2 * Copyright (c) 2011 David Schultz <das@FreeBSD.ORG>
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 static char rcsid
[] = "$FreeBSD: src/lib/msun/src/k_exp.c,v 1.1 2011/10/21 06:27:56 das Exp $";
32 #include "math_private.h"
34 static const uint32_t k
= 1799; /* constant for reduction */
35 static const double kln2
= 1246.97177782734161156; /* k * ln2 */
38 * Compute exp(x), scaled to avoid spurious overflow. An exponent is
39 * returned separately in 'expt'.
41 * Input: ln(DBL_MAX) <= x < ln(2 * DBL_MAX / DBL_MIN_DENORM) ~= 1454.91
42 * Output: 2**1023 <= y < 2**1024
45 __frexp_exp(double x
, int *expt
)
51 * We use exp(x) = exp(x - kln2) * 2**k, carefully chosen to
52 * minimize |exp(kln2) - 2**k|. We also scale the exponent of
53 * exp_x to MAX_EXP so that the result can be multiplied by
54 * a tiny number without losing accuracy due to denormalization.
56 exp_x
= exp(x
- kln2
);
57 GET_HIGH_WORD(hx
, exp_x
);
58 *expt
= (hx
>> 20) - (0x3ff + 1023) + k
;
59 SET_HIGH_WORD(exp_x
, (hx
& 0xfffff) | ((0x3ff + 1023) << 20));
64 * __ldexp_exp(x, expt) and __ldexp_cexp(x, expt) compute exp(x) * 2**expt.
65 * They are intended for large arguments (real part >= ln(DBL_MAX))
66 * where care is needed to avoid overflow.
68 * The present implementation is narrowly tailored for our hyperbolic and
69 * exponential functions. We assume expt is small (0 or -1), and the caller
70 * has filtered out very large x, for which overflow would be inevitable.
74 __ldexp_exp(double x
, int expt
)
79 exp_x
= __frexp_exp(x
, &ex_expt
);
81 INSERT_WORDS(scale
, (0x3ff + expt
) << 20, 0);
82 return (exp_x
* scale
);
86 __ldexp_cexp(double complex z
, int expt
)
88 double x
, y
, exp_x
, scale1
, scale2
;
89 int ex_expt
, half_expt
;
93 exp_x
= __frexp_exp(x
, &ex_expt
);
97 * Arrange so that scale1 * scale2 == 2**expt. We use this to
98 * compensate for scalbn being horrendously slow.
100 half_expt
= expt
/ 2;
101 INSERT_WORDS(scale1
, (0x3ff + half_expt
) << 20, 0);
102 half_expt
= expt
- half_expt
;
103 INSERT_WORDS(scale2
, (0x3ff + half_expt
) << 20, 0);
105 return (CMPLX(cos(y
) * exp_x
* scale1
* scale2
,
106 sin(y
) * exp_x
* scale1
* scale2
));