revert between 56095 -> 55830 in arch
[AROS.git] / compiler / stdc / math / s_cbrt.c
blob95236e71f87163250bed9a00da07bb6c4e3eeba1
1 /* @(#)s_cbrt.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 * Optimized by Bruce D. Evans.
15 #ifndef lint
16 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_cbrt.c,v 1.17 2011/03/12 16:50:39 kargl Exp $";
17 #endif
19 #include <float.h>
20 #include "math.h"
21 #include "math_private.h"
23 /* cbrt(x)
24 * Return cube root of x
26 static const uint32_t
27 B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
28 B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
30 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
31 static const double
32 P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
33 P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
34 P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
35 P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
36 P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
38 double
39 cbrt(double x)
41 int32_t hx;
42 union {
43 double value;
44 uint64_t bits;
45 } u;
46 double r,s,t=0.0,w;
47 uint32_t sign;
48 uint32_t high,low;
50 EXTRACT_WORDS(hx,low,x);
51 sign=hx&0x80000000; /* sign= sign(x) */
52 hx ^=sign;
53 if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
56 * Rough cbrt to 5 bits:
57 * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
58 * where e is integral and >= 0, m is real and in [0, 1), and "/" and
59 * "%" are integer division and modulus with rounding towards minus
60 * infinity. The RHS is always >= the LHS and has a maximum relative
61 * error of about 1 in 16. Adding a bias of -0.03306235651 to the
62 * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
63 * floating point representation, for finite positive normal values,
64 * ordinary integer division of the value in bits magically gives
65 * almost exactly the RHS of the above provided we first subtract the
66 * exponent bias (1023 for doubles) and later add it back. We do the
67 * subtraction virtually to keep e >= 0 so that ordinary integer
68 * division rounds towards minus infinity; this is also efficient.
70 if(hx<0x00100000) { /* zero or subnormal? */
71 if((hx|low)==0)
72 return(x); /* cbrt(0) is itself */
73 SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
74 t*=x;
75 GET_HIGH_WORD(high,t);
76 INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
77 } else
78 INSERT_WORDS(t,sign|(hx/3+B1),0);
81 * New cbrt to 23 bits:
82 * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
83 * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
84 * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
85 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
86 * gives us bounds for r = t**3/x.
88 * Try to optimize for parallel evaluation as in k_tanf.c.
90 r=(t*t)*(t/x);
91 t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
94 * Round t away from zero to 23 bits (sloppily except for ensuring that
95 * the result is larger in magnitude than cbrt(x) but not much more than
96 * 2 23-bit ulps larger). With rounding towards zero, the error bound
97 * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
98 * in the rounded t, the infinite-precision error in the Newton
99 * approximation barely affects third digit in the final error
100 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
101 * before the final error is larger than 0.667 ulps.
103 u.value=t;
104 u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
105 t=u.value;
107 /* one step Newton iteration to 53 bits with error < 0.667 ulps */
108 s=t*t; /* t*t is exact */
109 r=x/s; /* error <= 0.5 ulps; |r| < |t| */
110 w=t+t; /* t+t is exact */
111 r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
112 t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
114 return(t);
117 #if LDBL_MANT_DIG == DBL_MANT_DIG
118 AROS_MAKE_ASM_SYM(typeof(cbrtl), cbrtl, AROS_CSYM_FROM_ASM_NAME(cbrtl), AROS_CSYM_FROM_ASM_NAME(cbrt));
119 AROS_EXPORT_ASM_SYM(AROS_CSYM_FROM_ASM_NAME(cbrtl));
120 #endif