add place-holder directory for the a3000 wd533c93 scsi controller implementation.
[AROS.git] / workbench / network / WirelessManager / src / crypto / md4-internal.c
blobd9f499f1d07b97692948e36e3e15809f3f76e7f9
1 /*
2 * MD4 hash implementation
3 * Copyright (c) 2006, Jouni Malinen <j@w1.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
10 * license.
12 * See README and COPYING for more details.
15 #include "includes.h"
17 #include "common.h"
18 #include "crypto.h"
20 #define MD4_BLOCK_LENGTH 64
21 #define MD4_DIGEST_LENGTH 16
23 typedef struct MD4Context {
24 u32 state[4]; /* state */
25 u64 count; /* number of bits, mod 2^64 */
26 u8 buffer[MD4_BLOCK_LENGTH]; /* input buffer */
27 } MD4_CTX;
30 static void MD4Init(MD4_CTX *ctx);
31 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len);
32 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx);
35 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
37 MD4_CTX ctx;
38 size_t i;
40 MD4Init(&ctx);
41 for (i = 0; i < num_elem; i++)
42 MD4Update(&ctx, addr[i], len[i]);
43 MD4Final(mac, &ctx);
44 return 0;
48 /* ===== start - public domain MD4 implementation ===== */
49 /* $OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $ */
52 * This code implements the MD4 message-digest algorithm.
53 * The algorithm is due to Ron Rivest. This code was
54 * written by Colin Plumb in 1993, no copyright is claimed.
55 * This code is in the public domain; do with it what you wish.
56 * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186.
58 * Equivalent code is available from RSA Data Security, Inc.
59 * This code has been tested against that, and is equivalent,
60 * except that you don't need to include two pages of legalese
61 * with every copy.
63 * To compute the message digest of a chunk of bytes, declare an
64 * MD4Context structure, pass it to MD4Init, call MD4Update as
65 * needed on buffers full of bytes, and then call MD4Final, which
66 * will fill a supplied 16-byte array with the digest.
69 #define MD4_DIGEST_STRING_LENGTH (MD4_DIGEST_LENGTH * 2 + 1)
72 static void
73 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]);
75 #define PUT_64BIT_LE(cp, value) do { \
76 (cp)[7] = (value) >> 56; \
77 (cp)[6] = (value) >> 48; \
78 (cp)[5] = (value) >> 40; \
79 (cp)[4] = (value) >> 32; \
80 (cp)[3] = (value) >> 24; \
81 (cp)[2] = (value) >> 16; \
82 (cp)[1] = (value) >> 8; \
83 (cp)[0] = (value); } while (0)
85 #define PUT_32BIT_LE(cp, value) do { \
86 (cp)[3] = (value) >> 24; \
87 (cp)[2] = (value) >> 16; \
88 (cp)[1] = (value) >> 8; \
89 (cp)[0] = (value); } while (0)
91 static u8 PADDING[MD4_BLOCK_LENGTH] = {
92 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
93 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
94 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
98 * Start MD4 accumulation.
99 * Set bit count to 0 and buffer to mysterious initialization constants.
101 static void MD4Init(MD4_CTX *ctx)
103 ctx->count = 0;
104 ctx->state[0] = 0x67452301;
105 ctx->state[1] = 0xefcdab89;
106 ctx->state[2] = 0x98badcfe;
107 ctx->state[3] = 0x10325476;
111 * Update context to reflect the concatenation of another buffer full
112 * of bytes.
114 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len)
116 size_t have, need;
118 /* Check how many bytes we already have and how many more we need. */
119 have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
120 need = MD4_BLOCK_LENGTH - have;
122 /* Update bitcount */
123 ctx->count += (u64)len << 3;
125 if (len >= need) {
126 if (have != 0) {
127 os_memcpy(ctx->buffer + have, input, need);
128 MD4Transform(ctx->state, ctx->buffer);
129 input += need;
130 len -= need;
131 have = 0;
134 /* Process data in MD4_BLOCK_LENGTH-byte chunks. */
135 while (len >= MD4_BLOCK_LENGTH) {
136 MD4Transform(ctx->state, input);
137 input += MD4_BLOCK_LENGTH;
138 len -= MD4_BLOCK_LENGTH;
142 /* Handle any remaining bytes of data. */
143 if (len != 0)
144 os_memcpy(ctx->buffer + have, input, len);
148 * Pad pad to 64-byte boundary with the bit pattern
149 * 1 0* (64-bit count of bits processed, MSB-first)
151 static void MD4Pad(MD4_CTX *ctx)
153 u8 count[8];
154 size_t padlen;
156 /* Convert count to 8 bytes in little endian order. */
157 PUT_64BIT_LE(count, ctx->count);
159 /* Pad out to 56 mod 64. */
160 padlen = MD4_BLOCK_LENGTH -
161 ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1));
162 if (padlen < 1 + 8)
163 padlen += MD4_BLOCK_LENGTH;
164 MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
165 MD4Update(ctx, count, 8);
169 * Final wrapup--call MD4Pad, fill in digest and zero out ctx.
171 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx)
173 int i;
175 MD4Pad(ctx);
176 if (digest != NULL) {
177 for (i = 0; i < 4; i++)
178 PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
179 os_memset(ctx, 0, sizeof(*ctx));
184 /* The three core functions - F1 is optimized somewhat */
186 /* #define F1(x, y, z) (x & y | ~x & z) */
187 #define F1(x, y, z) (z ^ (x & (y ^ z)))
188 #define F2(x, y, z) ((x & y) | (x & z) | (y & z))
189 #define F3(x, y, z) (x ^ y ^ z)
191 /* This is the central step in the MD4 algorithm. */
192 #define MD4STEP(f, w, x, y, z, data, s) \
193 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s) )
196 * The core of the MD4 algorithm, this alters an existing MD4 hash to
197 * reflect the addition of 16 longwords of new data. MD4Update blocks
198 * the data and converts bytes into longwords for this routine.
200 static void
201 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH])
203 u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4];
205 #if BYTE_ORDER == LITTLE_ENDIAN
206 os_memcpy(in, block, sizeof(in));
207 #else
208 for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) {
209 in[a] = (u32)(
210 (u32)(block[a * 4 + 0]) |
211 (u32)(block[a * 4 + 1]) << 8 |
212 (u32)(block[a * 4 + 2]) << 16 |
213 (u32)(block[a * 4 + 3]) << 24);
215 #endif
217 a = state[0];
218 b = state[1];
219 c = state[2];
220 d = state[3];
222 MD4STEP(F1, a, b, c, d, in[ 0], 3);
223 MD4STEP(F1, d, a, b, c, in[ 1], 7);
224 MD4STEP(F1, c, d, a, b, in[ 2], 11);
225 MD4STEP(F1, b, c, d, a, in[ 3], 19);
226 MD4STEP(F1, a, b, c, d, in[ 4], 3);
227 MD4STEP(F1, d, a, b, c, in[ 5], 7);
228 MD4STEP(F1, c, d, a, b, in[ 6], 11);
229 MD4STEP(F1, b, c, d, a, in[ 7], 19);
230 MD4STEP(F1, a, b, c, d, in[ 8], 3);
231 MD4STEP(F1, d, a, b, c, in[ 9], 7);
232 MD4STEP(F1, c, d, a, b, in[10], 11);
233 MD4STEP(F1, b, c, d, a, in[11], 19);
234 MD4STEP(F1, a, b, c, d, in[12], 3);
235 MD4STEP(F1, d, a, b, c, in[13], 7);
236 MD4STEP(F1, c, d, a, b, in[14], 11);
237 MD4STEP(F1, b, c, d, a, in[15], 19);
239 MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3);
240 MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5);
241 MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9);
242 MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13);
243 MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3);
244 MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5);
245 MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9);
246 MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13);
247 MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3);
248 MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5);
249 MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9);
250 MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13);
251 MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3);
252 MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5);
253 MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9);
254 MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13);
256 MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3);
257 MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9);
258 MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11);
259 MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15);
260 MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3);
261 MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9);
262 MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11);
263 MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15);
264 MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3);
265 MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9);
266 MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11);
267 MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15);
268 MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3);
269 MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9);
270 MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11);
271 MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15);
273 state[0] += a;
274 state[1] += b;
275 state[2] += c;
276 state[3] += d;
278 /* ===== end - public domain MD4 implementation ===== */