grub2: bring back build of aros-side grub2 tools
[AROS.git] / workbench / libs / z / doc / txtvsbin.txt
blob3d0f0634f72e6483c54857b0dbd72c219e46671e
1 A Fast Method for Identifying Plain Text Files
2 ==============================================
5 Introduction
6 ------------
8 Given a file coming from an unknown source, it is sometimes desirable
9 to find out whether the format of that file is plain text.  Although
10 this may appear like a simple task, a fully accurate detection of the
11 file type requires heavy-duty semantic analysis on the file contents.
12 It is, however, possible to obtain satisfactory results by employing
13 various heuristics.
15 Previous versions of PKZip and other zip-compatible compression tools
16 were using a crude detection scheme: if more than 80% (4/5) of the bytes
17 found in a certain buffer are within the range [7..127], the file is
18 labeled as plain text, otherwise it is labeled as binary.  A prominent
19 limitation of this scheme is the restriction to Latin-based alphabets.
20 Other alphabets, like Greek, Cyrillic or Asian, make extensive use of
21 the bytes within the range [128..255], and texts using these alphabets
22 are most often misidentified by this scheme; in other words, the rate
23 of false negatives is sometimes too high, which means that the recall
24 is low.  Another weakness of this scheme is a reduced precision, due to
25 the false positives that may occur when binary files containing large
26 amounts of textual characters are misidentified as plain text.
28 In this article we propose a new, simple detection scheme that features
29 a much increased precision and a near-100% recall.  This scheme is
30 designed to work on ASCII, Unicode and other ASCII-derived alphabets,
31 and it handles single-byte encodings (ISO-8859, MacRoman, KOI8, etc.)
32 and variable-sized encodings (ISO-2022, UTF-8, etc.).  Wider encodings
33 (UCS-2/UTF-16 and UCS-4/UTF-32) are not handled, however.
36 The Algorithm
37 -------------
39 The algorithm works by dividing the set of bytecodes [0..255] into three
40 categories:
41 - The white list of textual bytecodes:
42   9 (TAB), 10 (LF), 13 (CR), 32 (SPACE) to 255.
43 - The gray list of tolerated bytecodes:
44   7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB), 27 (ESC).
45 - The black list of undesired, non-textual bytecodes:
46   0 (NUL) to 6, 14 to 31.
48 If a file contains at least one byte that belongs to the white list and
49 no byte that belongs to the black list, then the file is categorized as
50 plain text; otherwise, it is categorized as binary.  (The boundary case,
51 when the file is empty, automatically falls into the latter category.)
54 Rationale
55 ---------
57 The idea behind this algorithm relies on two observations.
59 The first observation is that, although the full range of 7-bit codes
60 [0..127] is properly specified by the ASCII standard, most control
61 characters in the range [0..31] are not used in practice.  The only
62 widely-used, almost universally-portable control codes are 9 (TAB),
63 10 (LF) and 13 (CR).  There are a few more control codes that are
64 recognized on a reduced range of platforms and text viewers/editors:
65 7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB) and 27 (ESC); but these
66 codes are rarely (if ever) used alone, without being accompanied by
67 some printable text.  Even the newer, portable text formats such as
68 XML avoid using control characters outside the list mentioned here.
70 The second observation is that most of the binary files tend to contain
71 control characters, especially 0 (NUL).  Even though the older text
72 detection schemes observe the presence of non-ASCII codes from the range
73 [128..255], the precision rarely has to suffer if this upper range is
74 labeled as textual, because the files that are genuinely binary tend to
75 contain both control characters and codes from the upper range.  On the
76 other hand, the upper range needs to be labeled as textual, because it
77 is used by virtually all ASCII extensions.  In particular, this range is
78 used for encoding non-Latin scripts.
80 Since there is no counting involved, other than simply observing the
81 presence or the absence of some byte values, the algorithm produces
82 consistent results, regardless what alphabet encoding is being used.
83 (If counting were involved, it could be possible to obtain different
84 results on a text encoded, say, using ISO-8859-16 versus UTF-8.)
86 There is an extra category of plain text files that are "polluted" with
87 one or more black-listed codes, either by mistake or by peculiar design
88 considerations.  In such cases, a scheme that tolerates a small fraction
89 of black-listed codes would provide an increased recall (i.e. more true
90 positives).  This, however, incurs a reduced precision overall, since
91 false positives are more likely to appear in binary files that contain
92 large chunks of textual data.  Furthermore, "polluted" plain text should
93 be regarded as binary by general-purpose text detection schemes, because
94 general-purpose text processing algorithms might not be applicable.
95 Under this premise, it is safe to say that our detection method provides
96 a near-100% recall.
98 Experiments have been run on many files coming from various platforms
99 and applications.  We tried plain text files, system logs, source code,
100 formatted office documents, compiled object code, etc.  The results
101 confirm the optimistic assumptions about the capabilities of this
102 algorithm.
106 Cosmin Truta
107 Last updated: 2006-May-28