revert between 56095 -> 55830 in arch
[AROS.git] / compiler / stdc / math / s_fma.c
blobaf16b72adf58446fb3d08d911e6f7a6391646901
1 /*-
2 * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
27 __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.8 2011/10/21 06:30:43 das Exp $");
29 #include <aros/system.h>
31 #include <fenv.h>
32 #include <float.h>
34 #include "math.h"
35 #include "math_private.h"
38 * A struct dd represents a floating-point number with twice the precision
39 * of a double. We maintain the invariant that "hi" stores the 53 high-order
40 * bits of the result.
42 struct dd {
43 double hi;
44 double lo;
48 * Compute a+b exactly, returning the exact result in a struct dd. We assume
49 * that both a and b are finite, but make no assumptions about their relative
50 * magnitudes.
52 static inline struct dd
53 dd_add(double a, double b)
55 struct dd ret;
56 double s;
58 ret.hi = a + b;
59 s = ret.hi - a;
60 ret.lo = (a - (ret.hi - s)) + (b - s);
61 return (ret);
65 * Compute a+b, with a small tweak: The least significant bit of the
66 * result is adjusted into a sticky bit summarizing all the bits that
67 * were lost to rounding. This adjustment negates the effects of double
68 * rounding when the result is added to another number with a higher
69 * exponent. For an explanation of round and sticky bits, see any reference
70 * on FPU design, e.g.,
72 * J. Coonen. An Implementation Guide to a Proposed Standard for
73 * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
75 static inline double
76 add_adjusted(double a, double b)
78 struct dd sum;
79 uint64_t hibits, lobits;
81 sum = dd_add(a, b);
82 if (sum.lo != 0) {
83 EXTRACT_WORD64(hibits, sum.hi);
84 if ((hibits & 1) == 0) {
85 /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
86 EXTRACT_WORD64(lobits, sum.lo);
87 hibits += 1 - ((hibits ^ lobits) >> 62);
88 INSERT_WORD64(sum.hi, hibits);
91 return (sum.hi);
95 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
96 * that the result will be subnormal, and care is taken to ensure that
97 * double rounding does not occur.
99 static inline double
100 add_and_denormalize(double a, double b, int scale)
102 struct dd sum;
103 uint64_t hibits, lobits;
104 int bits_lost;
106 sum = dd_add(a, b);
109 * If we are losing at least two bits of accuracy to denormalization,
110 * then the first lost bit becomes a round bit, and we adjust the
111 * lowest bit of sum.hi to make it a sticky bit summarizing all the
112 * bits in sum.lo. With the sticky bit adjusted, the hardware will
113 * break any ties in the correct direction.
115 * If we are losing only one bit to denormalization, however, we must
116 * break the ties manually.
118 if (sum.lo != 0) {
119 EXTRACT_WORD64(hibits, sum.hi);
120 bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
121 if ((bits_lost != 1) ^ (int)(hibits & 1)) {
122 /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
123 EXTRACT_WORD64(lobits, sum.lo);
124 hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
125 INSERT_WORD64(sum.hi, hibits);
128 return (ldexp(sum.hi, scale));
132 * Compute a*b exactly, returning the exact result in a struct dd. We assume
133 * that both a and b are normalized, so no underflow or overflow will occur.
134 * The current rounding mode must be round-to-nearest.
136 static inline struct dd
137 dd_mul(double a, double b)
139 static const double split = 0x1p27 + 1.0;
140 struct dd ret;
141 double ha, hb, la, lb, p, q;
143 p = a * split;
144 ha = a - p;
145 ha += p;
146 la = a - ha;
148 p = b * split;
149 hb = b - p;
150 hb += p;
151 lb = b - hb;
153 p = ha * hb;
154 q = ha * lb + la * hb;
156 ret.hi = p + q;
157 ret.lo = p - ret.hi + q + la * lb;
158 return (ret);
162 * Fused multiply-add: Compute x * y + z with a single rounding error.
164 * We use scaling to avoid overflow/underflow, along with the
165 * canonical precision-doubling technique adapted from:
167 * Dekker, T. A Floating-Point Technique for Extending the
168 * Available Precision. Numer. Math. 18, 224-242 (1971).
170 * This algorithm is sensitive to the rounding precision. FPUs such
171 * as the i387 must be set in double-precision mode if variables are
172 * to be stored in FP registers in order to avoid incorrect results.
173 * This is the default on FreeBSD, but not on many other systems.
175 * Hardware instructions should be used on architectures that support it,
176 * since this implementation will likely be several times slower.
179 double
180 fma(double x, double y, double z)
182 double xs, ys, zs, adj;
183 struct dd xy, r;
184 int oround;
185 int ex, ey, ez;
186 int spread;
189 * Handle special cases. The order of operations and the particular
190 * return values here are crucial in handling special cases involving
191 * infinities, NaNs, overflows, and signed zeroes correctly.
193 if (x == 0.0 || y == 0.0)
194 return (x * y + z);
195 if (z == 0.0)
196 return (x * y);
197 if (!isfinite(x) || !isfinite(y))
198 return (x * y + z);
199 if (!isfinite(z))
200 return (z);
202 xs = frexp(x, &ex);
203 ys = frexp(y, &ey);
204 zs = frexp(z, &ez);
205 oround = fegetround();
206 spread = ex + ey - ez;
209 * If x * y and z are many orders of magnitude apart, the scaling
210 * will overflow, so we handle these cases specially. Rounding
211 * modes other than FE_TONEAREST are painful.
213 if (spread < -DBL_MANT_DIG) {
214 feraiseexcept(FE_INEXACT);
215 if (!isnormal(z))
216 feraiseexcept(FE_UNDERFLOW);
217 switch (oround) {
218 case FE_TONEAREST:
219 return (z);
220 case FE_TOWARDZERO:
221 if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
222 return (z);
223 else
224 return (nextafter(z, 0));
225 case FE_DOWNWARD:
226 if (x > 0.0 ^ y < 0.0)
227 return (z);
228 else
229 return (nextafter(z, -INFINITY));
230 default: /* FE_UPWARD */
231 if (x > 0.0 ^ y < 0.0)
232 return (nextafter(z, INFINITY));
233 else
234 return (z);
237 if (spread <= DBL_MANT_DIG * 2)
238 zs = ldexp(zs, -spread);
239 else
240 zs = copysign(DBL_MIN, zs);
242 fesetround(FE_TONEAREST);
243 /* work around clang bug 8100 */
244 volatile double vxs = xs;
247 * Basic approach for round-to-nearest:
249 * (xy.hi, xy.lo) = x * y (exact)
250 * (r.hi, r.lo) = xy.hi + z (exact)
251 * adj = xy.lo + r.lo (inexact; low bit is sticky)
252 * result = r.hi + adj (correctly rounded)
254 xy = dd_mul(vxs, ys);
255 r = dd_add(xy.hi, zs);
257 spread = ex + ey;
259 if (r.hi == 0.0) {
261 * When the addends cancel to 0, ensure that the result has
262 * the correct sign.
264 fesetround(oround);
265 volatile double vzs = zs; /* XXX gcc CSE bug workaround */
266 return (xy.hi + vzs + ldexp(xy.lo, spread));
269 if (oround != FE_TONEAREST) {
271 * There is no need to worry about double rounding in directed
272 * rounding modes.
274 fesetround(oround);
275 /* work around clang bug 8100 */
276 volatile double vrlo = r.lo;
277 adj = vrlo + xy.lo;
278 return (ldexp(r.hi + adj, spread));
281 adj = add_adjusted(r.lo, xy.lo);
282 if (spread + ilogb(r.hi) > -1023)
283 return (ldexp(r.hi + adj, spread));
284 else
285 return (add_and_denormalize(r.hi, adj, spread));
288 #if (LDBL_MANT_DIG == 53)
289 /* Alias fma -> fmal */
290 AROS_MAKE_ASM_SYM(typeof(fmal), fmal, AROS_CSYM_FROM_ASM_NAME(fmal), AROS_CSYM_FROM_ASM_NAME(fma));
291 AROS_EXPORT_ASM_SYM(AROS_CSYM_FROM_ASM_NAME(fmal));
292 #endif