 ir_swizzle_mask mask
;
1379 * Initialize the mask component of a swizzle
1381 * This is used by the \c ir_swizzle constructors.
1383 void init_mask(const unsigned *components
, unsigned count
);
1387 class ir_dereference
: public ir_rvalue
{
1389 virtual ir_dereference
*clone(void *mem_ctx
, struct hash_table
*) const = 0;
1391 virtual ir_dereference
*as_dereference()
1399 * Get the variable that is ultimately referenced by an r-value
1401 virtual ir_variable
*variable_referenced() = 0;
1405 class ir_dereference_variable
: public ir_dereference
{
1407 ir_dereference_variable(ir_variable
*var
);
1409 virtual ir_dereference_variable
*clone(void *mem_ctx
,
1410 struct hash_table
*) const;
1412 virtual ir_constant
*constant_expression_value();
1414 virtual ir_dereference_variable
*as_dereference_variable()
1420 * Get the variable that is ultimately referenced by an r-value
1422 virtual ir_variable
*variable_referenced()
1427 virtual ir_variable
*whole_variable_referenced()
1429 /* ir_dereference_variable objects always dereference the entire
1430 * variable. However, if this dereference is dereferenced by anything
1431 * else, the complete deferefernce chain is not a whole-variable
1432 * dereference. This method should only be called on the top most
1433 * ir_rvalue in a dereference chain.
1438 virtual void accept(ir_visitor
*v
)
1443 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1446 * Object being dereferenced.
1452 class ir_dereference_array
: public ir_dereference
{
1454 ir_dereference_array(ir_rvalue
*value
, ir_rvalue
*array_index
);
1456 ir_dereference_array(ir_variable
*var
, ir_rvalue
*array_index
);
1458 virtual ir_dereference_array
*clone(void *mem_ctx
,
1459 struct hash_table
*) const;
1461 virtual ir_constant
*constant_expression_value();
1463 virtual ir_dereference_array
*as_dereference_array()
1469 * Get the variable that is ultimately referenced by an r-value
1471 virtual ir_variable
*variable_referenced()
1473 return this->array
->variable_referenced();
1476 virtual void accept(ir_visitor
*v
)
1481 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1484 ir_rvalue
*array_index
;
1487 void set_array(ir_rvalue
*value
);
1491 class ir_dereference_record
: public ir_dereference
{
1493 ir_dereference_record(ir_rvalue
*value
, const char *field
);
1495 ir_dereference_record(ir_variable
*var
, const char *field
);
1497 virtual ir_dereference_record
*clone(void *mem_ctx
,
1498 struct hash_table
*) const;
1500 virtual ir_constant
*constant_expression_value();
1503 * Get the variable that is ultimately referenced by an r-value
1505 virtual ir_variable
*variable_referenced()
1507 return this->record
->variable_referenced();
1510 virtual void accept(ir_visitor
*v
)
1515 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1523 * Data stored in an ir_constant
1525 union ir_constant_data
{
1533 class ir_constant
: public ir_rvalue
{
1535 ir_constant(const struct glsl_type
*type
, const ir_constant_data
*data
);
1536 ir_constant(bool b
);
1537 ir_constant(unsigned int u
);
1539 ir_constant(float f
);
1542 * Construct an ir_constant from a list of ir_constant values
1544 ir_constant(const struct glsl_type
*type
, exec_list
*values
);
1547 * Construct an ir_constant from a scalar component of another ir_constant
1549 * The new \c ir_constant inherits the type of the component from the
1553 * In the case of a matrix constant, the new constant is a scalar, \b not
1556 ir_constant(const ir_constant
*c
, unsigned i
);
1559 * Return a new ir_constant of the specified type containing all zeros.
1561 static ir_constant
*zero(void *mem_ctx
, const glsl_type
*type
);
1563 virtual ir_constant
*clone(void *mem_ctx
, struct hash_table
*) const;
1565 virtual ir_constant
*constant_expression_value();
1567 virtual ir_constant
*as_constant()
1572 virtual void accept(ir_visitor
*v
)
1577 virtual ir_visitor_status
accept(ir_hierarchical_visitor
*);
1580 * Get a particular component of a constant as a specific type
1582 * This is useful, for example, to get a value from an integer constant
1583 * as a float or bool. This appears frequently when constructors are
1584 * called with all constant parameters.
1587 bool get_bool_component(unsigned i
) const;
1588 float get_float_component(unsigned i
) const;
1589 int get_int_component(unsigned i
) const;
1590 unsigned get_uint_component(unsigned i
) const;
1593 ir_constant
*get_array_element(unsigned i
) const;
1595 ir_constant
*get_record_field(const char *name
);
1598 * Determine whether a constant has the same value as another constant
1600 * \sa ir_constant::is_zero, ir_constant::is_one,
1601 * ir_constant::is_negative_one
1603 bool has_value(const ir_constant
*) const;
1605 virtual bool is_zero() const;
1606 virtual bool is_one() const;
1607 virtual bool is_negative_one() const;
1610 * Value of the constant.
1612 * The field used to back the values supplied by the constant is determined
1613 * by the type associated with the \c ir_instruction. Constants may be
1614 * scalars, vectors, or matrices.
1616 union ir_constant_data value
;
1618 /* Array elements */
1619 ir_constant
**array_elements
;
1621 /* Structure fields */
1622 exec_list components
;
1626 * Parameterless constructor only used by the clone method
1634 * Apply a visitor to each IR node in a list
1637 visit_exec_list(exec_list
*list
, ir_visitor
*visitor
);
1640 * Validate invariants on each IR node in a list
1642 void validate_ir_tree(exec_list
*instructions
);
1644 struct _mesa_glsl_parse_state
;
1645 struct gl_shader_program
;
1648 * Detect whether an unlinked shader contains static recursion
1650 * If the list of instructions is determined to contain static recursion,
1651 * \c _mesa_glsl_error will be called to emit error messages for each function
1652 * that is in the recursion cycle.
1655 detect_recursion_unlinked(struct _mesa_glsl_parse_state
*state
,
1656 exec_list
*instructions
);
1659 * Detect whether a linked shader contains static recursion
1661 * If the list of instructions is determined to contain static recursion,
1662 * \c link_error_printf will be called to emit error messages for each function
1663 * that is in the recursion cycle. In addition,
1664 * \c gl_shader_program::LinkStatus will be set to false.
1667 detect_recursion_linked(struct gl_shader_program
*prog
,
1668 exec_list
*instructions
);
1671 * Make a clone of each IR instruction in a list
1673 * \param in List of IR instructions that are to be cloned
1674 * \param out List to hold the cloned instructions
1677 clone_ir_list(void *mem_ctx
, exec_list
*out
, const exec_list
*in
);
1680 _mesa_glsl_initialize_variables(exec_list
*instructions
,
1681 struct _mesa_glsl_parse_state
*state
);
1684 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state
*state
);
1687 _mesa_glsl_release_functions(void);
1690 reparent_ir(exec_list
*list
, void *mem_ctx
);
1692 struct glsl_symbol_table
;
1695 import_prototypes(const exec_list
*source
, exec_list
*dest
,
1696 struct glsl_symbol_table
*symbols
, void *mem_ctx
);
1699 ir_has_call(ir_instruction
*ir
);
1702 do_set_program_inouts(exec_list
*instructions
, struct gl_program
*prog
);
1705 prototype_string(const glsl_type
*return_type
, const char *name
,
1706 exec_list
*parameters
);