revert between 56095 -> 55830 in arch
[AROS.git] / compiler / stdc / math / bsdsrc / b_tgamma.c
blob63d4f7af7225ae96f2ad88a3fdda315c3ae2c92e
1 /*-
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
30 /* @(#)gamma.c 8.1 (Berkeley) 6/4/93 */
31 //__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.10 2008/02/22 02:26:51 das Exp $");
34 * This code by P. McIlroy, Oct 1992;
36 * The financial support of UUNET Communications Services is greatfully
37 * acknowledged.
40 #include <float.h>
41 #include "math.h"
43 #include "mathimpl.h"
45 /* METHOD:
46 * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
47 * At negative integers, return NaN and raise invalid.
49 * x < 6.5:
50 * Use argument reduction G(x+1) = xG(x) to reach the
51 * range [1.066124,2.066124]. Use a rational
52 * approximation centered at the minimum (x0+1) to
53 * ensure monotonicity.
55 * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
56 * adjusted for equal-ripples:
58 * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
60 * Keep extra precision in multiplying (x-.5)(log(x)-1), to
61 * avoid premature round-off.
63 * Special values:
64 * -Inf: return NaN and raise invalid;
65 * negative integer: return NaN and raise invalid;
66 * other x ~< 177.79: return +-0 and raise underflow;
67 * +-0: return +-Inf and raise divide-by-zero;
68 * finite x ~> 171.63: return +Inf and raise overflow;
69 * +Inf: return +Inf;
70 * NaN: return NaN.
72 * Accuracy: tgamma(x) is accurate to within
73 * x > 0: error provably < 0.9ulp.
74 * Maximum observed in 1,000,000 trials was .87ulp.
75 * x < 0:
76 * Maximum observed error < 4ulp in 1,000,000 trials.
79 static double neg_gam(double);
80 static double small_gam(double);
81 static double smaller_gam(double);
82 static struct Double large_gam(double);
83 static struct Double ratfun_gam(double, double);
86 * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
87 * [1.066.., 2.066..] accurate to 4.25e-19.
89 #define LEFT -.3955078125 /* left boundary for rat. approx */
90 #define x0 .461632144968362356785 /* xmin - 1 */
92 #define a0_hi 0.88560319441088874992
93 #define a0_lo -.00000000000000004996427036469019695
94 #define P0 6.21389571821820863029017800727e-01
95 #define P1 2.65757198651533466104979197553e-01
96 #define P2 5.53859446429917461063308081748e-03
97 #define P3 1.38456698304096573887145282811e-03
98 #define P4 2.40659950032711365819348969808e-03
99 #define Q0 1.45019531250000000000000000000e+00
100 #define Q1 1.06258521948016171343454061571e+00
101 #define Q2 -2.07474561943859936441469926649e-01
102 #define Q3 -1.46734131782005422506287573015e-01
103 #define Q4 3.07878176156175520361557573779e-02
104 #define Q5 5.12449347980666221336054633184e-03
105 #define Q6 -1.76012741431666995019222898833e-03
106 #define Q7 9.35021023573788935372153030556e-05
107 #define Q8 6.13275507472443958924745652239e-06
109 * Constants for large x approximation (x in [6, Inf])
110 * (Accurate to 2.8*10^-19 absolute)
112 #define lns2pi_hi 0.418945312500000
113 #define lns2pi_lo -.000006779295327258219670263595
114 #define Pa0 8.33333333333333148296162562474e-02
115 #define Pa1 -2.77777777774548123579378966497e-03
116 #define Pa2 7.93650778754435631476282786423e-04
117 #define Pa3 -5.95235082566672847950717262222e-04
118 #define Pa4 8.41428560346653702135821806252e-04
119 #define Pa5 -1.89773526463879200348872089421e-03
120 #define Pa6 5.69394463439411649408050664078e-03
121 #define Pa7 -1.44705562421428915453880392761e-02
123 static const double zero = 0., one = 1.0, tiny = 1e-300;
125 double
126 tgamma(x)
127 double x;
129 struct Double u;
131 if (x >= 6) {
132 if(x > 171.63)
133 return (x / zero);
134 u = large_gam(x);
135 return(__exp__D(u.a, u.b));
136 } else if (x >= 1.0 + LEFT + x0)
137 return (small_gam(x));
138 else if (x > 1.e-17)
139 return (smaller_gam(x));
140 else if (x > -1.e-17) {
141 if (x != 0.0)
142 u.a = one - tiny; /* raise inexact */
143 return (one/x);
144 } else if (!isfinite(x))
145 return (x - x); /* x is NaN or -Inf */
146 else
147 return (neg_gam(x));
150 * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
152 static struct Double
153 large_gam(x)
154 double x;
156 double z, p;
157 struct Double t, u, v;
159 z = one/(x*x);
160 p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
161 p = p/x;
163 u = __log__D(x);
164 u.a -= one;
165 v.a = (x -= .5);
166 TRUNC(v.a);
167 v.b = x - v.a;
168 t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
169 t.b = v.b*u.a + x*u.b;
170 /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
171 t.b += lns2pi_lo; t.b += p;
172 u.a = lns2pi_hi + t.b; u.a += t.a;
173 u.b = t.a - u.a;
174 u.b += lns2pi_hi; u.b += t.b;
175 return (u);
178 * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
179 * It also has correct monotonicity.
181 static double
182 small_gam(x)
183 double x;
185 double y, ym1, t;
186 struct Double yy, r;
187 y = x - one;
188 ym1 = y - one;
189 if (y <= 1.0 + (LEFT + x0)) {
190 yy = ratfun_gam(y - x0, 0);
191 return (yy.a + yy.b);
193 r.a = y;
194 TRUNC(r.a);
195 yy.a = r.a - one;
196 y = ym1;
197 yy.b = r.b = y - yy.a;
198 /* Argument reduction: G(x+1) = x*G(x) */
199 for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
200 t = r.a*yy.a;
201 r.b = r.a*yy.b + y*r.b;
202 r.a = t;
203 TRUNC(r.a);
204 r.b += (t - r.a);
206 /* Return r*tgamma(y). */
207 yy = ratfun_gam(y - x0, 0);
208 y = r.b*(yy.a + yy.b) + r.a*yy.b;
209 y += yy.a*r.a;
210 return (y);
213 * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
215 static double
216 smaller_gam(x)
217 double x;
219 double t, d;
220 struct Double r, xx;
221 if (x < x0 + LEFT) {
222 t = x, TRUNC(t);
223 d = (t+x)*(x-t);
224 t *= t;
225 xx.a = (t + x), TRUNC(xx.a);
226 xx.b = x - xx.a; xx.b += t; xx.b += d;
227 t = (one-x0); t += x;
228 d = (one-x0); d -= t; d += x;
229 x = xx.a + xx.b;
230 } else {
231 xx.a = x, TRUNC(xx.a);
232 xx.b = x - xx.a;
233 t = x - x0;
234 d = (-x0 -t); d += x;
236 r = ratfun_gam(t, d);
237 d = r.a/x, TRUNC(d);
238 r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
239 return (d + r.a/x);
242 * returns (z+c)^2 * P(z)/Q(z) + a0
244 static struct Double
245 ratfun_gam(z, c)
246 double z, c;
248 double p, q;
249 struct Double r, t;
251 q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
252 p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
254 /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
255 p = p/q;
256 t.a = z, TRUNC(t.a); /* t ~= z + c */
257 t.b = (z - t.a) + c;
258 t.b *= (t.a + z);
259 q = (t.a *= t.a); /* t = (z+c)^2 */
260 TRUNC(t.a);
261 t.b += (q - t.a);
262 r.a = p, TRUNC(r.a); /* r = P/Q */
263 r.b = p - r.a;
264 t.b = t.b*p + t.a*r.b + a0_lo;
265 t.a *= r.a; /* t = (z+c)^2*(P/Q) */
266 r.a = t.a + a0_hi, TRUNC(r.a);
267 r.b = ((a0_hi-r.a) + t.a) + t.b;
268 return (r); /* r = a0 + t */
271 static double
272 neg_gam(x)
273 double x;
275 int sgn = 1;
276 struct Double lg, lsine;
277 double y, z;
279 y = ceil(x);
280 if (y == x) /* Negative integer. */
281 return ((x - x) / zero);
282 z = y - x;
283 if (z > 0.5)
284 z = one - z;
285 y = 0.5 * y;
286 if (y == ceil(y))
287 sgn = -1;
288 if (z < .25)
289 z = sin(M_PI*z);
290 else
291 z = cos(M_PI*(0.5-z));
292 /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
293 if (x < -170) {
294 if (x < -190)
295 return ((double)sgn*tiny*tiny);
296 y = one - x; /* exact: 128 < |x| < 255 */
297 lg = large_gam(y);
298 lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
299 lg.a -= lsine.a; /* exact (opposite signs) */
300 lg.b -= lsine.b;
301 y = -(lg.a + lg.b);
302 z = (y + lg.a) + lg.b;
303 y = __exp__D(y, z);
304 if (sgn < 0) y = -y;
305 return (y);
307 y = one-x;
308 if (one-y == x)
309 y = tgamma(y);
310 else /* 1-x is inexact */
311 y = -x*tgamma(-x);
312 if (sgn < 0) y = -y;
313 return (M_PI / (y*z));
316 #if (LDBL_MANT_DIG == DBL_MANT_DIG)
317 AROS_MAKE_ASM_SYM(typeof(tgammal), tgammal, AROS_CSYM_FROM_ASM_NAME(tgammal), AROS_CSYM_FROM_ASM_NAME(tgamma));
318 AROS_EXPORT_ASM_SYM(AROS_CSYM_FROM_ASM_NAME(tgammal));
319 #endif