alsa.audio: limit the supported frequencies to common set
[AROS.git] / workbench / libs / lcms2 / src / cmslut.c
blobc491662b25c23048b5b7ad7fe4788211f18bbdc9
1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2012 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 //---------------------------------------------------------------------------------
27 #include "lcms2_internal.h"
30 // Allocates an empty multi profile element
31 cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID,
32 cmsStageSignature Type,
33 cmsUInt32Number InputChannels,
34 cmsUInt32Number OutputChannels,
35 _cmsStageEvalFn EvalPtr,
36 _cmsStageDupElemFn DupElemPtr,
37 _cmsStageFreeElemFn FreePtr,
38 void* Data)
40 cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage));
42 if (ph == NULL) return NULL;
45 ph ->ContextID = ContextID;
47 ph ->Type = Type;
48 ph ->Implements = Type; // By default, no clue on what is implementing
50 ph ->InputChannels = InputChannels;
51 ph ->OutputChannels = OutputChannels;
52 ph ->EvalPtr = EvalPtr;
53 ph ->DupElemPtr = DupElemPtr;
54 ph ->FreePtr = FreePtr;
55 ph ->Data = Data;
57 return ph;
61 static
62 void EvaluateIdentity(const cmsFloat32Number In[],
63 cmsFloat32Number Out[],
64 const cmsStage *mpe)
66 memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number));
70 cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels)
72 return _cmsStageAllocPlaceholder(ContextID,
73 cmsSigIdentityElemType,
74 nChannels, nChannels,
75 EvaluateIdentity,
76 NULL,
77 NULL,
78 NULL);
81 // Conversion functions. From floating point to 16 bits
82 static
83 void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n)
85 cmsUInt32Number i;
87 for (i=0; i < n; i++) {
88 Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0);
92 // From 16 bits to floating point
93 static
94 void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n)
96 cmsUInt32Number i;
98 for (i=0; i < n; i++) {
99 Out[i] = (cmsFloat32Number) In[i] / 65535.0F;
104 // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements
105 // that conform the LUT. It should be called with the LUT, the number of expected elements and
106 // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If
107 // the function founds a match with current pipeline, it fills the pointers and returns TRUE
108 // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass
109 // the storage process.
110 cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...)
112 va_list args;
113 cmsUInt32Number i;
114 cmsStage* mpe;
115 cmsStageSignature Type;
116 void** ElemPtr;
118 // Make sure same number of elements
119 if (cmsPipelineStageCount(Lut) != n) return FALSE;
121 va_start(args, n);
123 // Iterate across asked types
124 mpe = Lut ->Elements;
125 for (i=0; i < n; i++) {
127 // Get asked type
128 Type = (cmsStageSignature)va_arg(args, cmsStageSignature);
129 if (mpe ->Type != Type) {
131 va_end(args); // Mismatch. We are done.
132 return FALSE;
134 mpe = mpe ->Next;
137 // Found a combination, fill pointers if not NULL
138 mpe = Lut ->Elements;
139 for (i=0; i < n; i++) {
141 ElemPtr = va_arg(args, void**);
142 if (ElemPtr != NULL)
143 *ElemPtr = mpe;
145 mpe = mpe ->Next;
148 va_end(args);
149 return TRUE;
152 // Below there are implementations for several types of elements. Each type may be implemented by a
153 // evaluation function, a duplication function, a function to free resources and a constructor.
155 // *************************************************************************************************
156 // Type cmsSigCurveSetElemType (curves)
157 // *************************************************************************************************
159 cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe)
161 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
163 return Data ->TheCurves;
166 static
167 void EvaluateCurves(const cmsFloat32Number In[],
168 cmsFloat32Number Out[],
169 const cmsStage *mpe)
171 _cmsStageToneCurvesData* Data;
172 cmsUInt32Number i;
174 _cmsAssert(mpe != NULL);
176 Data = (_cmsStageToneCurvesData*) mpe ->Data;
177 if (Data == NULL) return;
179 if (Data ->TheCurves == NULL) return;
181 for (i=0; i < Data ->nCurves; i++) {
182 Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]);
186 static
187 void CurveSetElemTypeFree(cmsStage* mpe)
189 _cmsStageToneCurvesData* Data;
190 cmsUInt32Number i;
192 _cmsAssert(mpe != NULL);
194 Data = (_cmsStageToneCurvesData*) mpe ->Data;
195 if (Data == NULL) return;
197 if (Data ->TheCurves != NULL) {
198 for (i=0; i < Data ->nCurves; i++) {
199 if (Data ->TheCurves[i] != NULL)
200 cmsFreeToneCurve(Data ->TheCurves[i]);
203 _cmsFree(mpe ->ContextID, Data ->TheCurves);
204 _cmsFree(mpe ->ContextID, Data);
208 static
209 void* CurveSetDup(cmsStage* mpe)
211 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
212 _cmsStageToneCurvesData* NewElem;
213 cmsUInt32Number i;
215 NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData));
216 if (NewElem == NULL) return NULL;
218 NewElem ->nCurves = Data ->nCurves;
219 NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*));
221 if (NewElem ->TheCurves == NULL) goto Error;
223 for (i=0; i < NewElem ->nCurves; i++) {
225 // Duplicate each curve. It may fail.
226 NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]);
227 if (NewElem ->TheCurves[i] == NULL) goto Error;
231 return (void*) NewElem;
233 Error:
235 if (NewElem ->TheCurves != NULL) {
236 for (i=0; i < NewElem ->nCurves; i++) {
237 if (NewElem ->TheCurves[i])
238 cmsFreeToneCurve(NewElem ->TheCurves[i]);
241 _cmsFree(mpe ->ContextID, NewElem ->TheCurves);
242 _cmsFree(mpe ->ContextID, NewElem);
243 return NULL;
247 // Curves == NULL forces identity curves
248 cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[])
250 cmsUInt32Number i;
251 _cmsStageToneCurvesData* NewElem;
252 cmsStage* NewMPE;
255 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels,
256 EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL );
257 if (NewMPE == NULL) return NULL;
259 NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData));
260 if (NewElem == NULL) {
261 cmsStageFree(NewMPE);
262 return NULL;
265 NewMPE ->Data = (void*) NewElem;
267 NewElem ->nCurves = nChannels;
268 NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*));
269 if (NewElem ->TheCurves == NULL) {
270 cmsStageFree(NewMPE);
271 return NULL;
274 for (i=0; i < nChannels; i++) {
276 if (Curves == NULL) {
277 NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0);
279 else {
280 NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]);
283 if (NewElem ->TheCurves[i] == NULL) {
284 cmsStageFree(NewMPE);
285 return NULL;
290 return NewMPE;
294 // Create a bunch of identity curves
295 cmsStage* _cmsStageAllocIdentityCurves(cmsContext ContextID, int nChannels)
297 cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL);
299 if (mpe == NULL) return NULL;
300 mpe ->Implements = cmsSigIdentityElemType;
301 return mpe;
305 // *************************************************************************************************
306 // Type cmsSigMatrixElemType (Matrices)
307 // *************************************************************************************************
310 // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used
311 static
312 void EvaluateMatrix(const cmsFloat32Number In[],
313 cmsFloat32Number Out[],
314 const cmsStage *mpe)
316 cmsUInt32Number i, j;
317 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
318 cmsFloat64Number Tmp;
320 // Input is already in 0..1.0 notation
321 for (i=0; i < mpe ->OutputChannels; i++) {
323 Tmp = 0;
324 for (j=0; j < mpe->InputChannels; j++) {
325 Tmp += In[j] * Data->Double[i*mpe->InputChannels + j];
328 if (Data ->Offset != NULL)
329 Tmp += Data->Offset[i];
331 Out[i] = (cmsFloat32Number) Tmp;
335 // Output in 0..1.0 domain
339 // Duplicate a yet-existing matrix element
340 static
341 void* MatrixElemDup(cmsStage* mpe)
343 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
344 _cmsStageMatrixData* NewElem;
345 cmsUInt32Number sz;
347 NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData));
348 if (NewElem == NULL) return NULL;
350 sz = mpe ->InputChannels * mpe ->OutputChannels;
352 NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ;
354 if (Data ->Offset)
355 NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID,
356 Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ;
358 return (void*) NewElem;
362 static
363 void MatrixElemTypeFree(cmsStage* mpe)
365 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
366 if (Data == NULL)
367 return;
368 if (Data ->Double)
369 _cmsFree(mpe ->ContextID, Data ->Double);
371 if (Data ->Offset)
372 _cmsFree(mpe ->ContextID, Data ->Offset);
374 _cmsFree(mpe ->ContextID, mpe ->Data);
379 cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols,
380 const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset)
382 cmsUInt32Number i, n;
383 _cmsStageMatrixData* NewElem;
384 cmsStage* NewMPE;
386 n = Rows * Cols;
388 // Check for overflow
389 if (n == 0) return NULL;
390 if (n >= UINT_MAX / Cols) return NULL;
391 if (n >= UINT_MAX / Rows) return NULL;
392 if (n < Rows || n < Cols) return NULL;
394 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows,
395 EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL );
396 if (NewMPE == NULL) return NULL;
399 NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData));
400 if (NewElem == NULL) return NULL;
403 NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number));
405 if (NewElem->Double == NULL) {
406 MatrixElemTypeFree(NewMPE);
407 return NULL;
410 for (i=0; i < n; i++) {
411 NewElem ->Double[i] = Matrix[i];
415 if (Offset != NULL) {
417 NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Cols, sizeof(cmsFloat64Number));
418 if (NewElem->Offset == NULL) {
419 MatrixElemTypeFree(NewMPE);
420 return NULL;
423 for (i=0; i < Cols; i++) {
424 NewElem ->Offset[i] = Offset[i];
429 NewMPE ->Data = (void*) NewElem;
430 return NewMPE;
434 // *************************************************************************************************
435 // Type cmsSigCLutElemType
436 // *************************************************************************************************
439 // Evaluate in true floating point
440 static
441 void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
443 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
445 Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params);
449 // Convert to 16 bits, evaluate, and back to floating point
450 static
451 void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
453 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
454 cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS];
456 _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS);
457 _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS);
459 FromFloatTo16(In, In16, mpe ->InputChannels);
460 Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params);
461 From16ToFloat(Out16, Out, mpe ->OutputChannels);
465 // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes
466 static
467 cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b)
469 cmsUInt32Number rv, dim;
471 _cmsAssert(Dims != NULL);
473 for (rv = 1; b > 0; b--) {
475 dim = Dims[b-1];
476 if (dim == 0) return 0; // Error
478 rv *= dim;
480 // Check for overflow
481 if (rv > UINT_MAX / dim) return 0;
484 return rv;
487 static
488 void* CLUTElemDup(cmsStage* mpe)
490 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
491 _cmsStageCLutData* NewElem;
494 NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData));
495 if (NewElem == NULL) return NULL;
497 NewElem ->nEntries = Data ->nEntries;
498 NewElem ->HasFloatValues = Data ->HasFloatValues;
500 if (Data ->Tab.T) {
502 if (Data ->HasFloatValues) {
503 NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number));
504 if (NewElem ->Tab.TFloat == NULL)
505 goto Error;
506 } else {
507 NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number));
508 if (NewElem ->Tab.TFloat == NULL)
509 goto Error;
513 NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID,
514 Data ->Params ->nSamples,
515 Data ->Params ->nInputs,
516 Data ->Params ->nOutputs,
517 NewElem ->Tab.T,
518 Data ->Params ->dwFlags);
519 if (NewElem->Params != NULL)
520 return (void*) NewElem;
521 Error:
522 if (NewElem->Tab.T)
523 // This works for both types
524 _cmsFree(mpe ->ContextID, NewElem -> Tab.T);
525 _cmsFree(mpe ->ContextID, NewElem);
526 return NULL;
530 static
531 void CLutElemTypeFree(cmsStage* mpe)
534 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
536 // Already empty
537 if (Data == NULL) return;
539 // This works for both types
540 if (Data -> Tab.T)
541 _cmsFree(mpe ->ContextID, Data -> Tab.T);
543 _cmsFreeInterpParams(Data ->Params);
544 _cmsFree(mpe ->ContextID, mpe ->Data);
548 // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different
549 // granularity on each dimension.
550 cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID,
551 const cmsUInt32Number clutPoints[],
552 cmsUInt32Number inputChan,
553 cmsUInt32Number outputChan,
554 const cmsUInt16Number* Table)
556 cmsUInt32Number i, n;
557 _cmsStageCLutData* NewElem;
558 cmsStage* NewMPE;
560 _cmsAssert(clutPoints != NULL);
562 if (inputChan > MAX_INPUT_DIMENSIONS) {
563 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
564 return NULL;
567 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
568 EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL );
570 if (NewMPE == NULL) return NULL;
572 NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
573 if (NewElem == NULL) {
574 cmsStageFree(NewMPE);
575 return NULL;
578 NewMPE ->Data = (void*) NewElem;
580 NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
581 NewElem -> HasFloatValues = FALSE;
583 if (n == 0) {
584 cmsStageFree(NewMPE);
585 return NULL;
589 NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number));
590 if (NewElem ->Tab.T == NULL) {
591 cmsStageFree(NewMPE);
592 return NULL;
595 if (Table != NULL) {
596 for (i=0; i < n; i++) {
597 NewElem ->Tab.T[i] = Table[i];
601 NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS);
602 if (NewElem ->Params == NULL) {
603 cmsStageFree(NewMPE);
604 return NULL;
607 return NewMPE;
610 cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID,
611 cmsUInt32Number nGridPoints,
612 cmsUInt32Number inputChan,
613 cmsUInt32Number outputChan,
614 const cmsUInt16Number* Table)
616 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
617 int i;
619 // Our resulting LUT would be same gridpoints on all dimensions
620 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
621 Dimensions[i] = nGridPoints;
623 return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table);
627 cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID,
628 cmsUInt32Number nGridPoints,
629 cmsUInt32Number inputChan,
630 cmsUInt32Number outputChan,
631 const cmsFloat32Number* Table)
633 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
634 int i;
636 // Our resulting LUT would be same gridpoints on all dimensions
637 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
638 Dimensions[i] = nGridPoints;
640 return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table);
645 cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table)
647 cmsUInt32Number i, n;
648 _cmsStageCLutData* NewElem;
649 cmsStage* NewMPE;
651 _cmsAssert(clutPoints != NULL);
653 if (inputChan > MAX_INPUT_DIMENSIONS) {
654 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
655 return NULL;
658 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
659 EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL);
660 if (NewMPE == NULL) return NULL;
663 NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
664 if (NewElem == NULL) {
665 cmsStageFree(NewMPE);
666 return NULL;
669 NewMPE ->Data = (void*) NewElem;
671 // There is a potential integer overflow on conputing n and nEntries.
672 NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
673 NewElem -> HasFloatValues = TRUE;
675 if (n == 0) {
676 cmsStageFree(NewMPE);
677 return NULL;
680 NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number));
681 if (NewElem ->Tab.TFloat == NULL) {
682 cmsStageFree(NewMPE);
683 return NULL;
686 if (Table != NULL) {
687 for (i=0; i < n; i++) {
688 NewElem ->Tab.TFloat[i] = Table[i];
692 NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT);
693 if (NewElem ->Params == NULL) {
694 cmsStageFree(NewMPE);
695 return NULL;
698 return NewMPE;
702 static
703 int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
705 int nChan = *(int*) Cargo;
706 int i;
708 for (i=0; i < nChan; i++)
709 Out[i] = In[i];
711 return 1;
714 // Creates an MPE that just copies input to output
715 cmsStage* _cmsStageAllocIdentityCLut(cmsContext ContextID, int nChan)
717 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
718 cmsStage* mpe ;
719 int i;
721 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
722 Dimensions[i] = 2;
724 mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL);
725 if (mpe == NULL) return NULL;
727 if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) {
728 cmsStageFree(mpe);
729 return NULL;
732 mpe ->Implements = cmsSigIdentityElemType;
733 return mpe;
738 // Quantize a value 0 <= i < MaxSamples to 0..0xffff
739 cmsUInt16Number _cmsQuantizeVal(cmsFloat64Number i, int MaxSamples)
741 cmsFloat64Number x;
743 x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1);
744 return _cmsQuickSaturateWord(x);
748 // This routine does a sweep on whole input space, and calls its callback
749 // function on knots. returns TRUE if all ok, FALSE otherwise.
750 cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags)
752 int i, t, nTotalPoints, index, rest;
753 int nInputs, nOutputs;
754 cmsUInt32Number* nSamples;
755 cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
756 _cmsStageCLutData* clut;
758 if (mpe == NULL) return FALSE;
760 clut = (_cmsStageCLutData*) mpe->Data;
762 if (clut == NULL) return FALSE;
764 nSamples = clut->Params ->nSamples;
765 nInputs = clut->Params ->nInputs;
766 nOutputs = clut->Params ->nOutputs;
768 if (nInputs <= 0) return FALSE;
769 if (nOutputs <= 0) return FALSE;
770 if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
771 if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
773 nTotalPoints = CubeSize(nSamples, nInputs);
774 if (nTotalPoints == 0) return FALSE;
776 index = 0;
777 for (i = 0; i < nTotalPoints; i++) {
779 rest = i;
780 for (t = nInputs-1; t >=0; --t) {
782 cmsUInt32Number Colorant = rest % nSamples[t];
784 rest /= nSamples[t];
786 In[t] = _cmsQuantizeVal(Colorant, nSamples[t]);
789 if (clut ->Tab.T != NULL) {
790 for (t=0; t < nOutputs; t++)
791 Out[t] = clut->Tab.T[index + t];
794 if (!Sampler(In, Out, Cargo))
795 return FALSE;
797 if (!(dwFlags & SAMPLER_INSPECT)) {
799 if (clut ->Tab.T != NULL) {
800 for (t=0; t < nOutputs; t++)
801 clut->Tab.T[index + t] = Out[t];
805 index += nOutputs;
808 return TRUE;
811 // Same as anterior, but for floting point
812 cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags)
814 int i, t, nTotalPoints, index, rest;
815 int nInputs, nOutputs;
816 cmsUInt32Number* nSamples;
817 cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
818 _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data;
820 nSamples = clut->Params ->nSamples;
821 nInputs = clut->Params ->nInputs;
822 nOutputs = clut->Params ->nOutputs;
824 if (nInputs <= 0) return FALSE;
825 if (nOutputs <= 0) return FALSE;
826 if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
827 if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
829 nTotalPoints = CubeSize(nSamples, nInputs);
830 if (nTotalPoints == 0) return FALSE;
832 index = 0;
833 for (i = 0; i < nTotalPoints; i++) {
835 rest = i;
836 for (t = nInputs-1; t >=0; --t) {
838 cmsUInt32Number Colorant = rest % nSamples[t];
840 rest /= nSamples[t];
842 In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0);
845 if (clut ->Tab.TFloat != NULL) {
846 for (t=0; t < nOutputs; t++)
847 Out[t] = clut->Tab.TFloat[index + t];
850 if (!Sampler(In, Out, Cargo))
851 return FALSE;
853 if (!(dwFlags & SAMPLER_INSPECT)) {
855 if (clut ->Tab.TFloat != NULL) {
856 for (t=0; t < nOutputs; t++)
857 clut->Tab.TFloat[index + t] = Out[t];
861 index += nOutputs;
864 return TRUE;
869 // This routine does a sweep on whole input space, and calls its callback
870 // function on knots. returns TRUE if all ok, FALSE otherwise.
871 cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
872 cmsSAMPLER16 Sampler, void * Cargo)
874 int i, t, nTotalPoints, rest;
875 cmsUInt16Number In[cmsMAXCHANNELS];
877 if (nInputs >= cmsMAXCHANNELS) return FALSE;
879 nTotalPoints = CubeSize(clutPoints, nInputs);
880 if (nTotalPoints == 0) return FALSE;
882 for (i = 0; i < nTotalPoints; i++) {
884 rest = i;
885 for (t = nInputs-1; t >=0; --t) {
887 cmsUInt32Number Colorant = rest % clutPoints[t];
889 rest /= clutPoints[t];
890 In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]);
894 if (!Sampler(In, NULL, Cargo))
895 return FALSE;
898 return TRUE;
901 cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
902 cmsSAMPLERFLOAT Sampler, void * Cargo)
904 int i, t, nTotalPoints, rest;
905 cmsFloat32Number In[cmsMAXCHANNELS];
907 if (nInputs >= cmsMAXCHANNELS) return FALSE;
909 nTotalPoints = CubeSize(clutPoints, nInputs);
910 if (nTotalPoints == 0) return FALSE;
912 for (i = 0; i < nTotalPoints; i++) {
914 rest = i;
915 for (t = nInputs-1; t >=0; --t) {
917 cmsUInt32Number Colorant = rest % clutPoints[t];
919 rest /= clutPoints[t];
920 In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0);
924 if (!Sampler(In, NULL, Cargo))
925 return FALSE;
928 return TRUE;
931 // ********************************************************************************
932 // Type cmsSigLab2XYZElemType
933 // ********************************************************************************
936 static
937 void EvaluateLab2XYZ(const cmsFloat32Number In[],
938 cmsFloat32Number Out[],
939 const cmsStage *mpe)
941 cmsCIELab Lab;
942 cmsCIEXYZ XYZ;
943 const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
945 // V4 rules
946 Lab.L = In[0] * 100.0;
947 Lab.a = In[1] * 255.0 - 128.0;
948 Lab.b = In[2] * 255.0 - 128.0;
950 cmsLab2XYZ(NULL, &XYZ, &Lab);
952 // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff
953 // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0)
955 Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj);
956 Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj);
957 Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj);
958 return;
960 cmsUNUSED_PARAMETER(mpe);
964 // No dup or free routines needed, as the structure has no pointers in it.
965 cmsStage* _cmsStageAllocLab2XYZ(cmsContext ContextID)
967 return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL);
970 // ********************************************************************************
972 // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
973 // number of gridpoints that would make exact match. However, a prelinearization
974 // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot.
975 // Almost all what we need but unfortunately, the rest of entries should be scaled by
976 // (255*257/256) and this is not exact.
978 cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID)
980 cmsStage* mpe;
981 cmsToneCurve* LabTable[3];
982 int i, j;
984 LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
985 LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
986 LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
988 for (j=0; j < 3; j++) {
990 if (LabTable[j] == NULL) {
991 cmsFreeToneCurveTriple(LabTable);
992 return NULL;
995 // We need to map * (0xffff / 0xff00), thats same as (257 / 256)
996 // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256);
997 for (i=0; i < 257; i++) {
999 LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8);
1002 LabTable[j] ->Table16[257] = 0xffff;
1005 mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable);
1006 cmsFreeToneCurveTriple(LabTable);
1008 if (mpe == NULL) return NULL;
1009 mpe ->Implements = cmsSigLabV2toV4;
1010 return mpe;
1013 // ********************************************************************************
1015 // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles
1016 cmsStage* _cmsStageAllocLabV2ToV4(cmsContext ContextID)
1018 static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0,
1019 0, 65535.0/65280.0, 0,
1020 0, 0, 65535.0/65280.0
1023 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL);
1025 if (mpe == NULL) return mpe;
1026 mpe ->Implements = cmsSigLabV2toV4;
1027 return mpe;
1031 // Reverse direction
1032 cmsStage* _cmsStageAllocLabV4ToV2(cmsContext ContextID)
1034 static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0,
1035 0, 65280.0/65535.0, 0,
1036 0, 0, 65280.0/65535.0
1039 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL);
1041 if (mpe == NULL) return mpe;
1042 mpe ->Implements = cmsSigLabV4toV2;
1043 return mpe;
1047 // To Lab to float. Note that the MPE gives numbers in normal Lab range
1048 // and we need 0..1.0 range for the formatters
1049 // L* : 0...100 => 0...1.0 (L* / 100)
1050 // ab* : -128..+127 to 0..1 ((ab* + 128) / 255)
1052 cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID)
1054 static const cmsFloat64Number a1[] = {
1055 1.0/100.0, 0, 0,
1056 0, 1.0/255.0, 0,
1057 0, 0, 1.0/255.0
1060 static const cmsFloat64Number o1[] = {
1062 128.0/255.0,
1063 128.0/255.0
1066 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1068 if (mpe == NULL) return mpe;
1069 mpe ->Implements = cmsSigLab2FloatPCS;
1070 return mpe;
1073 // Fom XYZ to floating point PCS
1074 cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID)
1076 #define n (32768.0/65535.0)
1077 static const cmsFloat64Number a1[] = {
1078 n, 0, 0,
1079 0, n, 0,
1080 0, 0, n
1082 #undef n
1084 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1086 if (mpe == NULL) return mpe;
1087 mpe ->Implements = cmsSigXYZ2FloatPCS;
1088 return mpe;
1091 cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID)
1093 static const cmsFloat64Number a1[] = {
1094 100.0, 0, 0,
1095 0, 255.0, 0,
1096 0, 0, 255.0
1099 static const cmsFloat64Number o1[] = {
1101 -128.0,
1102 -128.0
1105 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1106 if (mpe == NULL) return mpe;
1107 mpe ->Implements = cmsSigFloatPCS2Lab;
1108 return mpe;
1111 cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID)
1113 #define n (65535.0/32768.0)
1115 static const cmsFloat64Number a1[] = {
1116 n, 0, 0,
1117 0, n, 0,
1118 0, 0, n
1120 #undef n
1122 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1123 if (mpe == NULL) return mpe;
1124 mpe ->Implements = cmsSigFloatPCS2XYZ;
1125 return mpe;
1130 // ********************************************************************************
1131 // Type cmsSigXYZ2LabElemType
1132 // ********************************************************************************
1134 static
1135 void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1137 cmsCIELab Lab;
1138 cmsCIEXYZ XYZ;
1139 const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
1141 // From 0..1.0 to XYZ
1143 XYZ.X = In[0] * XYZadj;
1144 XYZ.Y = In[1] * XYZadj;
1145 XYZ.Z = In[2] * XYZadj;
1147 cmsXYZ2Lab(NULL, &Lab, &XYZ);
1149 // From V4 Lab to 0..1.0
1151 Out[0] = (cmsFloat32Number) (Lab.L / 100.0);
1152 Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0);
1153 Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0);
1154 return;
1156 cmsUNUSED_PARAMETER(mpe);
1159 cmsStage* _cmsStageAllocXYZ2Lab(cmsContext ContextID)
1161 return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL);
1165 // ********************************************************************************
1167 // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray
1169 cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID)
1171 cmsToneCurve* LabTable[3];
1172 cmsFloat64Number Params[1] = {2.4} ;
1174 LabTable[0] = cmsBuildGamma(ContextID, 1.0);
1175 LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1176 LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1178 return cmsStageAllocToneCurves(ContextID, 3, LabTable);
1182 // Free a single MPE
1183 void CMSEXPORT cmsStageFree(cmsStage* mpe)
1185 if (mpe ->FreePtr)
1186 mpe ->FreePtr(mpe);
1188 _cmsFree(mpe ->ContextID, mpe);
1192 cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe)
1194 return mpe ->InputChannels;
1197 cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe)
1199 return mpe ->OutputChannels;
1202 cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe)
1204 return mpe -> Type;
1207 void* CMSEXPORT cmsStageData(const cmsStage* mpe)
1209 return mpe -> Data;
1212 cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe)
1214 return mpe -> Next;
1218 // Duplicates an MPE
1219 cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe)
1221 cmsStage* NewMPE;
1223 if (mpe == NULL) return NULL;
1224 NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID,
1225 mpe ->Type,
1226 mpe ->InputChannels,
1227 mpe ->OutputChannels,
1228 mpe ->EvalPtr,
1229 mpe ->DupElemPtr,
1230 mpe ->FreePtr,
1231 NULL);
1232 if (NewMPE == NULL) return NULL;
1234 NewMPE ->Implements = mpe ->Implements;
1236 if (mpe ->DupElemPtr) {
1238 NewMPE ->Data = mpe ->DupElemPtr(mpe);
1240 if (NewMPE->Data == NULL) {
1242 cmsStageFree(NewMPE);
1243 return NULL;
1246 } else {
1248 NewMPE ->Data = NULL;
1251 return NewMPE;
1255 // ***********************************************************************************************************
1257 // This function sets up the channel count
1259 static
1260 void BlessLUT(cmsPipeline* lut)
1262 // We can set the input/ouput channels only if we have elements.
1263 if (lut ->Elements != NULL) {
1265 cmsStage *First, *Last;
1267 First = cmsPipelineGetPtrToFirstStage(lut);
1268 Last = cmsPipelineGetPtrToLastStage(lut);
1270 if (First != NULL)lut ->InputChannels = First ->InputChannels;
1271 if (Last != NULL) lut ->OutputChannels = Last ->OutputChannels;
1276 // Default to evaluate the LUT on 16 bit-basis. Precision is retained.
1277 static
1278 void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D)
1280 cmsPipeline* lut = (cmsPipeline*) D;
1281 cmsStage *mpe;
1282 cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1283 int Phase = 0, NextPhase;
1285 From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels);
1287 for (mpe = lut ->Elements;
1288 mpe != NULL;
1289 mpe = mpe ->Next) {
1291 NextPhase = Phase ^ 1;
1292 mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1293 Phase = NextPhase;
1297 FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels);
1302 // Does evaluate the LUT on cmsFloat32Number-basis.
1303 static
1304 void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D)
1306 cmsPipeline* lut = (cmsPipeline*) D;
1307 cmsStage *mpe;
1308 cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1309 int Phase = 0, NextPhase;
1311 memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number));
1313 for (mpe = lut ->Elements;
1314 mpe != NULL;
1315 mpe = mpe ->Next) {
1317 NextPhase = Phase ^ 1;
1318 mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1319 Phase = NextPhase;
1322 memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number));
1328 // LUT Creation & Destruction
1330 cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels)
1332 cmsPipeline* NewLUT;
1334 if (InputChannels >= cmsMAXCHANNELS ||
1335 OutputChannels >= cmsMAXCHANNELS) return NULL;
1337 NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline));
1338 if (NewLUT == NULL) return NULL;
1341 NewLUT -> InputChannels = InputChannels;
1342 NewLUT -> OutputChannels = OutputChannels;
1344 NewLUT ->Eval16Fn = _LUTeval16;
1345 NewLUT ->EvalFloatFn = _LUTevalFloat;
1346 NewLUT ->DupDataFn = NULL;
1347 NewLUT ->FreeDataFn = NULL;
1348 NewLUT ->Data = NewLUT;
1349 NewLUT ->ContextID = ContextID;
1351 BlessLUT(NewLUT);
1353 return NewLUT;
1356 cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut)
1358 _cmsAssert(lut != NULL);
1359 return lut ->ContextID;
1362 cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut)
1364 _cmsAssert(lut != NULL);
1365 return lut ->InputChannels;
1368 cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut)
1370 _cmsAssert(lut != NULL);
1371 return lut ->OutputChannels;
1374 // Free a profile elements LUT
1375 void CMSEXPORT cmsPipelineFree(cmsPipeline* lut)
1377 cmsStage *mpe, *Next;
1379 if (lut == NULL) return;
1381 for (mpe = lut ->Elements;
1382 mpe != NULL;
1383 mpe = Next) {
1385 Next = mpe ->Next;
1386 cmsStageFree(mpe);
1389 if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data);
1391 _cmsFree(lut ->ContextID, lut);
1395 // Default to evaluate the LUT on 16 bit-basis.
1396 void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut)
1398 _cmsAssert(lut != NULL);
1399 lut ->Eval16Fn(In, Out, lut->Data);
1403 // Does evaluate the LUT on cmsFloat32Number-basis.
1404 void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut)
1406 _cmsAssert(lut != NULL);
1407 lut ->EvalFloatFn(In, Out, lut);
1412 // Duplicates a LUT
1413 cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut)
1415 cmsPipeline* NewLUT;
1416 cmsStage *NewMPE, *Anterior = NULL, *mpe;
1417 cmsBool First = TRUE;
1419 if (lut == NULL) return NULL;
1421 NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels);
1422 if (NewLUT == NULL) return NULL;
1424 for (mpe = lut ->Elements;
1425 mpe != NULL;
1426 mpe = mpe ->Next) {
1428 NewMPE = cmsStageDup(mpe);
1430 if (NewMPE == NULL) {
1431 cmsPipelineFree(NewLUT);
1432 return NULL;
1435 if (First) {
1436 NewLUT ->Elements = NewMPE;
1437 First = FALSE;
1439 else {
1440 Anterior ->Next = NewMPE;
1443 Anterior = NewMPE;
1446 NewLUT ->Eval16Fn = lut ->Eval16Fn;
1447 NewLUT ->EvalFloatFn = lut ->EvalFloatFn;
1448 NewLUT ->DupDataFn = lut ->DupDataFn;
1449 NewLUT ->FreeDataFn = lut ->FreeDataFn;
1451 if (NewLUT ->DupDataFn != NULL)
1452 NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data);
1455 NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits;
1457 BlessLUT(NewLUT);
1458 return NewLUT;
1462 int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe)
1464 cmsStage* Anterior = NULL, *pt;
1466 if (lut == NULL || mpe == NULL)
1467 return FALSE;
1469 switch (loc) {
1471 case cmsAT_BEGIN:
1472 mpe ->Next = lut ->Elements;
1473 lut ->Elements = mpe;
1474 break;
1476 case cmsAT_END:
1478 if (lut ->Elements == NULL)
1479 lut ->Elements = mpe;
1480 else {
1482 for (pt = lut ->Elements;
1483 pt != NULL;
1484 pt = pt -> Next) Anterior = pt;
1486 Anterior ->Next = mpe;
1487 mpe ->Next = NULL;
1489 break;
1490 default:;
1491 return FALSE;
1494 BlessLUT(lut);
1495 return TRUE;
1498 // Unlink an element and return the pointer to it
1499 void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe)
1501 cmsStage *Anterior, *pt, *Last;
1502 cmsStage *Unlinked = NULL;
1505 // If empty LUT, there is nothing to remove
1506 if (lut ->Elements == NULL) {
1507 if (mpe) *mpe = NULL;
1508 return;
1511 // On depending on the strategy...
1512 switch (loc) {
1514 case cmsAT_BEGIN:
1516 cmsStage* elem = lut ->Elements;
1518 lut ->Elements = elem -> Next;
1519 elem ->Next = NULL;
1520 Unlinked = elem;
1523 break;
1525 case cmsAT_END:
1526 Anterior = Last = NULL;
1527 for (pt = lut ->Elements;
1528 pt != NULL;
1529 pt = pt -> Next) {
1530 Anterior = Last;
1531 Last = pt;
1534 Unlinked = Last; // Next already points to NULL
1536 // Truncate the chain
1537 if (Anterior)
1538 Anterior ->Next = NULL;
1539 else
1540 lut ->Elements = NULL;
1541 break;
1542 default:;
1545 if (mpe)
1546 *mpe = Unlinked;
1547 else
1548 cmsStageFree(Unlinked);
1550 BlessLUT(lut);
1554 // Concatenate two LUT into a new single one
1555 cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2)
1557 cmsStage* mpe;
1559 // If both LUTS does not have elements, we need to inherit
1560 // the number of channels
1561 if (l1 ->Elements == NULL && l2 ->Elements == NULL) {
1562 l1 ->InputChannels = l2 ->InputChannels;
1563 l1 ->OutputChannels = l2 ->OutputChannels;
1566 // Cat second
1567 for (mpe = l2 ->Elements;
1568 mpe != NULL;
1569 mpe = mpe ->Next) {
1571 // We have to dup each element
1572 if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe)))
1573 return FALSE;
1576 BlessLUT(l1);
1577 return TRUE;
1581 cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On)
1583 cmsBool Anterior = lut ->SaveAs8Bits;
1585 lut ->SaveAs8Bits = On;
1586 return Anterior;
1590 cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut)
1592 return lut ->Elements;
1595 cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut)
1597 cmsStage *mpe, *Anterior = NULL;
1599 for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1600 Anterior = mpe;
1602 return Anterior;
1605 cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut)
1607 cmsStage *mpe;
1608 cmsUInt32Number n;
1610 for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1611 n++;
1613 return n;
1616 // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional
1617 // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality.
1618 void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut,
1619 _cmsOPTeval16Fn Eval16,
1620 void* PrivateData,
1621 _cmsFreeUserDataFn FreePrivateDataFn,
1622 _cmsDupUserDataFn DupPrivateDataFn)
1625 Lut ->Eval16Fn = Eval16;
1626 Lut ->DupDataFn = DupPrivateDataFn;
1627 Lut ->FreeDataFn = FreePrivateDataFn;
1628 Lut ->Data = PrivateData;
1632 // ----------------------------------------------------------- Reverse interpolation
1633 // Here's how it goes. The derivative Df(x) of the function f is the linear
1634 // transformation that best approximates f near the point x. It can be represented
1635 // by a matrix A whose entries are the partial derivatives of the components of f
1636 // with respect to all the coordinates. This is know as the Jacobian
1638 // The best linear approximation to f is given by the matrix equation:
1640 // y-y0 = A (x-x0)
1642 // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this
1643 // linear approximation will give a "better guess" for the zero of f. Thus let y=0,
1644 // and since y0=f(x0) one can solve the above equation for x. This leads to the
1645 // Newton's method formula:
1647 // xn+1 = xn - A-1 f(xn)
1649 // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the
1650 // fashion described above. Iterating this will give better and better approximations
1651 // if you have a "good enough" initial guess.
1654 #define JACOBIAN_EPSILON 0.001f
1655 #define INVERSION_MAX_ITERATIONS 30
1657 // Increment with reflexion on boundary
1658 static
1659 void IncDelta(cmsFloat32Number *Val)
1661 if (*Val < (1.0 - JACOBIAN_EPSILON))
1663 *Val += JACOBIAN_EPSILON;
1665 else
1666 *Val -= JACOBIAN_EPSILON;
1672 // Euclidean distance between two vectors of n elements each one
1673 static
1674 cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n)
1676 cmsFloat32Number sum = 0;
1677 int i;
1679 for (i=0; i < n; i++) {
1680 cmsFloat32Number dif = b[i] - a[i];
1681 sum += dif * dif;
1684 return sqrtf(sum);
1688 // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method
1690 // x1 <- x - [J(x)]^-1 * f(x)
1692 // lut: The LUT on where to do the search
1693 // Target: LabK, 3 values of Lab plus destination K which is fixed
1694 // Result: The obtained CMYK
1695 // Hint: Location where begin the search
1697 cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
1698 cmsFloat32Number Result[],
1699 cmsFloat32Number Hint[],
1700 const cmsPipeline* lut)
1702 cmsUInt32Number i, j;
1703 cmsFloat64Number error, LastError = 1E20;
1704 cmsFloat32Number fx[4], x[4], xd[4], fxd[4];
1705 cmsVEC3 tmp, tmp2;
1706 cmsMAT3 Jacobian;
1708 // Only 3->3 and 4->3 are supported
1709 if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE;
1710 if (lut ->OutputChannels != 3) return FALSE;
1712 // Take the hint as starting point if specified
1713 if (Hint == NULL) {
1715 // Begin at any point, we choose 1/3 of CMY axis
1716 x[0] = x[1] = x[2] = 0.3f;
1718 else {
1720 // Only copy 3 channels from hint...
1721 for (j=0; j < 3; j++)
1722 x[j] = Hint[j];
1725 // If Lut is 4-dimensions, then grab target[3], which is fixed
1726 if (lut ->InputChannels == 4) {
1727 x[3] = Target[3];
1729 else x[3] = 0; // To keep lint happy
1732 // Iterate
1733 for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) {
1735 // Get beginning fx
1736 cmsPipelineEvalFloat(x, fx, lut);
1738 // Compute error
1739 error = EuclideanDistance(fx, Target, 3);
1741 // If not convergent, return last safe value
1742 if (error >= LastError)
1743 break;
1745 // Keep latest values
1746 LastError = error;
1747 for (j=0; j < lut ->InputChannels; j++)
1748 Result[j] = x[j];
1750 // Found an exact match?
1751 if (error <= 0)
1752 break;
1754 // Obtain slope (the Jacobian)
1755 for (j = 0; j < 3; j++) {
1757 xd[0] = x[0];
1758 xd[1] = x[1];
1759 xd[2] = x[2];
1760 xd[3] = x[3]; // Keep fixed channel
1762 IncDelta(&xd[j]);
1764 cmsPipelineEvalFloat(xd, fxd, lut);
1766 Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON);
1767 Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON);
1768 Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON);
1771 // Solve system
1772 tmp2.n[0] = fx[0] - Target[0];
1773 tmp2.n[1] = fx[1] - Target[1];
1774 tmp2.n[2] = fx[2] - Target[2];
1776 if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2))
1777 return FALSE;
1779 // Move our guess
1780 x[0] -= (cmsFloat32Number) tmp.n[0];
1781 x[1] -= (cmsFloat32Number) tmp.n[1];
1782 x[2] -= (cmsFloat32Number) tmp.n[2];
1784 // Some clipping....
1785 for (j=0; j < 3; j++) {
1786 if (x[j] < 0) x[j] = 0;
1787 else
1788 if (x[j] > 1.0) x[j] = 1.0;
1792 return TRUE;