revert between 56095 -> 55830 in arch
[AROS.git] / workbench / devs / networks / atheros5000 / hal / ar5210 / ar5210_misc.c
blobc76197c8759b0c960222129f2e09359eedf7f507
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id$
19 #include "opt_ah.h"
21 #ifdef AH_SUPPORT_AR5210
23 #include "ah.h"
24 #include "ah_internal.h"
26 #include "ar5210/ar5210.h"
27 #include "ar5210/ar5210reg.h"
28 #include "ar5210/ar5210phy.h"
30 #define AR_NUM_GPIO 6 /* 6 GPIO bits */
31 #define AR_GPIOD_MASK 0x2f /* 6-bit mask */
33 void
34 ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
36 struct ath_hal_5210 *ahp = AH5210(ah);
38 OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
41 HAL_BOOL
42 ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
44 struct ath_hal_5210 *ahp = AH5210(ah);
46 OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47 return AH_TRUE;
50 void
51 ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
53 static const uint8_t ones[IEEE80211_ADDR_LEN] =
54 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
58 HAL_BOOL
59 ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
61 return AH_FALSE;
65 * Read 16 bits of data from the specified EEPROM offset.
67 HAL_BOOL
68 ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
70 (void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */
71 if (!ath_hal_wait(ah, AR_EP_STA,
72 AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
73 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
74 __func__, AR_EP_AIR(off));
75 return AH_FALSE;
77 *data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
78 return AH_TRUE;
82 * Return the wireless modes (a,b,g,t) supported by hardware.
84 * This value is what is actually supported by the hardware
85 * and is unaffected by regulatory/country code settings.
88 u_int
89 ar5210GetWirelessModes(struct ath_hal *ah)
91 /* XXX could enable turbo mode but can't do all rates */
92 return HAL_MODE_11A;
96 * Called if RfKill is supported (according to EEPROM). Set the interrupt and
97 * GPIO values so the ISR and can disable RF on a switch signal
99 void
100 ar5210EnableRfKill(struct ath_hal *ah)
102 uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
103 int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
104 int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
107 * If radio disable switch connection to GPIO bit 0 is enabled
108 * program GPIO interrupt.
109 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
110 * verified that it is a later version of eeprom, it has a place for
111 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
112 * connection is present.
114 ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
118 * Configure GPIO Output lines
120 HAL_BOOL
121 ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio)
123 HALASSERT(gpio < AR_NUM_GPIO);
125 OS_REG_WRITE(ah, AR_GPIOCR,
126 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
127 | AR_GPIOCR_OUT1(gpio));
129 return AH_TRUE;
133 * Configure GPIO Input lines
135 HAL_BOOL
136 ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
138 HALASSERT(gpio < AR_NUM_GPIO);
140 OS_REG_WRITE(ah, AR_GPIOCR,
141 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
142 | AR_GPIOCR_IN(gpio));
144 return AH_TRUE;
148 * Once configured for I/O - set output lines
150 HAL_BOOL
151 ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
153 uint32_t reg;
155 HALASSERT(gpio < AR_NUM_GPIO);
157 reg = OS_REG_READ(ah, AR_GPIODO);
158 reg &= ~(1 << gpio);
159 reg |= (val&1) << gpio;
161 OS_REG_WRITE(ah, AR_GPIODO, reg);
162 return AH_TRUE;
166 * Once configured for I/O - get input lines
168 uint32_t
169 ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
171 if (gpio < AR_NUM_GPIO) {
172 uint32_t val = OS_REG_READ(ah, AR_GPIODI);
173 val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
174 return val;
175 } else {
176 return 0xffffffff;
181 * Set the GPIO 0 Interrupt
183 void
184 ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
186 uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
188 /* Clear the bits that we will modify. */
189 val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
190 AR_GPIOCR_ALL(gpio));
192 val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
193 if (ilevel)
194 val |= AR_GPIOCR_INT_SELH;
196 /* Don't need to change anything for low level interrupt. */
197 OS_REG_WRITE(ah, AR_GPIOCR, val);
199 /* Change the interrupt mask. */
200 ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
204 * Change the LED blinking pattern to correspond to the connectivity
206 void
207 ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
209 uint32_t val;
211 val = OS_REG_READ(ah, AR_PCICFG);
212 switch (state) {
213 case HAL_LED_INIT:
214 val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
215 break;
216 case HAL_LED_RUN:
217 /* normal blink when connected */
218 val &= ~AR_PCICFG_LED_PEND;
219 val |= AR_PCICFG_LED_ACT;
220 break;
221 default:
222 val |= AR_PCICFG_LED_PEND;
223 val &= ~AR_PCICFG_LED_ACT;
224 break;
226 OS_REG_WRITE(ah, AR_PCICFG, val);
230 * Return 1 or 2 for the corresponding antenna that is in use
232 u_int
233 ar5210GetDefAntenna(struct ath_hal *ah)
235 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
236 return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1);
239 void
240 ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
242 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
244 if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) {
246 * Antenna change requested, force a toggle of the default.
248 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
252 HAL_ANT_SETTING
253 ar5210GetAntennaSwitch(struct ath_hal *ah)
255 return HAL_ANT_VARIABLE;
258 HAL_BOOL
259 ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
261 /* XXX not sure how to fix antenna */
262 return (settings == HAL_ANT_VARIABLE);
266 * Change association related fields programmed into the hardware.
267 * Writing a valid BSSID to the hardware effectively enables the hardware
268 * to synchronize its TSF to the correct beacons and receive frames coming
269 * from that BSSID. It is called by the SME JOIN operation.
271 void
272 ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
274 struct ath_hal_5210 *ahp = AH5210(ah);
276 /* XXX save bssid for possible re-use on reset */
277 OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
278 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
279 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
280 ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
281 if (assocId == 0)
282 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
283 else
284 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
288 * Get the current hardware tsf for stamlme.
290 uint64_t
291 ar5210GetTsf64(struct ath_hal *ah)
293 uint32_t low1, low2, u32;
295 /* sync multi-word read */
296 low1 = OS_REG_READ(ah, AR_TSF_L32);
297 u32 = OS_REG_READ(ah, AR_TSF_U32);
298 low2 = OS_REG_READ(ah, AR_TSF_L32);
299 if (low2 < low1) { /* roll over */
301 * If we are not preempted this will work. If we are
302 * then we re-reading AR_TSF_U32 does no good as the
303 * low bits will be meaningless. Likewise reading
304 * L32, U32, U32, then comparing the last two reads
305 * to check for rollover
306 * doesn't help if preempted--so we take this approach
307 * as it costs one less PCI read which can be noticeable
308 * when doing things like timestamping packets in
309 * monitor mode.
311 u32++;
313 return (((uint64_t) u32) << 32) | ((uint64_t) low2);
317 * Get the current hardware tsf for stamlme.
319 uint32_t
320 ar5210GetTsf32(struct ath_hal *ah)
322 return OS_REG_READ(ah, AR_TSF_L32);
326 * Reset the current hardware tsf for stamlme
328 void
329 ar5210ResetTsf(struct ath_hal *ah)
331 uint32_t val = OS_REG_READ(ah, AR_BEACON);
333 OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
337 * Grab a semi-random value from hardware registers - may not
338 * change often
340 uint32_t
341 ar5210GetRandomSeed(struct ath_hal *ah)
343 uint32_t nf;
345 nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
346 if (nf & 0x100)
347 nf = 0 - ((nf ^ 0x1ff) + 1);
348 return (OS_REG_READ(ah, AR_TSF_U32) ^
349 OS_REG_READ(ah, AR_TSF_L32) ^ nf);
353 * Detect if our card is present
355 HAL_BOOL
356 ar5210DetectCardPresent(struct ath_hal *ah)
359 * Read the Silicon Revision register and compare that
360 * to what we read at attach time. If the same, we say
361 * a card/device is present.
363 return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
367 * Update MIB Counters
369 void
370 ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
372 stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
373 stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
374 stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
375 stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
376 stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
379 HAL_BOOL
380 ar5210SetSifsTime(struct ath_hal *ah, u_int us)
382 struct ath_hal_5210 *ahp = AH5210(ah);
384 if (us > ath_hal_mac_usec(ah, 0x7ff)) {
385 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
386 __func__, us);
387 ahp->ah_sifstime = (u_int) -1; /* restore default handling */
388 return AH_FALSE;
389 } else {
390 /* convert to system clocks */
391 OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
392 ath_hal_mac_clks(ah, us));
393 ahp->ah_sifstime = us;
394 return AH_TRUE;
398 u_int
399 ar5210GetSifsTime(struct ath_hal *ah)
401 u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
402 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
405 HAL_BOOL
406 ar5210SetSlotTime(struct ath_hal *ah, u_int us)
408 struct ath_hal_5210 *ahp = AH5210(ah);
410 if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
411 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
412 __func__, us);
413 ahp->ah_slottime = (u_int) -1; /* restore default handling */
414 return AH_FALSE;
415 } else {
416 /* convert to system clocks */
417 OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
418 ahp->ah_slottime = us;
419 return AH_TRUE;
423 u_int
424 ar5210GetSlotTime(struct ath_hal *ah)
426 u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
427 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
430 HAL_BOOL
431 ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
433 struct ath_hal_5210 *ahp = AH5210(ah);
435 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
436 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
437 __func__, us);
438 ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
439 return AH_FALSE;
440 } else {
441 /* convert to system clocks */
442 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
443 AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
444 ahp->ah_acktimeout = us;
445 return AH_TRUE;
449 u_int
450 ar5210GetAckTimeout(struct ath_hal *ah)
452 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
453 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
456 u_int
457 ar5210GetAckCTSRate(struct ath_hal *ah)
459 return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
462 HAL_BOOL
463 ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
465 struct ath_hal_5210 *ahp = AH5210(ah);
467 if (high) {
468 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
469 ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
470 } else {
471 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
472 ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
474 return AH_TRUE;
477 HAL_BOOL
478 ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
480 struct ath_hal_5210 *ahp = AH5210(ah);
482 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
483 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
484 __func__, us);
485 ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
486 return AH_FALSE;
487 } else {
488 /* convert to system clocks */
489 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
490 AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
491 ahp->ah_ctstimeout = us;
492 return AH_TRUE;
496 u_int
497 ar5210GetCTSTimeout(struct ath_hal *ah)
499 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
500 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
503 HAL_BOOL
504 ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
506 /* nothing to do */
507 return AH_TRUE;
510 void
511 ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
516 * Control Adaptive Noise Immunity Parameters
518 HAL_BOOL
519 ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
521 return AH_FALSE;
524 void
525 ar5210AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, HAL_CHANNEL *chan)
529 void
530 ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
534 #define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
536 HAL_STATUS
537 ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
538 uint32_t capability, uint32_t *result)
541 switch (type) {
542 case HAL_CAP_CIPHER: /* cipher handled in hardware */
543 return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
544 default:
545 return ath_hal_getcapability(ah, type, capability, result);
549 HAL_BOOL
550 ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
551 uint32_t capability, uint32_t setting, HAL_STATUS *status)
554 switch (type) {
555 case HAL_CAP_DIAG: /* hardware diagnostic support */
557 * NB: could split this up into virtual capabilities,
558 * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
559 * seems worth the additional complexity.
561 #ifdef AH_DEBUG
562 AH_PRIVATE(ah)->ah_diagreg = setting;
563 #else
564 AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
565 #endif
566 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
567 return AH_TRUE;
568 case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
569 return AH_FALSE; /* NB: disallow */
570 default:
571 return ath_hal_setcapability(ah, type, capability,
572 setting, status);
576 HAL_BOOL
577 ar5210GetDiagState(struct ath_hal *ah, int request,
578 const void *args, uint32_t argsize,
579 void **result, uint32_t *resultsize)
581 #ifdef AH_PRIVATE_DIAG
582 uint32_t pcicfg;
583 HAL_BOOL ok;
585 switch (request) {
586 case HAL_DIAG_EEPROM:
587 /* XXX */
588 break;
589 case HAL_DIAG_EEREAD:
590 if (argsize != sizeof(uint16_t))
591 return AH_FALSE;
592 pcicfg = OS_REG_READ(ah, AR_PCICFG);
593 OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
594 ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
595 OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
596 if (ok)
597 *resultsize = sizeof(uint16_t);
598 return ok;
600 #endif
601 return ath_hal_getdiagstate(ah, request,
602 args, argsize, result, resultsize);
604 #endif /* AH_SUPPORT_AR5210 */