2 * Copyright (c) 2011 David Schultz
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * Hyperbolic tangent of a complex argument z = x + i y.
30 * The algorithm is from:
32 * W. Kahan. Branch Cuts for Complex Elementary Functions or Much
33 * Ado About Nothing's Sign Bit. In The State of the Art in
34 * Numerical Analysis, pp. 165 ff. Iserles and Powell, eds., 1987.
45 * tanh(z) = sinh(z) / cosh(z)
47 * sinh(x) cos(y) + i cosh(x) sin(y)
48 * = ---------------------------------
49 * cosh(x) cos(y) + i sinh(x) sin(y)
51 * cosh(x) sinh(x) / cos^2(y) + i tan(y)
52 * = -------------------------------------
53 * 1 + sinh^2(x) / cos^2(y)
61 * I omitted the original algorithm's handling of overflow in tan(x) after
62 * verifying with nearpi.c that this can't happen in IEEE single or double
63 * precision. I also handle large x differently.
66 //__FBSDID("$FreeBSD: src/lib/msun/src/s_ctanh.c,v 1.2 2011/10/21 06:30:16 das Exp $");
72 #include "math_private.h"
75 ctanh(double complex z
)
78 double t
, beta
, s
, rho
, denom
;
84 EXTRACT_WORDS(hx
, lx
, x
);
88 * ctanh(NaN +- I 0) = d(NaN) +- I 0
90 * ctanh(NaN + I y) = d(NaN,y) + I d(NaN,y) for y != 0
92 * The imaginary part has the sign of x*sin(2*y), but there's no
93 * special effort to get this right.
95 * ctanh(+-Inf +- I Inf) = +-1 +- I 0
97 * ctanh(+-Inf + I y) = +-1 + I 0 sin(2y) for y finite
99 * The imaginary part of the sign is unspecified. This special
100 * case is only needed to avoid a spurious invalid exception when
103 if (ix
>= 0x7ff00000) {
104 if ((ix
& 0xfffff) | lx
) /* x is NaN */
105 return (CMPLX((x
+ 0) * (y
+ 0),
106 y
== 0 ? y
: (x
+ 0) * (y
+ 0)));
107 SET_HIGH_WORD(x
, hx
- 0x40000000); /* x = copysign(1, x) */
108 return (CMPLX(x
, copysign(0, isinf(y
) ? y
: sin(y
) * cos(y
))));
112 * ctanh(x + I NaN) = d(NaN) + I d(NaN)
113 * ctanh(x +- I Inf) = dNaN + I dNaN
116 return (CMPLX(y
- y
, y
- y
));
119 * ctanh(+-huge +- I y) ~= +-1 +- I 2sin(2y)/exp(2x), using the
120 * approximation sinh^2(huge) ~= exp(2*huge) / 4.
121 * We use a modified formula to avoid spurious overflow.
123 if (ix
>= 0x40360000) { /* |x| >= 22 */
124 double exp_mx
= exp(-fabs(x
));
125 return (CMPLX(copysign(1, x
),
126 4 * sin(y
) * cos(y
) * exp_mx
* exp_mx
));
129 /* Kahan's algorithm */
131 beta
= 1.0 + t
* t
; /* = 1 / cos^2(y) */
133 rho
= sqrt(1 + s
* s
); /* = cosh(x) */
134 denom
= 1 + beta
* s
* s
;
135 return (CMPLX((beta
* rho
* s
) / denom
, t
/ denom
));
138 #if LDBL_MANT_DIG == DBL_MANT_DIG
139 AROS_MAKE_ASM_SYM(typeof(ctanhl
), ctanhl
, AROS_CSYM_FROM_ASM_NAME(ctanhl
), AROS_CSYM_FROM_ASM_NAME(ctanh
));
140 AROS_EXPORT_ASM_SYM(AROS_CSYM_FROM_ASM_NAME(ctanhl
));
141 #endif /* LDBL_MANT_DIG == DBL_MANT_DIG */