1 /* $OpenBSD: e_logl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $ */
4 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 * Natural logarithm, long double precision
27 * long double x, y, logl();
35 * Returns the base e (2.718...) logarithm of x.
37 * The argument is separated into its exponent and fractional
38 * parts. If the exponent is between -1 and +1, the logarithm
39 * of the fraction is approximated by
41 * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
43 * Otherwise, setting z = 2(x-1)/x+1),
45 * log(x) = z + z**3 P(z)/Q(z).
52 * arithmetic domain # trials peak rms
53 * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20
54 * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20
56 * In the tests over the interval exp(+-10000), the logarithms
57 * of the random arguments were uniformly distributed over
62 * log singularity: x = 0; returns -INFINITY
63 * log domain: x < 0; returns NAN
68 #include "math_private.h"
70 /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
71 * 1/sqrt(2) <= x < sqrt(2)
72 * Theoretical peak relative error = 2.32e-20
74 static const long double P
[] = {
75 4.5270000862445199635215E-5L,
76 4.9854102823193375972212E-1L,
77 6.5787325942061044846969E0L
,
78 2.9911919328553073277375E1L
,
79 6.0949667980987787057556E1L
,
80 5.7112963590585538103336E1L
,
81 2.0039553499201281259648E1L
,
83 static const long double Q
[] = {
84 /* 1.0000000000000000000000E0,*/
85 1.5062909083469192043167E1L
,
86 8.3047565967967209469434E1L
,
87 2.2176239823732856465394E2L
,
88 3.0909872225312059774938E2L
,
89 2.1642788614495947685003E2L
,
90 6.0118660497603843919306E1L
,
93 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
94 * where z = 2(x-1)/(x+1)
95 * 1/sqrt(2) <= x < sqrt(2)
96 * Theoretical peak relative error = 6.16e-22
99 static const long double R
[4] = {
100 1.9757429581415468984296E-3L,
101 -7.1990767473014147232598E-1L,
102 1.0777257190312272158094E1L
,
103 -3.5717684488096787370998E1L
,
105 static const long double S
[4] = {
106 /* 1.00000000000000000000E0L,*/
107 -2.6201045551331104417768E1L
,
108 1.9361891836232102174846E2L
,
109 -4.2861221385716144629696E2L
,
111 static const long double C1
= 6.9314575195312500000000E-1L;
112 static const long double C2
= 1.4286068203094172321215E-6L;
114 #define SQRTH 0.70710678118654752440L
126 /* Test for domain */
135 /* separate mantissa from exponent */
137 /* Note, frexp is used so that denormal numbers
138 * will be handled properly.
142 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
143 * where z = 2(x-1)/x+1)
145 if( (e
> 2) || (e
< -2) )
148 { /* 2( 2x-1 )/( 2x+1 ) */
154 { /* 2 (x-1)/(x+1) */
161 z
= x
* ( z
* __polevll( z
, (void *)R
, 3 ) / __p1evll( z
, (void *)S
, 3 ) );
169 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
174 x
= ldexpl( x
, 1 ) - 1.0L; /* 2x - 1 */
181 y
= x
* ( z
* __polevll( x
, (void *)P
, 6 ) / __p1evll( x
, (void *)Q
, 6 ) );
183 z
= y
- ldexpl( z
, -1 ); /* y - 0.5 * z */
184 /* Note, the sum of above terms does not exceed x/4,
185 * so it contributes at most about 1/4 lsb to the error.
188 z
= z
+ e
* C1
; /* This sum has an error of 1/2 lsb. */