2 Copyright © 1995-2017, The AROS Development Team. All rights reserved.
6 #include <aros/debug.h>
7 #include <exec/rawfmt.h>
8 #include <exec/memheaderext.h>
10 #include "exec_intern.h"
11 #include "exec_util.h"
19 * Find MemHeader to which address belongs.
20 * This function is legal to be called in supervisor mode (we use TypeOfMem()
21 * in order to validate addresses in tons of places). So, here are checks.
23 struct MemHeader
*FindMem(APTR address
, struct ExecBase
*SysBase
)
25 int usermode
= (KernelBase
!= NULL
) && (KrnIsSuper() == 0);
28 /* Nobody should change the memory list now. */
29 if (usermode
) MEM_LOCK_SHARED
;
31 /* Follow the list of MemHeaders */
32 mh
= (struct MemHeader
*)SysBase
->MemList
.lh_Head
;
34 while (mh
->mh_Node
.ln_Succ
!= NULL
)
38 struct MemHeaderExt
*mhe
= (struct MemHeaderExt
*)mh
;
40 if (mhe
->mhe_InBounds
)
42 if (mhe
->mhe_InBounds(mhe
, address
, address
))
44 if (usermode
) MEM_UNLOCK
;
51 /* Check if this MemHeader fits */
52 if (address
>= mh
->mh_Lower
&& address
< mh
->mh_Upper
)
55 if (usermode
) MEM_UNLOCK
;
59 /* Go to next MemHeader */
60 mh
= (struct MemHeader
*)mh
->mh_Node
.ln_Succ
;
63 if (usermode
) MEM_UNLOCK
;
67 char *FormatMMContext(char *buffer
, struct MMContext
*ctx
, struct ExecBase
*SysBase
)
70 buffer
= NewRawDoFmt("In %s, block at 0x%p, size %lu", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->func
, ctx
->addr
, ctx
->size
) - 1;
72 buffer
= NewRawDoFmt("In %s, size %lu", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->func
, ctx
->size
) - 1;
76 buffer
= NewRawDoFmt("\nCorrupted MemChunk 0x%p (next 0x%p, size %lu)", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->mc
, ctx
->mc
->mc_Next
, ctx
->mc
->mc_Bytes
) - 1;
79 buffer
= NewRawDoFmt("\nPrevious MemChunk 0x%p (next 0x%p, size %lu)", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->mcPrev
, ctx
->mcPrev
->mc_Next
, ctx
->mcPrev
->mc_Bytes
) - 1;
82 /* Print MemHeader details */
83 buffer
= NewRawDoFmt("\nMemHeader 0x%p (0x%p - 0x%p)", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->mh
, ctx
->mh
->mh_Lower
, ctx
->mh
->mh_Upper
) - 1;
84 if ((IPTR
)ctx
->mh
->mh_First
& (MEMCHUNK_TOTAL
- 1))
85 buffer
= NewRawDoFmt("\n- Unaligned first chunk address (0x%p)", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->mh
->mh_First
) - 1;
87 if (ctx
->mh
->mh_Free
& (MEMCHUNK_TOTAL
- 1))
88 buffer
= NewRawDoFmt("\n- Unaligned free space count (0x%p)", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->mh
->mh_Free
) - 1;
90 if (ctx
->mh
->mh_First
)
92 if ((APTR
)ctx
->mh
->mh_First
< ctx
->mh
->mh_Lower
)
93 buffer
= NewRawDoFmt("\n- First chunk (0x%p) below lower address", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->mh
->mh_First
) - 1;
95 if (((APTR
)ctx
->mh
->mh_First
+ ctx
->mh
->mh_Free
> ctx
->mh
->mh_Upper
))
96 buffer
= NewRawDoFmt("\n- Free space count too large (%lu, first chunk 0x%xp)", (VOID_FUNC
)RAWFMTFUNC_STRING
, buffer
, ctx
->mh
->mh_Free
, ctx
->mh
->mh_First
) - 1;
102 /* #define NO_ALLOCATOR_CONTEXT */
104 #ifdef NO_ALLOCATOR_CONTEXT
106 struct MemHeaderAllocatorCtx
* mhac_GetSysCtx(struct MemHeader
* mh
, struct ExecBase
* SysBase
)
111 void mhac_PoolMemHeaderSetup(struct MemHeader
* mh
, struct ProtectedPool
* pool
)
113 mh
->mh_Node
.ln_Name
= (STRPTR
)pool
;
116 ULONG
mhac_GetCtxSize()
121 void mhac_ClearSysCtx(struct MemHeader
* mh
, struct ExecBase
* SysBase
)
125 #define mhac_MemChunkClaimed(a, b)
126 #define mhac_IsIndexEmpty(a) (TRUE)
127 #define mhac_ClearIndex(a)
128 #define mhac_MemChunkCreated(a, b, c) { (void)b; }
129 #define mhac_GetBetterPrevMemChunk(a, b, c) (a)
130 #define mhac_GetCloserPrevMemChunk(a, b, c) (a)
131 #define mhac_PoolMemHeaderGetCtx(a) (NULL)
132 #define mhac_PoolMemHeaderGetPool(a) (a->mh_Node.ln_Name)
135 /* Allocator optimization support */
138 * The array contains pointers to chunk previous to first chunk of at least size N
140 * N = 1 << (FIRSTPOTBIT + (i * POTSTEP)), where i is index in array
141 * first is defined as MemChunk with lowest address
143 * Each chunk in array locates the place where search should start, not necesarly
144 * where allocation should happen.
146 * If chunk is taken from MemHeader and is present in the index, it must be removed
149 * If chunk is returned to MemHeader it may be registered with index.
152 #define FIRSTPOTBIT (5)
153 #define FIRSTPOT (1 << FIRSTPOTBIT)
154 #define POTSTEP (1) /* Distance between each level */
155 #define ALLOCATORCTXINDEXSIZE (10) /* Number of levels in index */
157 struct MemHeaderAllocatorCtx
159 struct Node mhac_Node
;
160 struct MemHeader
*mhac_MemHeader
;
163 ULONG mhac_IndexSize
;
164 struct MemChunk
*mhac_PrevChunks
[ALLOCATORCTXINDEXSIZE
];
167 ULONG
mhac_GetCtxSize()
169 return (AROS_ROUNDUP2(sizeof(struct MemHeaderAllocatorCtx
), MEMCHUNK_TOTAL
));
172 static BOOL
mhac_IsIndexEmpty(struct MemHeaderAllocatorCtx
* mhac
)
178 for (i
= 0; i
< mhac
->mhac_IndexSize
; i
++)
179 if (mhac
->mhac_PrevChunks
[i
] != NULL
)
185 static void mhac_ClearIndex(struct MemHeaderAllocatorCtx
* mhac
)
192 for (i
= 0; i
< ALLOCATORCTXINDEXSIZE
; i
++)
193 mhac
->mhac_PrevChunks
[i
] = NULL
;
196 static void mhac_SetupMemHeaderAllocatorCtx(struct MemHeader
* mh
, ULONG maxindexsize
,
197 struct MemHeaderAllocatorCtx
* mhac
)
199 /* Adjust index size to space in MemHeader */
200 IPTR size
= (IPTR
)mh
->mh_Upper
- (IPTR
)mh
->mh_Lower
;
203 size
= size
>> FIRSTPOTBIT
;
204 size
= size
>> POTSTEP
;
206 for (; size
> 0; size
= size
>> POTSTEP
) indexsize
++;
208 if (indexsize
< 0) indexsize
= 0;
209 if (indexsize
> maxindexsize
) indexsize
= maxindexsize
;
210 if (indexsize
> ALLOCATORCTXINDEXSIZE
) indexsize
= ALLOCATORCTXINDEXSIZE
;
212 mhac
->mhac_MemHeader
= mh
;
213 mhac
->mhac_IndexSize
= indexsize
;
214 mhac_ClearIndex(mhac
);
217 void mhac_ClearSysCtx(struct MemHeader
* mh
, struct ExecBase
* SysBase
)
219 struct MemHeaderAllocatorCtx
* mhac
= NULL
;
221 ForeachNode(&PrivExecBase(SysBase
)->AllocatorCtxList
, mhac
)
223 if (mhac
->mhac_MemHeader
== mh
)
225 mhac_ClearIndex(mhac
);
231 struct MemHeaderAllocatorCtx
* mhac_GetSysCtx(struct MemHeader
* mh
, struct ExecBase
* SysBase
)
233 struct MemHeaderAllocatorCtx
* mhac
= NULL
;
235 ForeachNode(&PrivExecBase(SysBase
)->AllocatorCtxList
, mhac
)
237 if (mhac
->mhac_MemHeader
== mh
)
241 /* New context is needed */
242 mhac
= Allocate(mh
, sizeof(struct MemHeaderAllocatorCtx
));
243 mhac_SetupMemHeaderAllocatorCtx(mh
, ALLOCATORCTXINDEXSIZE
, mhac
);
244 AddTail(&PrivExecBase(SysBase
)->AllocatorCtxList
, (struct Node
*)mhac
);
249 static void mhac_MemChunkClaimed(struct MemChunk
* mc
, struct MemHeaderAllocatorCtx
* mhac
)
256 for (i
= 0; i
< mhac
->mhac_IndexSize
; i
++)
258 if (mhac
->mhac_PrevChunks
[i
] != NULL
&&
259 (mhac
->mhac_PrevChunks
[i
] == mc
|| mhac
->mhac_PrevChunks
[i
]->mc_Next
== mc
))
261 mhac
->mhac_PrevChunks
[i
] = NULL
;
266 static LONG
mhac_CalcIndex(LONG size
, ULONG indexsize
)
269 size
>>= FIRSTPOTBIT
;
273 if (r
> indexsize
- 1) r
= indexsize
- 1;
278 static void mhac_MemChunkCreated(struct MemChunk
* mc
, struct MemChunk
*mcprev
, struct MemHeaderAllocatorCtx
* mhac
)
280 LONG i
, v
= FIRSTPOT
;
282 if (mc
->mc_Bytes
< FIRSTPOT
) /* Allocation too small for index */
288 for (i
= 0; i
< mhac
->mhac_IndexSize
; i
++, v
= v
<< POTSTEP
)
290 if (mc
->mc_Bytes
< v
)
291 break; /* Chunk smaller than index at i. Stop */
293 /* If no chunk in index or given passed chunk has lower address than chunk in index */
294 if (mhac
->mhac_PrevChunks
[i
] == NULL
||
295 (mhac
->mhac_PrevChunks
[i
] != NULL
&& mhac
->mhac_PrevChunks
[i
]->mc_Next
> mc
))
297 mhac
->mhac_PrevChunks
[i
] = mcprev
;
303 * Function returned pointer to chunk that is prev to chunk that will allow
304 * to locate faster chunk big enough for allocation. Function never returns NULL.
305 * Current implementation:
306 * Function returns pointer to chunk that is prev to first biggest chunk,
307 * not bigger than requested size
309 static struct MemChunk
* mhac_GetBetterPrevMemChunk(struct MemChunk
* prev
, IPTR size
, struct MemHeaderAllocatorCtx
* mhac
)
311 struct MemChunk
* _return
= prev
;
314 return _return
; /* Allocation too small for index */
319 LONG ii
= mhac_CalcIndex(size
, mhac
->mhac_IndexSize
);
321 if (mhac
->mhac_PrevChunks
[ii
] != NULL
)
322 _return
= mhac
->mhac_PrevChunks
[ii
];
325 for (i
= ii
- 1; i
>= 0; i
--)
327 if (mhac
->mhac_PrevChunks
[i
] != NULL
)
329 _return
= mhac
->mhac_PrevChunks
[i
];
339 static struct MemChunk
* mhac_GetCloserPrevMemChunk(struct MemChunk
* prev
, APTR addr
, struct MemHeaderAllocatorCtx
* mhac
)
341 struct MemChunk
* _return
= prev
;
347 for (i
= 0; i
< mhac
->mhac_IndexSize
; i
++)
349 if (mhac
->mhac_PrevChunks
[i
] != NULL
&&
350 (APTR
)mhac
->mhac_PrevChunks
[i
]->mc_Next
< addr
&&
351 mhac
->mhac_PrevChunks
[i
]->mc_Next
> _return
->mc_Next
)
353 _return
= mhac
->mhac_PrevChunks
[i
];
362 * Enhace MemHeader that is part of pool with MemHeaderAllocatorContext
364 void mhac_PoolMemHeaderSetup(struct MemHeader
* mh
, struct ProtectedPool
* pool
)
366 struct MemHeaderAllocatorCtx
* mhac
= Allocate(mh
, sizeof(struct MemHeaderAllocatorCtx
));
368 mhac_SetupMemHeaderAllocatorCtx(mh
, 5, mhac
);
370 mhac
->mhac_Data1
= pool
;
371 mh
->mh_Node
.ln_Name
= (STRPTR
)mhac
;
374 #define mhac_PoolMemHeaderGetCtx(a) ((struct MemHeaderAllocatorCtx *)(a->mh_Node.ln_Name))
375 #define mhac_PoolMemHeaderGetPool(a) (mhac_PoolMemHeaderGetCtx(a)->mhac_Data1)
380 #ifdef NO_CONSISTENCY_CHECKS
382 #define validateHeader(mh, op, addr, size, SysBase) TRUE
383 #define validateChunk(mc, prev, mh, op, addr, size, SysBase) TRUE
387 static ULONG memAlerts
[] =
389 AT_DeadEnd
|AN_MemoryInsane
, /* MM_ALLOC */
390 AT_DeadEnd
|AN_MemCorrupt
, /* MM_FREE */
391 AN_FreeTwice
/* MM_OVERLAP */
395 * MemHeader validation routine. Rules are:
397 * 1. Both mh_First and mh_Free must be MEMCHUNK_TOTAL-aligned.
398 * 2. Free space (if present) must completely fit in between mh_Lower and mh_Upper.
399 * We intentionally don't check header's own location. We assume that in future we'll
400 * be able to put MEMF_CHIP headers inside MEMF_FAST memory, for speed up.
402 static BOOL
validateHeader(struct MemHeader
*mh
, UBYTE op
, APTR addr
, IPTR size
, struct TraceLocation
*tp
, struct ExecBase
*SysBase
)
404 if (((IPTR
)mh
->mh_First
& (MEMCHUNK_TOTAL
- 1)) || (mh
->mh_Free
& (MEMCHUNK_TOTAL
- 1)) || /* 1 */
406 (((APTR
)mh
->mh_First
< mh
->mh_Lower
) || ((APTR
)mh
->mh_First
+ mh
->mh_Free
> mh
->mh_Upper
)))) /* 2 */
410 /* TraceLocation is not supplied by PrepareExecBase(). Fail silently. */
411 struct MMContext alertData
;
415 alertData
.mcPrev
= NULL
;
416 alertData
.func
= tp
->function
;
417 alertData
.addr
= addr
;
418 alertData
.size
= size
;
421 Exec_ExtAlert(memAlerts
[op
], tp
->caller
, tp
->stack
, AT_MEMORY
, &alertData
, SysBase
);
425 * Theoretically during very early boot we can fail to post an alert (no KernelBase yet).
426 * In this case we return with fault indication.
434 * MemChunk consistency check. Rules are:
436 * 1. Both mc_Next and mc_Bytes must me MEMCHUNK_TOTAL-aligned, and mc_Bytes can not be zero.
437 * 2. End of this chunk must not be greater than mh->mh_Upper
438 * 3. mc_Next (if present) must point in between end of this chunk and mh->mh_Upper - MEMCHUNK_TOTAL.
439 * There must be at least MEMHCUNK_TOTAL allocated bytes between free chunks.
441 * This function is inlined for speed improvements.
443 static inline BOOL
validateChunk(struct MemChunk
*p2
, struct MemChunk
*p1
, struct MemHeader
*mh
,
444 UBYTE op
, APTR addr
, IPTR size
,
445 struct TraceLocation
*tp
, struct ExecBase
*SysBase
)
447 if (((IPTR
)p2
->mc_Next
& (MEMCHUNK_TOTAL
-1)) || (p2
->mc_Bytes
== 0) || (p2
->mc_Bytes
& (MEMCHUNK_TOTAL
-1)) || /* 1 */
448 ((APTR
)p2
+ p2
->mc_Bytes
> mh
->mh_Upper
) || /* 2 */
449 (p2
->mc_Next
&& (((APTR
)p2
->mc_Next
< (APTR
)p2
+ p2
->mc_Bytes
+ MEMCHUNK_TOTAL
) || /* 3 */
450 ((APTR
)p2
->mc_Next
> mh
->mh_Upper
- MEMCHUNK_TOTAL
))))
454 struct MMContext alertData
;
458 alertData
.mcPrev
= (p1
== (struct MemChunk
*)&mh
->mh_First
) ? NULL
: p1
;
459 alertData
.func
= tp
->function
;
460 alertData
.addr
= addr
;
461 alertData
.size
= size
;
464 Exec_ExtAlert(memAlerts
[op
], tp
->caller
, tp
->stack
, AT_MEMORY
, &alertData
, SysBase
);
475 * Allocate block from the given MemHeader in a specific way.
476 * This routine can be called with SysBase = NULL.
477 * MemHeaderAllocatorCtx
478 * This parameter is optional, allocation needs to work without it as well.
479 * However if it was passed once for a given MemHeader it needs to be passed
480 * in all consecutive calls.
482 APTR
stdAlloc(struct MemHeader
*mh
, struct MemHeaderAllocatorCtx
*mhac
, IPTR size
,
483 ULONG requirements
, struct TraceLocation
*tp
, struct ExecBase
*SysBase
)
486 * The check has to be done for the second time. Exec uses stdAlloc on memheader
487 * passed upon startup. This is bad, very bad. So here a temporary hack :)
489 if ((mh
->mh_Node
.ln_Type
== NT_MEMORY
) && IsManagedMem(mh
))
491 struct MemHeaderExt
*mhe
= (struct MemHeaderExt
*)mh
;
495 return mhe
->mhe_Alloc(mhe
, size
, &requirements
);
502 /* First round byteSize up to a multiple of MEMCHUNK_TOTAL */
503 IPTR byteSize
= AROS_ROUNDUP2(size
, MEMCHUNK_TOTAL
);
504 struct MemChunk
*mc
=NULL
, *p1
, *p2
;
506 /* Validate MemHeader before doing anything. */
507 if (!validateHeader(mh
, MM_ALLOC
, NULL
, size
, tp
, SysBase
))
510 /* Validate if there is even enough total free memory */
511 if (mh
->mh_Free
< byteSize
)
516 * The free memory list is only single linked, i.e. to remove
517 * elements from the list I need the node's predecessor. For the
518 * first element I can use mh->mh_First instead of a real predecessor.
520 p1
= mhac_GetBetterPrevMemChunk((struct MemChunk
*)&mh
->mh_First
, size
, mhac
);
524 * Follow the memory list. p1 is the previous MemChunk, p2 is the current one.
525 * On 1st pass p1 points to mh->mh_First, so that changing p1->mc_Next actually
526 * changes mh->mh_First.
530 /* Validate the current chunk */
531 if (!validateChunk(p2
, p1
, mh
, MM_ALLOC
, NULL
, size
, tp
, SysBase
))
534 /* Check if the current block is large enough */
535 if (p2
->mc_Bytes
>=byteSize
)
540 /* Use this one if MEMF_REVERSE is not set.*/
541 if (!(requirements
& MEMF_REVERSE
))
543 /* Else continue - there may be more to come. */
546 /* Go to next block */
551 /* Something found? */
554 /* Remember: if MEMF_REVERSE is set p1 and p2 are now invalid. */
558 mhac_MemChunkClaimed(p2
, mhac
);
560 /* Remove the block from the list and return it. */
561 if (p2
->mc_Bytes
== byteSize
)
563 /* Fits exactly. Just relink the list. */
564 p1
->mc_Next
= p2
->mc_Next
;
569 struct MemChunk
* pp
= p1
;
571 if (requirements
& MEMF_REVERSE
)
573 /* Return the last bytes. */
575 mc
= (struct MemChunk
*)((UBYTE
*)p2
+p2
->mc_Bytes
-byteSize
);
579 /* Return the first bytes. */
580 p1
->mc_Next
=(struct MemChunk
*)((UBYTE
*)p2
+byteSize
);
585 p1
->mc_Next
= p2
->mc_Next
;
586 p1
->mc_Bytes
= p2
->mc_Bytes
-byteSize
;
588 mhac_MemChunkCreated(p1
, pp
, mhac
);
591 mh
->mh_Free
-= byteSize
;
593 /* Clear the block if requested */
594 if (requirements
& MEMF_CLEAR
)
595 memset(mc
, 0, byteSize
);
599 if (!mhac_IsIndexEmpty(mhac
))
602 * Since chunks created during deallocation are not returned to index,
603 * retry with cleared index.
605 mhac_ClearIndex(mhac
);
606 mc
= stdAlloc(mh
, mhac
, size
, requirements
, tp
, SysBase
);
615 * Free 'byteSize' bytes starting at 'memoryBlock' belonging to MemHeader 'freeList'
616 * MemHeaderAllocatorCtx
619 void stdDealloc(struct MemHeader
*freeList
, struct MemHeaderAllocatorCtx
*mhac
, APTR addr
, IPTR size
, struct TraceLocation
*tp
, struct ExecBase
*SysBase
)
623 struct MemChunk
*p1
, *p2
, *p3
;
626 if ((freeList
->mh_Node
.ln_Type
== NT_MEMORY
) && IsManagedMem(freeList
))
628 struct MemHeaderExt
*mhe
= (struct MemHeaderExt
*)freeList
;
631 mhe
->mhe_Free(mhe
, addr
, size
);
635 /* Make sure the MemHeader is OK */
636 if (!validateHeader(freeList
, MM_FREE
, addr
, size
, tp
, SysBase
))
639 /* Align size to the requirements */
640 byteSize
= size
+ ((IPTR
)addr
& (MEMCHUNK_TOTAL
- 1));
641 byteSize
= (byteSize
+ MEMCHUNK_TOTAL
-1) & ~(MEMCHUNK_TOTAL
- 1);
643 /* Align the block as well */
644 memoryBlock
= (APTR
)((IPTR
)addr
& ~(MEMCHUNK_TOTAL
-1));
647 The free memory list is only single linked, i.e. to insert
648 elements into the list I need the node as well as its
649 predecessor. For the first element I can use freeList->mh_First
650 instead of a real predecessor.
652 p1
= (struct MemChunk
*)&freeList
->mh_First
;
653 p2
= freeList
->mh_First
;
655 /* Start and end(+1) of the block */
656 p3
= (struct MemChunk
*)memoryBlock
;
657 p4
= (UBYTE
*)p3
+ byteSize
;
659 /* No chunk in list? Just insert the current one and return. */
662 p3
->mc_Bytes
= byteSize
;
665 freeList
->mh_Free
+= byteSize
;
669 /* Find closer chunk */
670 p1
=mhac_GetCloserPrevMemChunk(p1
, addr
, mhac
);
673 /* Follow the list to find a place where to insert our memory. */
676 if (!validateChunk(p2
, p1
, freeList
, MM_FREE
, addr
, size
, tp
, SysBase
))
679 /* Found a block with a higher address? */
682 #if !defined(NO_CONSISTENCY_CHECKS)
684 If the memory to be freed overlaps with the current
685 block something must be wrong.
689 bug("[MM] Chunk allocator error\n");
690 bug("[MM] Attempt to free %u bytes at 0x%p from MemHeader 0x%p\n", byteSize
, memoryBlock
, freeList
);
691 bug("[MM] Block overlaps (1) with chunk 0x%p (%u bytes)\n", p2
, p2
->mc_Bytes
);
697 /* End the loop with p2 non-zero */
700 /* goto next block */
704 /* If the loop ends with p2 zero add it at the end. */
705 } while (p2
!= NULL
);
707 /* If there was a previous block merge with it. */
708 if (p1
!= (struct MemChunk
*)&freeList
->mh_First
)
710 #if !defined(NO_CONSISTENCY_CHECKS)
711 /* Check if they overlap. */
712 if ((UBYTE
*)p1
+ p1
->mc_Bytes
> (UBYTE
*)p3
)
714 bug("[MM] Chunk allocator error\n");
715 bug("[MM] Attempt to free %u bytes at 0x%p from MemHeader 0x%p\n", byteSize
, memoryBlock
, freeList
);
716 bug("[MM] Block overlaps (2) with chunk 0x%p (%u bytes)\n", p1
, p1
->mc_Bytes
);
722 /* Merge if possible */
723 if ((UBYTE
*)p1
+ p1
->mc_Bytes
== (UBYTE
*)p3
)
725 mhac_MemChunkClaimed(p1
, mhac
);
728 * Note: this case does not lead to mhac_MemChunkCreated, because
729 * we don't have chunk prev to p1
733 /* Not possible to merge */
737 There was no previous block. Just insert the memory at
738 the start of the list.
742 /* Try to merge with next block (if there is one ;-) ). */
743 if (p4
== (UBYTE
*)p2
&& p2
!= NULL
)
746 Overlap checking already done. Doing it here after
747 the list potentially changed would be a bad idea.
749 mhac_MemChunkClaimed(p2
, mhac
);
753 /* relink the list and return. */
755 p3
->mc_Bytes
= p4
- (UBYTE
*)p3
;
756 freeList
->mh_Free
+= byteSize
;
757 if (p1
->mc_Next
==p3
) mhac_MemChunkCreated(p3
, p1
, mhac
);
763 * During transition period four routines below use nommu allocator.
764 * When transition is complete they should use them only if MMU
765 * is inactive. Otherwise they should use KrnAllocPages()/KrnFreePages().
768 /* Non-mungwalled AllocAbs(). Does not destroy sideways regions. */
769 APTR
InternalAllocAbs(APTR location
, IPTR byteSize
, struct ExecBase
*SysBase
)
771 return nommu_AllocAbs(location
, byteSize
, SysBase
);
775 * Use this if you want to free region allocated by InternalAllocAbs().
776 * Otherwise you hit mungwall problem (FreeMem() expects header).
778 void InternalFreeMem(APTR location
, IPTR byteSize
, struct TraceLocation
*loc
, struct ExecBase
*SysBase
)
780 nommu_FreeMem(location
, byteSize
, loc
, SysBase
);
784 * Allocate a region managed by own header. Usable size is reduced by size
787 APTR
AllocMemHeader(IPTR size
, ULONG flags
, struct TraceLocation
*loc
, struct ExecBase
*SysBase
)
789 struct MemHeader
*mh
;
791 mh
= nommu_AllocMem(size
, flags
, loc
, SysBase
);
792 DMH(bug("[AllocMemHeader] Allocated %u bytes at 0x%p\n", size
, mh
));
796 struct MemHeader
*orig
= FindMem(mh
, SysBase
);
798 if (IsManagedMem(orig
))
800 struct MemHeaderExt
*mhe_orig
= (struct MemHeaderExt
*)orig
;
801 struct MemHeaderExt
*mhe
= (struct MemHeaderExt
*)mh
;
802 IPTR header_size
= (sizeof(struct MemHeaderExt
) + 15) & ~15;
804 /* Copy the basic information */
805 mh
->mh_Node
.ln_Type
= NT_MEMORY
;
806 mh
->mh_Node
.ln_Pri
= orig
->mh_Node
.ln_Pri
;
807 mh
->mh_Attributes
= orig
->mh_Attributes
;
808 mh
->mh_Upper
= (void *)mh
+ size
;
809 mh
->mh_Lower
= (void *)mh
;
813 mhe
->mhe_Magic
= mhe_orig
->mhe_Magic
;
815 /* Copy init functions */
816 mhe
->mhe_InitPool
= mhe_orig
->mhe_InitPool
;
817 mhe
->mhe_DestroyPool
= mhe_orig
->mhe_DestroyPool
;
819 /* Copy memory allocation functions */
820 mhe
->mhe_Alloc
= mhe_orig
->mhe_Alloc
;
821 mhe
->mhe_AllocAbs
= mhe_orig
->mhe_AllocAbs
;
822 mhe
->mhe_AllocVec
= mhe_orig
->mhe_AllocVec
;
823 mhe
->mhe_Avail
= mhe_orig
->mhe_Avail
;
824 mhe
->mhe_Free
= mhe_orig
->mhe_Free
;
825 mhe
->mhe_FreeVec
= mhe_orig
->mhe_FreeVec
;
826 mhe
->mhe_InBounds
= mhe_orig
->mhe_InBounds
;
827 mhe
->mhe_ReAlloc
= mhe_orig
->mhe_ReAlloc
;
830 * User data will be initialized. Memory pool will get first region
833 mhe
->mhe_UserData
= (APTR
)mh
+ header_size
;
835 /* Initialize the pool with rest size */
836 if (mhe
->mhe_InitPool
)
837 mhe
->mhe_InitPool(mhe
, size
, size
- header_size
);
841 size
-= MEMHEADER_TOTAL
;
844 * Initialize new MemHeader.
845 * Inherit attributes from system MemHeader from which
846 * our chunk was allocated.
848 mh
->mh_Node
.ln_Type
= NT_MEMORY
;
849 mh
->mh_Node
.ln_Pri
= orig
->mh_Node
.ln_Pri
;
850 mh
->mh_Attributes
= orig
->mh_Attributes
;
851 mh
->mh_Lower
= (APTR
)mh
+ MEMHEADER_TOTAL
;
852 mh
->mh_Upper
= mh
->mh_Lower
+ size
;
853 mh
->mh_First
= mh
->mh_Lower
;
856 /* Create the first (and the only) MemChunk */
857 mh
->mh_First
->mc_Next
= NULL
;
858 mh
->mh_First
->mc_Bytes
= size
;
864 /* Free a region allocated by AllocMemHeader() */
865 void FreeMemHeader(APTR addr
, struct TraceLocation
*loc
, struct ExecBase
*SysBase
)
867 struct MemHeaderExt
*mhe
= (struct MemHeaderExt
*)addr
;
869 IPTR size
= (IPTR
)mhe
->mhe_MemHeader
.mh_Upper
- (IPTR
)addr
;
871 if (IsManagedMem(mhe
))
873 if (mhe
->mhe_DestroyPool
)
874 mhe
->mhe_DestroyPool(mhe
);
877 DMH(bug("[FreeMemHeader] Freeing %u bytes at 0x%p\n", size
, addr
));
878 nommu_FreeMem(addr
, size
, loc
, SysBase
);
882 * This is our own Enqueue() version. Currently the only differece is that
883 * we insert our node before the first node with LOWER OR EQUAL priority,
884 * so that for nodes with equal priority it will be LIFO, not FIFO queue.
885 * This speeds up the allocator.
886 * TODO: implement secondary sorting by mh_Free. This will allow to
887 * implement best-match algorithm (so that puddles with smaller free space
888 * will be picked up first). This way the smallest allocations will reuse
889 * smallest chunks instead of fragmenting large ones.
891 static void EnqueueMemHeader(struct MinList
*list
, struct MemHeader
*mh
)
893 struct MemHeader
*next
;
895 /* Look through the list */
896 ForeachNode (list
, next
)
899 Look for the first MemHeader with a lower or equal pri as the node
900 we have to insert into the list.
902 if (mh
->mh_Node
.ln_Pri
>= next
->mh_Node
.ln_Pri
)
906 /* Insert the node before next */
907 mh
->mh_Node
.ln_Pred
= next
->mh_Node
.ln_Pred
;
908 mh
->mh_Node
.ln_Succ
= &next
->mh_Node
;
909 next
->mh_Node
.ln_Pred
->ln_Succ
= &mh
->mh_Node
;
910 next
->mh_Node
.ln_Pred
= &mh
->mh_Node
;
914 * Allocate memory with given physical properties from the given pool.
915 * Our pools can be mixed. This means that different puddles from the
916 * pool can have different physical flags. For example the same pool
917 * can contain puddles from both CHIP and FAST memory. This is done in
918 * order to provide a single system default pool for all types of memory.
920 APTR
InternalAllocPooled(APTR poolHeader
, IPTR memSize
, ULONG flags
, struct TraceLocation
*loc
, struct ExecBase
*SysBase
)
922 struct ProtectedPool
*pool
= poolHeader
+ MEMHEADER_TOTAL
;
925 struct MemHeader
*mh
;
927 D(bug("[exec] InternalAllocPooled(0x%p, %u, 0x%08X), header 0x%p\n", poolHeader
, memSize
, flags
, pool
));
930 * Memory blocks allocated from the pool store pointers to the MemHeader they were
931 * allocated from. This is done in order to avoid slow lookups in InternalFreePooled().
932 * This is done in AllocVec()-alike manner; the pointer is placed right before the block.
934 memSize
+= sizeof(struct MemHeader
*);
937 /* If mungwall is enabled, count also size of walls */
938 if (PrivExecBase(SysBase
)->IntFlags
& EXECF_MungWall
)
939 memSize
+= MUNGWALL_TOTAL_SIZE
;
941 if (pool
->pool
.PoolMagic
!= POOL_MAGIC
)
943 PoolManagerAlert(PME_ALLOC_INV_POOL
, AT_DeadEnd
, memSize
, NULL
, NULL
, poolHeader
);
946 if (pool
->pool
.Requirements
& MEMF_SEM_PROTECTED
)
948 ObtainSemaphore(&pool
->sem
);
951 /* Follow the list of MemHeaders */
952 mh
= (struct MemHeader
*)pool
->pool
.PuddleList
.mlh_Head
;
955 ULONG physFlags
= flags
& MEMF_PHYSICAL_MASK
;
957 /* Are there no more MemHeaders? */
958 if (mh
->mh_Node
.ln_Succ
== NULL
)
962 * Usually we allocate puddles of default size, specified during
963 * pool creation. However we can be asked to allocate block whose
964 * size will be larger than default puddle size.
965 * Previously this was handled by threshSize parameter. In our new
966 * implementation we just allocate enlarged puddle. This is done
967 * in order not to waste page tails beyond the allocated large block.
968 * These tails will be used for our pool too. Their size is smaller
969 * than page size but they still perfectly fit for small allocations
970 * (the primary use for pools).
971 * Since our large block is also a puddle, it will be reused for our
972 * pool when the block is freed. It can also be reused for another
973 * large allocation, if it fits in.
974 * Our final puddle size still includes MEMHEADER_TOTAL +
975 * allocator ctx size in any case.
977 IPTR puddleSize
= pool
->pool
.PuddleSize
;
979 if (memSize
> puddleSize
- (MEMHEADER_TOTAL
+ mhac_GetCtxSize()))
981 IPTR align
= PrivExecBase(SysBase
)->PageSize
- 1;
983 puddleSize
= memSize
+ MEMHEADER_TOTAL
+ mhac_GetCtxSize();
984 /* Align the size up to page boundary */
985 puddleSize
= (puddleSize
+ align
) & ~align
;
988 mh
= AllocMemHeader(puddleSize
, flags
, loc
, SysBase
);
989 D(bug("[InternalAllocPooled] Allocated new puddle 0x%p, size %u\n", mh
, puddleSize
));
991 /* No memory left? */
995 /* Add the new puddle to our pool */
996 mhac_PoolMemHeaderSetup(mh
, pool
);
997 Enqueue((struct List
*)&pool
->pool
.PuddleList
, &mh
->mh_Node
);
999 /* Fall through to get the memory */
1003 /* Ignore existing MemHeaders with free memory smaller than allocation */
1004 if (mh
->mh_Free
< memSize
)
1006 mh
= (struct MemHeader
*)mh
->mh_Node
.ln_Succ
;
1011 /* Ignore existing MemHeaders with memory type that differ from the requested ones */
1012 if (physFlags
& ~mh
->mh_Attributes
)
1014 D(bug("[InternalAllocPooled] Wrong flags for puddle 0x%p (wanted 0x%08X, have 0x%08X\n", flags
, mh
->mh_Attributes
));
1016 mh
= (struct MemHeader
*)mh
->mh_Node
.ln_Succ
;
1021 /* Try to get the memory */
1022 ret
= stdAlloc(mh
, mhac_PoolMemHeaderGetCtx(mh
), memSize
, flags
, loc
, SysBase
);
1023 D(bug("[InternalAllocPooled] Allocated memory at 0x%p from puddle 0x%p\n", ret
, mh
));
1029 * If this is not the first MemHeader and it has some free space,
1030 * move it forward (so that the next allocation will attempt to use it first).
1031 * IMPORTANT: We use modification of Enqueue() because we still sort MemHeaders
1032 * according to their priority (which they inherit from system MemHeaders).
1033 * This allows us to have mixed pools (e.g. with both CHIP and FAST regions). This
1034 * will be needed in future for memory protection.
1036 if (mh
->mh_Node
.ln_Pred
!= NULL
&& mh
->mh_Free
> 32)
1038 D(bug("[InternalAllocPooled] Re-sorting puddle list\n"));
1039 Remove(&mh
->mh_Node
);
1040 EnqueueMemHeader(&pool
->pool
.PuddleList
, mh
);
1046 /* No. Try next MemHeader */
1047 mh
= (struct MemHeader
*)mh
->mh_Node
.ln_Succ
;
1050 if (pool
->pool
.Requirements
& MEMF_SEM_PROTECTED
)
1052 ReleaseSemaphore(&pool
->sem
);
1057 /* Build munge walls if requested */
1058 ret
= MungWall_Build(ret
, pool
, origSize
, flags
, loc
, SysBase
);
1060 /* Remember where we were allocated from */
1061 *((struct MemHeader
**)ret
) = mh
;
1062 ret
+= sizeof(struct MemHeader
*);
1065 /* Everything fine */
1070 * This is a pair to InternalAllocPooled()
1071 * This code separated from FreePooled() in order to provide compatibility with various
1072 * memory tracking patches. If some exec code calls InternalAllocPooled() directly
1073 * (AllocMem() will do it), it has to call also InternalFreePooled() directly.
1074 * Our chunks remember from which pool they came, so we don't need a pointer to pool
1075 * header here. This will save us from headaches in future FreeMem() implementation.
1077 void InternalFreePooled(APTR poolHeader
, APTR memory
, IPTR memSize
, struct TraceLocation
*loc
, struct ExecBase
*SysBase
)
1079 struct MemHeader
*mh
;
1083 D(bug("[exec] InternalFreePooled(0x%p, %u)\n", memory
, memSize
));
1085 if (!memory
|| !memSize
) return;
1087 /* Get MemHeader pointer. It is stored right before our block. */
1088 freeStart
= memory
- sizeof(struct MemHeader
*);
1089 freeSize
= memSize
+ sizeof(struct MemHeader
*);
1090 mh
= *((struct MemHeader
**)freeStart
);
1092 /* Check walls first */
1093 freeStart
= MungWall_Check(freeStart
, freeSize
, loc
, SysBase
);
1094 if (PrivExecBase(SysBase
)->IntFlags
& EXECF_MungWall
)
1095 freeSize
+= MUNGWALL_TOTAL_SIZE
;
1097 /* Verify that MemHeader pointer is correct */
1098 if ((mh
->mh_Node
.ln_Type
!= NT_MEMORY
) ||
1099 (freeStart
< mh
->mh_Lower
) || (freeStart
+ freeSize
> mh
->mh_Upper
))
1101 /* Something is wrong. */
1102 PoolManagerAlert(PME_FREE_NO_CHUNK
, 0, memSize
, memory
, NULL
, NULL
);
1106 struct ProtectedPool
*pool
= (struct ProtectedPool
*)mhac_PoolMemHeaderGetPool(mh
);
1108 APTR poolHeaderMH
= (APTR
)((IPTR
)pool
- MEMHEADER_TOTAL
);
1110 if (pool
->pool
.PoolMagic
!= POOL_MAGIC
)
1112 PoolManagerAlert(PME_FREE_INV_POOL
, AT_DeadEnd
, memSize
, memory
, poolHeaderMH
, NULL
);
1115 if (poolHeaderMH
!= poolHeader
)
1117 PoolManagerAlert(PME_FREE_MXD_POOL
, 0, memSize
, memory
, poolHeaderMH
, poolHeader
);
1120 if (pool
->pool
.Requirements
& MEMF_SEM_PROTECTED
)
1122 ObtainSemaphore(&pool
->sem
);
1125 size
= mh
->mh_Upper
- mh
->mh_Lower
;
1126 D(bug("[FreePooled] Allocated from puddle 0x%p, size %u\n", mh
, size
));
1128 /* Free the memory. */
1129 stdDealloc(mh
, mhac_PoolMemHeaderGetCtx(mh
), freeStart
, freeSize
, loc
, SysBase
);
1130 D(bug("[FreePooled] Deallocated chunk, %u free bytes in the puddle\n", mh
->mh_Free
));
1132 /* Is this MemHeader completely free now? */
1133 if ((mh
->mh_Free
+ mhac_GetCtxSize()) == size
)
1135 D(bug("[FreePooled] Puddle is empty, giving back to the system\n"));
1137 /* Yes. Remove it from the list. */
1138 Remove(&mh
->mh_Node
);
1140 FreeMemHeader(mh
, loc
, SysBase
);
1144 if (pool
->pool
.Requirements
& MEMF_SEM_PROTECTED
)
1146 ReleaseSemaphore(&pool
->sem
);
1151 ULONG
checkMemHandlers(struct checkMemHandlersState
*cmhs
, struct ExecBase
*SysBase
)
1154 struct Interrupt
*lmh
;
1156 if (cmhs
->cmhs_Data
.memh_RequestFlags
& MEMF_NO_EXPUNGE
)
1157 return MEM_DID_NOTHING
;
1159 /* In order to keep things clean, we must run in a single thread */
1160 ObtainSemaphore(&PrivExecBase(SysBase
)->LowMemSem
);
1163 * Loop over low memory handlers. Handlers can remove
1164 * themselves from the list while being invoked, thus
1165 * we need to be careful!
1167 for (lmh
= (struct Interrupt
*)cmhs
->cmhs_CurNode
;
1168 (tmp
= lmh
->is_Node
.ln_Succ
);
1169 lmh
= (struct Interrupt
*)(cmhs
->cmhs_CurNode
= tmp
))
1173 ret
= AROS_UFC3 (LONG
, lmh
->is_Code
,
1174 AROS_UFCA(struct MemHandlerData
*, &cmhs
->cmhs_Data
, A0
),
1175 AROS_UFCA(APTR
, lmh
->is_Data
, A1
),
1176 AROS_UFCA(struct ExecBase
*, SysBase
, A6
)
1179 if (ret
== MEM_TRY_AGAIN
)
1181 /* MemHandler said he did something. Try again. */
1182 /* Is there any program that depends on this flag??? */
1183 cmhs
->cmhs_Data
.memh_Flags
|= MEMHF_RECYCLE
;
1185 ReleaseSemaphore(&PrivExecBase(SysBase
)->LowMemSem
);
1186 return MEM_TRY_AGAIN
;
1190 /* Nothing more to expect from this handler. */
1191 cmhs
->cmhs_Data
.memh_Flags
&= ~MEMHF_RECYCLE
;
1195 ReleaseSemaphore(&PrivExecBase(SysBase
)->LowMemSem
);
1196 return MEM_DID_NOTHING
;
1199 void PoolManagerAlert(ULONG code
, ULONG flags
, IPTR memSize
, APTR memory
, APTR poolHeaderMH
, APTR poolHeader
)
1202 * TODO: the following should actually be printed as part of the alert.
1203 * In future there should be some kind of "alert context". CPU alerts
1204 * (like illegal access) should remember CPU context there. Memory manager
1205 * alerts (like this one) should remember some own information.
1208 bug("[MM] Pool manager error\n");
1211 case PME_FREE_NO_CHUNK
:
1212 case PME_FREE_INV_POOL
:
1213 case PME_FREE_MXD_POOL
:
1214 bug("[MM] Attempt to free %u bytes at 0x%p\n", memSize
, memory
);
1216 case PME_ALLOC_INV_POOL
:
1217 bug("[MM] Attempt to allocate %u bytes\n", memSize
);
1219 case PME_DEL_POOL_INV_POOL
:
1220 bug("[MM] Attempt to free pool 0x%p which is not marked as valid\n", poolHeader
);
1228 case PME_FREE_NO_CHUNK
:
1229 bug("[MM] The chunk does not belong to a pool\n");
1231 case PME_FREE_INV_POOL
:
1232 bug("[MM] The chunk belongs to pool 0x%p which is not marked as valid\n", poolHeaderMH
);
1234 case PME_FREE_MXD_POOL
:
1235 bug("[MM] The chunk belongs to pool 0x%p, but call indicated pool 0x%p\n", poolHeaderMH
, poolHeader
);
1237 case PME_ALLOC_INV_POOL
:
1238 bug("[MM] Requested to allocate from pool 0x%p which is not marked as valid\n", poolHeader
);
1245 Alert(AN_BadFreeAddr
| flags
);