Hint added.
[AROS.git] / compiler / stdc / math / e_log2.c
blob76ffc6d128e84f3caf37c47543b4c2bbef1ab82a
2 /* @(#)e_log2.c 1.4 11/10/15 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_log2.c,v 1.4 2011/10/15 05:23:28 das Exp $";
16 #endif
18 #include "math.h"
19 #include "math_private.h"
21 static const double
22 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
23 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
24 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
25 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
26 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
27 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
28 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
31 * We always inline k_log1p(), since doing so produces a
32 * substantial performance improvement (~40% on amd64).
34 static inline double
35 k_log1p(double f)
37 double hfsq,s,z,R,w,t1,t2;
39 s = f/(2.0+f);
40 z = s*s;
41 w = z*z;
42 t1= w*(Lg2+w*(Lg4+w*Lg6));
43 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
44 R = t2+t1;
45 hfsq=0.5*f*f;
46 return s*(hfsq+R);
49 static const double
50 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
51 ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
52 ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
54 static const double zero = 0.0;
56 double
57 __ieee754_log2(double x)
59 double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
60 int32_t i,k,hx;
61 uint32_t lx;
63 EXTRACT_WORDS(hx,lx,x);
65 k=0;
66 if (hx < 0x00100000) { /* x < 2**-1022 */
67 if (((hx&0x7fffffff)|lx)==0)
68 return -two54/zero; /* log(+-0)=-inf */
69 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
70 k -= 54; x *= two54; /* subnormal number, scale up x */
71 GET_HIGH_WORD(hx,x);
73 if (hx >= 0x7ff00000) return x+x;
74 if (hx == 0x3ff00000 && lx == 0)
75 return zero; /* log(1) = +0 */
76 k += (hx>>20)-1023;
77 hx &= 0x000fffff;
78 i = (hx+0x95f64)&0x100000;
79 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
80 k += (i>>20);
81 y = (double)k;
82 f = x - 1.0;
83 hfsq = 0.5*f*f;
84 r = k_log1p(f);
87 * f-hfsq must (for args near 1) be evaluated in extra precision
88 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
89 * This is fairly efficient since f-hfsq only depends on f, so can
90 * be evaluated in parallel with R. Not combining hfsq with R also
91 * keeps R small (though not as small as a true `lo' term would be),
92 * so that extra precision is not needed for terms involving R.
94 * Compiler bugs involving extra precision used to break Dekker's
95 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
96 * or the multi-precision calculations were avoided when double_t
97 * has extra precision. These problems are now automatically
98 * avoided as a side effect of the optimization of combining the
99 * Dekker splitting step with the clear-low-bits step.
101 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
102 * precision to avoid a very large cancellation when x is very near
103 * these values. Unlike the above cancellations, this problem is
104 * specific to base 2. It is strange that adding +-1 is so much
105 * harder than adding +-ln2 or +-log10_2.
107 * This uses Dekker's theorem to normalize y+val_hi, so the
108 * compiler bugs are back in some configurations, sigh. And I
109 * don't want to used double_t to avoid them, since that gives a
110 * pessimization and the support for avoiding the pessimization
111 * is not yet available.
113 * The multi-precision calculations for the multiplications are
114 * routine.
116 hi = f - hfsq;
117 SET_LOW_WORD(hi,0);
118 lo = (f - hi) - hfsq + r;
119 val_hi = hi*ivln2hi;
120 val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
122 /* spadd(val_hi, val_lo, y), except for not using double_t: */
123 w = y + val_hi;
124 val_lo += (y - w) + val_hi;
125 val_hi = w;
127 return val_lo + val_hi;