Hint added.
[AROS.git] / workbench / libs / mathieeedoubtrans / ieeedpsqrt.c
blob5a1dd17c1b118feff340c400107e061a5246f6ea
1 /*
2 Copyright © 1995-2003, The AROS Development Team. All rights reserved.
3 $Id$
4 */
6 #include "mathieeedoubtrans_intern.h"
8 /*****************************************************************************
10 NAME */
12 AROS_LHQUAD1(double, IEEEDPSqrt,
14 /* SYNOPSIS */
15 AROS_LHAQUAD(double, y, D0, D1),
17 /* LOCATION */
18 struct MathIeeeDoubTransBase *, MathIeeeDoubTransBase, 16, MathIeeeDoubTrans)
20 /* FUNCTION
21 Calculate square root of IEEE double precision floating point number
23 INPUTS
25 RESULT
26 Motorola fast floating point number
28 flags:
29 zero : result is zero
30 negative : 0
31 overflow : square root could not be calculated
33 BUGS
35 INTERNALS
36 ALGORITHM:
37 First check for a zero and a negative argument and take
38 appropriate action.
40 fnum = M * 2^E
42 Exponent is an odd number:
44 fnum = ( M*2 ) * 2^ (E-1)
45 Now E' = E-1 is an even number and
46 -> sqrt(fnum) = sqrt(M) * sqrt(2) * sqrt (2^E')
47 = sqrt(M) * sqrt(2) * 2^(E'/2)
48 (with sqrt(M*2)>1)
49 = sqrt(M) * sqrt(2) * 2^(E'/2)
50 = sqrt(M) * 1/sqrt(2) * 2^(1+(E'/2))
51 = sqrt(M/2) * 2^(1+(E'/2))
53 Exponent is an even number:
55 -> sqrt(fnum) = sqrt(M) * sqrt (2^E) =
56 = sqrt(M) * 2^(E/2)
58 Now calculate the square root of the mantisse.
59 The following algorithm calculates the square of a number + delta
60 and compares it to the mantisse. If the square of that number +
61 delta is less than the mantisse then keep that number + delta.
62 Otherwise calculate a lower offset and try again.
63 Start out with number = 0;</p>
65 Exponent = -1;
66 Root = 0;
67 repeat
69 if ( (Root + 2^Exponent)^2 < Mantisse)
70 Root += 2^Exponent
71 Exponent --;
74 until you`re happy with the accuracy
76 *****************************************************************************/
78 AROS_LIBFUNC_INIT
80 QUAD Res, ResSquared, Delta, X, TargetMantisse, y2, tmp;
81 int z;
82 ULONG Exponent;
84 if (is_eqC(y, 0, 0)) /* 0 == y */
86 SetSR(Zero_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
87 Set_Value64C(Res, 0, 0);
88 return Res;
90 /* is fnum negative? */
91 if (is_lessSC(y, 0, 0)) /* y < 0 */
93 SetSR(Overflow_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
94 Set_Value64C(Res, IEEEDPNAN_Hi, IEEEDPNAN_Lo);
95 return Res;
98 /* we can calculate the square-root now! */
100 Set_Value64(y2, y);
101 AND64QC(y2, IEEEDPMantisse_Mask_Hi, IEEEDPMantisse_Mask_Lo);
102 OR64QC(y2, 0x00100000, 0x00000000 );
103 SHL64(TargetMantisse, y2, 11);
105 Exponent = (Get_High32of64(y) >> 1) & IEEEDPExponent_Mask_Hi;
107 /* do we have an odd exponent? */
108 if (Get_High32of64(y) & 0x00100000)
110 /* TargetMantisse = TargetMantisse / 2; */
111 SHRU64(TargetMantisse, TargetMantisse, 1); /* TargetMantisse >>= 1; */
112 Exponent += 0x20000000;
114 else
116 Exponent += 0x1ff00000;
119 Set_Value64C(Res, 0x0, 0x0);
120 Set_Value64C(ResSquared, 0x0, 0x0);
121 z = 0;
124 this calculates the sqrt of the mantisse. It`s short, isn`t it?
125 Delta starts out with 0.5, then 0.25, 0.125 etc.
127 while ( is_neq(ResSquared, TargetMantisse) && z < 53)
129 QUAD Restmp, Deltatmp;
130 Set_Value64C(Delta, 0x80000000, 0x00000000);
131 SHRU64(Delta, Delta, z); /* Delta >> = z */
134 X = (Res+Delta)^2 = Res^2 + 2*Res*Delta + Delta^2
136 SHRU64(Restmp, Res, z); /* Restmp = Res >> z */
137 z++;
138 SHRU64(Deltatmp, Delta, z); /* Deltatmp = Delta >> (z+1) */
140 /* X = ResSquared + (Res >> z) + (Delta >> ++z); */
141 Set_Value64(X, ResSquared);
142 ADD64Q(X, Restmp);
143 ADD64Q(X, Deltatmp);
145 if (is_leq(X, TargetMantisse)) /* X <= TargetMantisse */
147 //printf("setting a bit!\n");
148 //OUTPUT(X);OUTPUT(TargetMantisse);
149 ADD64(Res, Res, Delta ); /* Res += Delta */
150 Set_Value64(ResSquared, X); /* ResSquared = X; */
154 SHRU64(Res, Res, 11);
155 AND64QC(Res, IEEEDPMantisse_Mask_Hi, IEEEDPMantisse_Mask_Lo );
156 SHL32(tmp, Exponent, 32);
157 OR64Q(Res, tmp);
159 return Res;
161 AROS_LIBFUNC_EXIT