2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 #ifdef AH_SUPPORT_2413
24 #include "ah_internal.h"
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
30 #include "ah_eeprom_v3.h"
33 #include "ar5212/ar5212.ini"
35 #define N(a) (sizeof(a)/sizeof(a[0]))
38 RF_HAL_FUNCS base
; /* public state, must be first */
39 uint16_t pcdacTable
[PWR_TABLE_SIZE_2413
];
41 uint32_t Bank1Data
[N(ar5212Bank1_2413
)];
42 uint32_t Bank2Data
[N(ar5212Bank2_2413
)];
43 uint32_t Bank3Data
[N(ar5212Bank3_2413
)];
44 uint32_t Bank6Data
[N(ar5212Bank6_2413
)];
45 uint32_t Bank7Data
[N(ar5212Bank7_2413
)];
48 * Private state for reduced stack usage.
50 /* filled out Vpd table for all pdGains (chanL) */
51 uint16_t vpdTable_L
[MAX_NUM_PDGAINS_PER_CHANNEL
]
52 [MAX_PWR_RANGE_IN_HALF_DB
];
53 /* filled out Vpd table for all pdGains (chanR) */
54 uint16_t vpdTable_R
[MAX_NUM_PDGAINS_PER_CHANNEL
]
55 [MAX_PWR_RANGE_IN_HALF_DB
];
56 /* filled out Vpd table for all pdGains (interpolated) */
57 uint16_t vpdTable_I
[MAX_NUM_PDGAINS_PER_CHANNEL
]
58 [MAX_PWR_RANGE_IN_HALF_DB
];
60 #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal)
62 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf
, uint32_t reg32
,
63 uint32_t numBits
, uint32_t firstBit
, uint32_t column
);
66 ar2413WriteRegs(struct ath_hal
*ah
, u_int modesIndex
, u_int freqIndex
,
69 HAL_INI_WRITE_ARRAY(ah
, ar5212Modes_2413
, modesIndex
, writes
);
70 HAL_INI_WRITE_ARRAY(ah
, ar5212Common_2413
, 1, writes
);
71 HAL_INI_WRITE_ARRAY(ah
, ar5212BB_RfGain_2413
, freqIndex
, writes
);
75 * Take the MHz channel value and set the Channel value
77 * ASSUMES: Writes enabled to analog bus
80 ar2413SetChannel(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
)
82 uint32_t channelSel
= 0;
83 uint32_t bModeSynth
= 0;
84 uint32_t aModeRefSel
= 0;
88 OS_MARK(ah
, AH_MARK_SETCHANNEL
, chan
->channel
);
90 if (chan
->channel
< 4800) {
93 if (((chan
->channel
- 2192) % 5) == 0) {
94 channelSel
= ((chan
->channel
- 672) * 2 - 3040)/10;
96 } else if (((chan
->channel
- 2224) % 5) == 0) {
97 channelSel
= ((chan
->channel
- 704) * 2 - 3040) / 10;
100 HALDEBUG(ah
, HAL_DEBUG_ANY
,
101 "%s: invalid channel %u MHz\n",
102 __func__
, chan
->channel
);
106 channelSel
= (channelSel
<< 2) & 0xff;
107 channelSel
= ath_hal_reverseBits(channelSel
, 8);
109 txctl
= OS_REG_READ(ah
, AR_PHY_CCK_TX_CTRL
);
110 if (chan
->channel
== 2484) {
111 /* Enable channel spreading for channel 14 */
112 OS_REG_WRITE(ah
, AR_PHY_CCK_TX_CTRL
,
113 txctl
| AR_PHY_CCK_TX_CTRL_JAPAN
);
115 OS_REG_WRITE(ah
, AR_PHY_CCK_TX_CTRL
,
116 txctl
&~ AR_PHY_CCK_TX_CTRL_JAPAN
);
118 } else if (((chan
->channel
% 5) == 2) && (chan
->channel
<= 5435)) {
119 freq
= chan
->channel
- 2; /* Align to even 5MHz raster */
120 channelSel
= ath_hal_reverseBits(
121 (uint32_t)(((freq
- 4800)*10)/25 + 1), 8);
122 aModeRefSel
= ath_hal_reverseBits(0, 2);
123 } else if ((chan
->channel
% 20) == 0 && chan
->channel
>= 5120) {
124 channelSel
= ath_hal_reverseBits(
125 ((chan
->channel
- 4800) / 20 << 2), 8);
126 aModeRefSel
= ath_hal_reverseBits(3, 2);
127 } else if ((chan
->channel
% 10) == 0) {
128 channelSel
= ath_hal_reverseBits(
129 ((chan
->channel
- 4800) / 10 << 1), 8);
130 aModeRefSel
= ath_hal_reverseBits(2, 2);
131 } else if ((chan
->channel
% 5) == 0) {
132 channelSel
= ath_hal_reverseBits(
133 (chan
->channel
- 4800) / 5, 8);
134 aModeRefSel
= ath_hal_reverseBits(1, 2);
136 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel %u MHz\n",
137 __func__
, chan
->channel
);
141 reg32
= (channelSel
<< 4) | (aModeRefSel
<< 2) | (bModeSynth
<< 1) |
143 OS_REG_WRITE(ah
, AR_PHY(0x27), reg32
& 0xff);
146 OS_REG_WRITE(ah
, AR_PHY(0x36), reg32
& 0x7f);
148 AH_PRIVATE(ah
)->ah_curchan
= chan
;
154 * Reads EEPROM header info from device structure and programs
157 * REQUIRES: Access to the analog rf device
160 ar2413SetRfRegs(struct ath_hal
*ah
, HAL_CHANNEL_INTERNAL
*chan
, uint16_t modesIndex
, uint16_t *rfXpdGain
)
162 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
164 for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \
165 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
167 struct ath_hal_5212
*ahp
= AH5212(ah
);
168 const HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
169 uint16_t ob2GHz
= 0, db2GHz
= 0;
170 struct ar2413State
*priv
= AR2413(ah
);
173 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
,
174 "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
175 __func__
, chan
->channel
, chan
->channelFlags
, modesIndex
);
179 /* Setup rf parameters */
180 switch (chan
->channelFlags
& CHANNEL_ALL
) {
182 ob2GHz
= ee
->ee_obFor24
;
183 db2GHz
= ee
->ee_dbFor24
;
187 ob2GHz
= ee
->ee_obFor24g
;
188 db2GHz
= ee
->ee_dbFor24g
;
191 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: invalid channel flags 0x%x\n",
192 __func__
, chan
->channelFlags
);
197 RF_BANK_SETUP(priv
, 1, 1);
200 RF_BANK_SETUP(priv
, 2, modesIndex
);
203 RF_BANK_SETUP(priv
, 3, modesIndex
);
206 RF_BANK_SETUP(priv
, 6, modesIndex
);
208 ar5212ModifyRfBuffer(priv
->Bank6Data
, ob2GHz
, 3, 168, 0);
209 ar5212ModifyRfBuffer(priv
->Bank6Data
, db2GHz
, 3, 165, 0);
212 RF_BANK_SETUP(priv
, 7, modesIndex
);
214 /* Write Analog registers */
215 HAL_INI_WRITE_BANK(ah
, ar5212Bank1_2413
, priv
->Bank1Data
, regWrites
);
216 HAL_INI_WRITE_BANK(ah
, ar5212Bank2_2413
, priv
->Bank2Data
, regWrites
);
217 HAL_INI_WRITE_BANK(ah
, ar5212Bank3_2413
, priv
->Bank3Data
, regWrites
);
218 HAL_INI_WRITE_BANK(ah
, ar5212Bank6_2413
, priv
->Bank6Data
, regWrites
);
219 HAL_INI_WRITE_BANK(ah
, ar5212Bank7_2413
, priv
->Bank7Data
, regWrites
);
221 /* Now that we have reprogrammed rfgain value, clear the flag. */
222 ahp
->ah_rfgainState
= HAL_RFGAIN_INACTIVE
;
229 * Return a reference to the requested RF Bank.
232 ar2413GetRfBank(struct ath_hal
*ah
, int bank
)
234 struct ar2413State
*priv
= AR2413(ah
);
236 HALASSERT(priv
!= AH_NULL
);
238 case 1: return priv
->Bank1Data
;
239 case 2: return priv
->Bank2Data
;
240 case 3: return priv
->Bank3Data
;
241 case 6: return priv
->Bank6Data
;
242 case 7: return priv
->Bank7Data
;
244 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: unknown RF Bank %d requested\n",
250 * Return indices surrounding the value in sorted integer lists.
252 * NB: the input list is assumed to be sorted in ascending order
255 GetLowerUpperIndex(int16_t v
, const uint16_t *lp
, uint16_t listSize
,
256 uint32_t *vlo
, uint32_t *vhi
)
259 const uint16_t *ep
= lp
+listSize
;
263 * Check first and last elements for out-of-bounds conditions.
265 if (target
< lp
[0]) {
269 if (target
>= ep
[-1]) {
270 *vlo
= *vhi
= listSize
- 1;
274 /* look for value being near or between 2 values in list */
275 for (tp
= lp
; tp
< ep
; tp
++) {
277 * If value is close to the current value of the list
278 * then target is not between values, it is one of the values
281 *vlo
= *vhi
= tp
- (const uint16_t *) lp
;
285 * Look for value being between current value and next value
286 * if so return these 2 values
288 if (target
< tp
[1]) {
289 *vlo
= tp
- (const uint16_t *) lp
;
297 * Fill the Vpdlist for indices Pmax-Pmin
300 ar2413FillVpdTable(uint32_t pdGainIdx
, int16_t Pmin
, int16_t Pmax
,
301 const int16_t *pwrList
, const uint16_t *VpdList
,
302 uint16_t numIntercepts
, uint16_t retVpdList
[][64])
305 int16_t currPwr
= (int16_t)(2*Pmin
);
306 /* since Pmin is pwr*2 and pwrList is 4*pwr */
311 if (numIntercepts
< 2)
314 while (ii
<= (uint16_t)(Pmax
- Pmin
)) {
315 GetLowerUpperIndex(currPwr
, (const uint16_t *) pwrList
,
316 numIntercepts
, &(idxL
), &(idxR
));
318 idxR
= 1; /* extrapolate below */
319 if (idxL
== (uint32_t)(numIntercepts
- 1))
320 idxL
= numIntercepts
- 2; /* extrapolate above */
321 if (pwrList
[idxL
] == pwrList
[idxR
])
325 (((currPwr
- pwrList
[idxL
])*VpdList
[idxR
]+
326 (pwrList
[idxR
] - currPwr
)*VpdList
[idxL
])/
327 (pwrList
[idxR
] - pwrList
[idxL
]));
328 retVpdList
[pdGainIdx
][ii
] = kk
;
330 currPwr
+= 2; /* half dB steps */
337 * Returns interpolated or the scaled up interpolated value
340 interpolate_signed(uint16_t target
, uint16_t srcLeft
, uint16_t srcRight
,
341 int16_t targetLeft
, int16_t targetRight
)
345 if (srcRight
!= srcLeft
) {
346 rv
= ((target
- srcLeft
)*targetRight
+
347 (srcRight
- target
)*targetLeft
) / (srcRight
- srcLeft
);
355 * Uses the data points read from EEPROM to reconstruct the pdadc power table
356 * Called by ar2413SetPowerTable()
359 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal
*ah
, uint16_t channel
,
360 const RAW_DATA_STRUCT_2413
*pRawDataset
,
361 uint16_t pdGainOverlap_t2
,
362 int16_t *pMinCalPower
, uint16_t pPdGainBoundaries
[],
363 uint16_t pPdGainValues
[], uint16_t pPDADCValues
[])
365 struct ar2413State
*priv
= AR2413(ah
);
366 #define VpdTable_L priv->vpdTable_L
367 #define VpdTable_R priv->vpdTable_R
368 #define VpdTable_I priv->vpdTable_I
370 int32_t ss
;/* potentially -ve index for taking care of pdGainOverlap */
372 uint32_t numPdGainsUsed
= 0;
374 * If desired to support -ve power levels in future, just
375 * change pwr_I_0 to signed 5-bits.
377 int16_t Pmin_t2
[MAX_NUM_PDGAINS_PER_CHANNEL
];
378 /* to accomodate -ve power levels later on. */
379 int16_t Pmax_t2
[MAX_NUM_PDGAINS_PER_CHANNEL
];
380 /* to accomodate -ve power levels later on */
384 uint32_t sizeCurrVpdTable
, maxIndex
, tgtIndex
;
386 /* Get upper lower index */
387 GetLowerUpperIndex(channel
, pRawDataset
->pChannels
,
388 pRawDataset
->numChannels
, &(idxL
), &(idxR
));
390 for (ii
= 0; ii
< MAX_NUM_PDGAINS_PER_CHANNEL
; ii
++) {
391 jj
= MAX_NUM_PDGAINS_PER_CHANNEL
- ii
- 1;
392 /* work backwards 'cause highest pdGain for lowest power */
393 numVpd
= pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].numVpd
;
395 pPdGainValues
[numPdGainsUsed
] = pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].pd_gain
;
396 Pmin_t2
[numPdGainsUsed
] = pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].pwr_t4
[0];
397 if (Pmin_t2
[numPdGainsUsed
] >pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[0]) {
398 Pmin_t2
[numPdGainsUsed
] = pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[0];
400 Pmin_t2
[numPdGainsUsed
] = (int16_t)
401 (Pmin_t2
[numPdGainsUsed
] / 2);
402 Pmax_t2
[numPdGainsUsed
] = pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].pwr_t4
[numVpd
-1];
403 if (Pmax_t2
[numPdGainsUsed
] > pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[numVpd
-1])
404 Pmax_t2
[numPdGainsUsed
] =
405 pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[numVpd
-1];
406 Pmax_t2
[numPdGainsUsed
] = (int16_t)(Pmax_t2
[numPdGainsUsed
] / 2);
408 numPdGainsUsed
, Pmin_t2
[numPdGainsUsed
], Pmax_t2
[numPdGainsUsed
],
409 &(pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].pwr_t4
[0]),
410 &(pRawDataset
->pDataPerChannel
[idxL
].pDataPerPDGain
[jj
].Vpd
[0]), numVpd
, VpdTable_L
413 numPdGainsUsed
, Pmin_t2
[numPdGainsUsed
], Pmax_t2
[numPdGainsUsed
],
414 &(pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].pwr_t4
[0]),
415 &(pRawDataset
->pDataPerChannel
[idxR
].pDataPerPDGain
[jj
].Vpd
[0]), numVpd
, VpdTable_R
417 for (kk
= 0; kk
< (uint16_t)(Pmax_t2
[numPdGainsUsed
] - Pmin_t2
[numPdGainsUsed
]); kk
++) {
418 VpdTable_I
[numPdGainsUsed
][kk
] =
420 channel
, pRawDataset
->pChannels
[idxL
], pRawDataset
->pChannels
[idxR
],
421 (int16_t)VpdTable_L
[numPdGainsUsed
][kk
], (int16_t)VpdTable_R
[numPdGainsUsed
][kk
]);
423 /* fill VpdTable_I for this pdGain */
426 /* if this pdGain is used */
429 *pMinCalPower
= Pmin_t2
[0];
430 kk
= 0; /* index for the final table */
431 for (ii
= 0; ii
< numPdGainsUsed
; ii
++) {
432 if (ii
== (numPdGainsUsed
- 1))
433 pPdGainBoundaries
[ii
] = Pmax_t2
[ii
] +
434 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB
;
436 pPdGainBoundaries
[ii
] = (uint16_t)
437 ((Pmax_t2
[ii
] + Pmin_t2
[ii
+1]) / 2 );
438 if (pPdGainBoundaries
[ii
] > 63) {
439 HALDEBUG(ah
, HAL_DEBUG_ANY
,
440 "%s: clamp pPdGainBoundaries[%d] %d\n",
441 __func__
, ii
, pPdGainBoundaries
[ii
]);/*XXX*/
442 pPdGainBoundaries
[ii
] = 63;
445 /* Find starting index for this pdGain */
447 ss
= 0; /* for the first pdGain, start from index 0 */
449 ss
= (pPdGainBoundaries
[ii
-1] - Pmin_t2
[ii
]) -
451 Vpd_step
= (uint16_t)(VpdTable_I
[ii
][1] - VpdTable_I
[ii
][0]);
452 Vpd_step
= (uint16_t)((Vpd_step
< 1) ? 1 : Vpd_step
);
454 *-ve ss indicates need to extrapolate data below for this pdGain
457 tmpVal
= (int16_t)(VpdTable_I
[ii
][0] + ss
*Vpd_step
);
458 pPDADCValues
[kk
++] = (uint16_t)((tmpVal
< 0) ? 0 : tmpVal
);
462 sizeCurrVpdTable
= Pmax_t2
[ii
] - Pmin_t2
[ii
];
463 tgtIndex
= pPdGainBoundaries
[ii
] + pdGainOverlap_t2
- Pmin_t2
[ii
];
464 maxIndex
= (tgtIndex
< sizeCurrVpdTable
) ? tgtIndex
: sizeCurrVpdTable
;
466 while (ss
< (int16_t)maxIndex
)
467 pPDADCValues
[kk
++] = VpdTable_I
[ii
][ss
++];
469 Vpd_step
= (uint16_t)(VpdTable_I
[ii
][sizeCurrVpdTable
-1] -
470 VpdTable_I
[ii
][sizeCurrVpdTable
-2]);
471 Vpd_step
= (uint16_t)((Vpd_step
< 1) ? 1 : Vpd_step
);
473 * for last gain, pdGainBoundary == Pmax_t2, so will
474 * have to extrapolate
476 if (tgtIndex
> maxIndex
) { /* need to extrapolate above */
477 while(ss
< (int16_t)tgtIndex
) {
479 (VpdTable_I
[ii
][sizeCurrVpdTable
-1] +
480 (ss
-maxIndex
)*Vpd_step
);
481 pPDADCValues
[kk
++] = (tmpVal
> 127) ?
485 } /* extrapolated above */
486 } /* for all pdGainUsed */
488 while (ii
< MAX_NUM_PDGAINS_PER_CHANNEL
) {
489 pPdGainBoundaries
[ii
] = pPdGainBoundaries
[ii
-1];
493 pPDADCValues
[kk
] = pPDADCValues
[kk
-1];
497 return numPdGainsUsed
;
504 ar2413SetPowerTable(struct ath_hal
*ah
,
505 int16_t *minPower
, int16_t *maxPower
, HAL_CHANNEL_INTERNAL
*chan
,
508 struct ath_hal_5212
*ahp
= AH5212(ah
);
509 const HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
510 const RAW_DATA_STRUCT_2413
*pRawDataset
= AH_NULL
;
511 uint16_t pdGainOverlap_t2
;
512 int16_t minCalPower2413_t2
;
513 uint16_t *pdadcValues
= ahp
->ah_pcdacTable
;
514 uint16_t gainBoundaries
[4];
515 uint32_t i
, reg32
, regoffset
, tpcrg1
;
518 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "%s: chan 0x%x flag 0x%x\n",
519 __func__
, chan
->channel
,chan
->channelFlags
);
521 if (IS_CHAN_G(chan
) || IS_CHAN_108G(chan
))
522 pRawDataset
= &ee
->ee_rawDataset2413
[headerInfo11G
];
523 else if (IS_CHAN_B(chan
))
524 pRawDataset
= &ee
->ee_rawDataset2413
[headerInfo11B
];
526 HALDEBUG(ah
, HAL_DEBUG_ANY
, "%s: illegal mode\n", __func__
);
530 pdGainOverlap_t2
= (uint16_t) SM(OS_REG_READ(ah
, AR_PHY_TPCRG5
),
531 AR_PHY_TPCRG5_PD_GAIN_OVERLAP
);
533 numPdGainsUsed
= ar2413getGainBoundariesAndPdadcsForPowers(ah
,
534 chan
->channel
, pRawDataset
, pdGainOverlap_t2
,
535 &minCalPower2413_t2
,gainBoundaries
, rfXpdGain
, pdadcValues
);
536 HALASSERT(1 <= numPdGainsUsed
&& numPdGainsUsed
<= 3);
539 OS_REG_RMW_FIELD(ah
, AR_PHY_TPCRG1
, AR_PHY_TPCRG1_NUM_PD_GAIN
,
540 (pRawDataset
->pDataPerChannel
[0].numPdGains
- 1));
542 tpcrg1
= OS_REG_READ(ah
, AR_PHY_TPCRG1
);
543 tpcrg1
= (tpcrg1
&~ AR_PHY_TPCRG1_NUM_PD_GAIN
)
544 | SM(numPdGainsUsed
-1, AR_PHY_TPCRG1_NUM_PD_GAIN
);
545 switch (numPdGainsUsed
) {
547 tpcrg1
&= ~AR_PHY_TPCRG1_PDGAIN_SETTING3
;
548 tpcrg1
|= SM(rfXpdGain
[2], AR_PHY_TPCRG1_PDGAIN_SETTING3
);
551 tpcrg1
&= ~AR_PHY_TPCRG1_PDGAIN_SETTING2
;
552 tpcrg1
|= SM(rfXpdGain
[1], AR_PHY_TPCRG1_PDGAIN_SETTING2
);
555 tpcrg1
&= ~AR_PHY_TPCRG1_PDGAIN_SETTING1
;
556 tpcrg1
|= SM(rfXpdGain
[0], AR_PHY_TPCRG1_PDGAIN_SETTING1
);
560 if (tpcrg1
!= OS_REG_READ(ah
, AR_PHY_TPCRG1
))
561 HALDEBUG(ah
, HAL_DEBUG_RFPARAM
, "%s: using non-default "
562 "pd_gains (default 0x%x, calculated 0x%x)\n",
563 __func__
, OS_REG_READ(ah
, AR_PHY_TPCRG1
), tpcrg1
);
565 OS_REG_WRITE(ah
, AR_PHY_TPCRG1
, tpcrg1
);
568 * Note the pdadc table may not start at 0 dBm power, could be
569 * negative or greater than 0. Need to offset the power
570 * values by the amount of minPower for griffin
572 if (minCalPower2413_t2
!= 0)
573 ahp
->ah_txPowerIndexOffset
= (int16_t)(0 - minCalPower2413_t2
);
575 ahp
->ah_txPowerIndexOffset
= 0;
577 /* Finally, write the power values into the baseband power table */
578 regoffset
= 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
579 for (i
= 0; i
< 32; i
++) {
580 reg32
= ((pdadcValues
[4*i
+ 0] & 0xFF) << 0) |
581 ((pdadcValues
[4*i
+ 1] & 0xFF) << 8) |
582 ((pdadcValues
[4*i
+ 2] & 0xFF) << 16) |
583 ((pdadcValues
[4*i
+ 3] & 0xFF) << 24) ;
584 OS_REG_WRITE(ah
, regoffset
, reg32
);
588 OS_REG_WRITE(ah
, AR_PHY_TPCRG5
,
589 SM(pdGainOverlap_t2
, AR_PHY_TPCRG5_PD_GAIN_OVERLAP
) |
590 SM(gainBoundaries
[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1
) |
591 SM(gainBoundaries
[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2
) |
592 SM(gainBoundaries
[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3
) |
593 SM(gainBoundaries
[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4
));
599 ar2413GetMinPower(struct ath_hal
*ah
, const RAW_DATA_PER_CHANNEL_2413
*data
)
602 uint16_t Pmin
=0,numVpd
;
604 for (ii
= 0; ii
< MAX_NUM_PDGAINS_PER_CHANNEL
; ii
++) {
605 jj
= MAX_NUM_PDGAINS_PER_CHANNEL
- ii
- 1;
606 /* work backwards 'cause highest pdGain for lowest power */
607 numVpd
= data
->pDataPerPDGain
[jj
].numVpd
;
609 Pmin
= data
->pDataPerPDGain
[jj
].pwr_t4
[0];
617 ar2413GetMaxPower(struct ath_hal
*ah
, const RAW_DATA_PER_CHANNEL_2413
*data
)
620 uint16_t Pmax
=0,numVpd
;
622 for (ii
=0; ii
< MAX_NUM_PDGAINS_PER_CHANNEL
; ii
++) {
623 /* work forwards cuase lowest pdGain for highest power */
624 numVpd
= data
->pDataPerPDGain
[ii
].numVpd
;
626 Pmax
= data
->pDataPerPDGain
[ii
].pwr_t4
[numVpd
-1];
634 ar2413GetChannelMaxMinPower(struct ath_hal
*ah
, HAL_CHANNEL
*chan
,
635 int16_t *maxPow
, int16_t *minPow
)
637 const HAL_EEPROM
*ee
= AH_PRIVATE(ah
)->ah_eeprom
;
638 const RAW_DATA_STRUCT_2413
*pRawDataset
= AH_NULL
;
639 const RAW_DATA_PER_CHANNEL_2413
*data
= AH_NULL
;
640 uint16_t numChannels
;
641 int totalD
,totalF
, totalMin
,last
, i
;
645 if (IS_CHAN_G(chan
) || IS_CHAN_108G(chan
))
646 pRawDataset
= &ee
->ee_rawDataset2413
[headerInfo11G
];
647 else if (IS_CHAN_B(chan
))
648 pRawDataset
= &ee
->ee_rawDataset2413
[headerInfo11B
];
652 numChannels
= pRawDataset
->numChannels
;
653 data
= pRawDataset
->pDataPerChannel
;
655 /* Make sure the channel is in the range of the TP values
661 if ((chan
->channel
< data
[0].channelValue
) ||
662 (chan
->channel
> data
[numChannels
-1].channelValue
)) {
663 if (chan
->channel
< data
[0].channelValue
) {
664 *maxPow
= ar2413GetMaxPower(ah
, &data
[0]);
665 *minPow
= ar2413GetMinPower(ah
, &data
[0]);
668 *maxPow
= ar2413GetMaxPower(ah
, &data
[numChannels
- 1]);
669 *minPow
= ar2413GetMinPower(ah
, &data
[numChannels
- 1]);
674 /* Linearly interpolate the power value now */
675 for (last
=0,i
=0; (i
<numChannels
) && (chan
->channel
> data
[i
].channelValue
);
677 totalD
= data
[i
].channelValue
- data
[last
].channelValue
;
679 totalF
= ar2413GetMaxPower(ah
, &data
[i
]) - ar2413GetMaxPower(ah
, &data
[last
]);
680 *maxPow
= (int8_t) ((totalF
*(chan
->channel
-data
[last
].channelValue
) +
681 ar2413GetMaxPower(ah
, &data
[last
])*totalD
)/totalD
);
682 totalMin
= ar2413GetMinPower(ah
, &data
[i
]) - ar2413GetMinPower(ah
, &data
[last
]);
683 *minPow
= (int8_t) ((totalMin
*(chan
->channel
-data
[last
].channelValue
) +
684 ar2413GetMinPower(ah
, &data
[last
])*totalD
)/totalD
);
687 if (chan
->channel
== data
[i
].channelValue
) {
688 *maxPow
= ar2413GetMaxPower(ah
, &data
[i
]);
689 *minPow
= ar2413GetMinPower(ah
, &data
[i
]);
697 * Free memory for analog bank scratch buffers
700 ar2413RfDetach(struct ath_hal
*ah
)
702 struct ath_hal_5212
*ahp
= AH5212(ah
);
704 HALASSERT(ahp
->ah_rfHal
!= AH_NULL
);
705 ath_hal_free(ahp
->ah_rfHal
);
706 ahp
->ah_rfHal
= AH_NULL
;
710 * Allocate memory for analog bank scratch buffers
711 * Scratch Buffer will be reinitialized every reset so no need to zero now
714 ar2413RfAttach(struct ath_hal
*ah
, HAL_STATUS
*status
)
716 struct ath_hal_5212
*ahp
= AH5212(ah
);
717 struct ar2413State
*priv
;
719 HALASSERT(ah
->ah_magic
== AR5212_MAGIC
);
721 HALASSERT(ahp
->ah_rfHal
== AH_NULL
);
722 priv
= ath_hal_malloc(sizeof(struct ar2413State
));
723 if (priv
== AH_NULL
) {
724 HALDEBUG(ah
, HAL_DEBUG_ANY
,
725 "%s: cannot allocate private state\n", __func__
);
726 *status
= HAL_ENOMEM
; /* XXX */
729 priv
->base
.rfDetach
= ar2413RfDetach
;
730 priv
->base
.writeRegs
= ar2413WriteRegs
;
731 priv
->base
.getRfBank
= ar2413GetRfBank
;
732 priv
->base
.setChannel
= ar2413SetChannel
;
733 priv
->base
.setRfRegs
= ar2413SetRfRegs
;
734 priv
->base
.setPowerTable
= ar2413SetPowerTable
;
735 priv
->base
.getChannelMaxMinPower
= ar2413GetChannelMaxMinPower
;
736 priv
->base
.getNfAdjust
= ar5212GetNfAdjust
;
738 ahp
->ah_pcdacTable
= priv
->pcdacTable
;
739 ahp
->ah_pcdacTableSize
= sizeof(priv
->pcdacTable
);
740 ahp
->ah_rfHal
= &priv
->base
;
744 #endif /* AH_SUPPORT_2413 */